
No portion of this publication may be reproduced without written consent.	 95

This is the last article in our series on the componentization of Web Dynpro
Java business applications. In our first article, published in the May/June
2008 issue of SAP Professional Journal, we looked at the general concepts,
principles, and benefits of a clearly component-based application design. In
the second article, published in the July/August 2008 issue, we focused on
the conceptional aspects of implementing a component-based architecture
in Web Dynpro Java using the SAP NetWeaver Development Infrastructure
(NWDI). We explored the two independent component models that exist in
the Web Dynpro Java application development context: the Web Dynpro
component model and the Web Dynpro development component.

In this article, we’ll present a more in-depth technical description of
Web Dynpro component implementation and packaging techniques. We
first explore Web Dynpro componentization patterns, including the compo-
nent separation pattern, component usage declaration pattern, component
interface controller invocation pattern, cross-component eventing pattern,
and component interface context mapping pattern. Next we explore the
external component interface context mapping pattern to access a parent
component’s data context inside a child component and then describe the
component interface view embedding pattern to design componentized user
interfaces. Then we discuss the component controller delegation pattern,
the component usage referencing patterns, the faceless model component
patterns, and then component interface definition strategy patterns, as well
as their implementations. After exploring Web Dynpro componentization
patterns, we address those patterns related to the separation of diverse
development entities into Web Dynpro development components. We
explain how to separate different Web Dynpro development-related entities
— such as models, dictionaries, and different types of Web Dynpro compo-
nents — into Web Dynpro development components and how to optimize
these development components. Finally we provide some tips and tricks to
help you work more efficiently with Web Dynpro development components

Leverage component-based
architecture in Web Dynpro Java
business applications
Part 3 — Componentization patterns in practice

by Bertram Ganz and Richard Tucker

Bertram Ganz
Senior Product Specialist,
SAP AG

Richard Tucker
Principal Web
Development Architect,
Atos Origin UK

(Full bios appear on page 120.)

SAP Professional Journal • September/October 2008

96	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

inside the NWDI, such as finding the right granu-
larity of Web Dynpro development components
to optimize productivity, maintainability, and
flexibility.

Web Dynpro
componentization patterns
The Web Dynpro componentization patterns
described in this article show you how to concretely
design and implement component-based architecture
in Web Dynpro Java business applications. These
building blocks capture proven and mature solutions
for recurrent problems in the Web Dynpro compo-
nent — as well as development component context
— and can therefore decisively improve your Web
Dynpro Java development projects.

The described “componentization patterns” are
more “reference patterns” or “cookbook recipes”
than true “design patterns,”� as described by Erich
Gamma, Richard Helm, Ralph Johnson and John
Vlissides in their book Design Patterns: Elements
of Reusable Object-Oriented Softeware (Addison-
Wesley, 1994). Nevertheless, the given Web Dynpro
componentization patterns are also “three-part rules,
which express a relation between a certain context,
a certain system of forces which occurs repeatedly
in that context, and a software configuration which
allows these forces to resolve themselves.”�

In this article context refers to a component-
based Web Dynpro Java application, system of forces
refers to Web Dynpro component-specific design
and implementation problems to be solved, and soft-
ware configuration refers to the declaration steps
inside the Web Dynpro Java design time environ-
ment and the implementation steps inside the Web
Dynpro Java controller classes.

The documentation format that we use to

�	 For more details, see “Design Patterns” and “Design pattern
(computer science)” on Wikipedia at http://en.wikipedia.org (2008).

�	 Gabriel, Dick, “A Pattern Definition.” http://hillside.net/patterns
/definition.html (2008-06-23).

describe Web Dynpro Java componentization
patterns is comprised of the following sections:

•	 Problem: A description of a concrete
component-related problem to be resolved.

•	 Motivation: A scenario consisting of a problem
and a context in which this pattern can be used.

•	 Example: An example of the pattern.

•	 Solution: A description of an implementation of
the pattern. In some cases, we divided the solu-
tion into an Implementation part, addressing the
controller class implementation aspects of the
solution, and a Declaration part, addressing the
Web Dynpro tool specific modeling aspects of
the solution.

Let’s take a closer look at some development
and declaration patterns that you’ll repeatedly
encounter when building componentized Web
Dynpro Java applications. These patterns will also
provide some dos and don’ts that optimize the
development process and the architecture of your
own Web Dynpro Java applications. They are a
concise way to represent the knowledge applied in
a state-of-the-art componentized Web Dynpro appli-
cation. Most patterns are illustrated with examples
from the Web Dynpro case study application
presented in the first article of this series.

Component separation pattern

This componentization pattern is the basis for all
other patterns. Separating Web Dynpro applications
into multiple components is the first prerequisite for
all other component-related patterns.

Problem: ��� For large applications, ����������������� how can you opti-
mize the architecture, development process, and
maintenance of a large Web Dynpro Java applica-
tion to provide a reduced total cost of ownership,
rapid and team-based development, clear separation
of concerns (SoC), and the reuse of controller code
and user interface parts?

Motivation: If you have a ���������������������� monolithic Web Dynpro
component that implements several concerns, it may

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 97

comprise a rich functionality regarding its user
interface, back-end access, and application logic,
which can result in a number of major drawbacks.
A large component might be highly limited or
provide no reuse (for more details on component
reuse, see the sidebar above). Different developers
may not be able to simultaneously implement it
because of its complexity. It may have a longer
build, or it may have archive and deployment
turnaround times that are based on missing an
incremental build process.

Example: The Web Dynpro case study application
is clearly separated into three root components:
PoGRComp (purchase order good receipts),
PoApproveComp, and PoChangeComp. The two
reusable child components, PoSelectComp and
TripSelComp (search component), were reused by
all three root components.

Solution: Separate your large Web Dynpro
application into several functionally decoupled and
preferably reusable Web Dynpro components. The
components should provide specific and singular

functionality. Each functionality is provided once
and then ��������������������������� used����������������������� in many applications.

You want to be sure that, with its visual
(component interface views) and programmatic
(component interface controller) interfaces, a Web
Dynpro component exposes its user interface,
context data, and controller logic (methods, events)
to other Web Dynpro components. ������������ You need to
specify the component interface so the component
user can access the component via this interface.

Component usage declaration
pattern

The previously described component separation
pattern implies the existence of separate “decou-
pled” Web Dynpro components. To “couple” these
components with one another, you first have to
apply another fundamental componentization
pattern called a component usage declaration

Web Dynpro component reuse
Allowing code reuse usually requires additional effort when developing the code to be reused. Planning
for too much reuse, however, can significantly slow down the development speed of applications and is
not necessarily justified if the actual cases of reuse are highly unlikely or not even known at development
time. Usually, the additional cost of developing reusable code is only justified if there are at least several
consumers of the reuse component provided, as is the case for PoSelectComp and TripSelComp in the
Web Dynpro case study application. Do not try to make everything a reusable component.

Web Dynpro components should not be used to implement a single helper method. Declaring and imple-
menting a Web Dynpro component, combined with defining related component usages, might cause too
much overhead during development. To keep memory usage low at runtime, you would have to use the
referencing mode for the new component, and this would require additional coding or declaration (see
the “Component usage referencing pattern” section on page 110).

Instead, a pure Java utility class should be sufficient. You can expose a utility class via public parts of
development components as well and reference it from all of your Web Dynpro development components.
If you want to apply other Web Dynpro dependant functionality inside the helper method that requires a
Web Dynpro component (like shared context nodes, etc.), then a component makes sense and you could
incorporate the new method there as well.

SAP Professional Journal • September/October 2008

98	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

pattern. As all possible interdependencies� between
two Web Dynpro components are based on a previ-
ously declared component usage dependency,� this
pattern is the second prerequisite for all of the patterns
described in the upcoming sections. Without the
existence of two separate Web Dynpro components
and without declaration of a corresponding component
usage relation, all of the remaining componentization
patterns cannot be applied.

Problem: What can you do if a Web Dynpro parent
component needs to use another Web Dynpro compo-
nent for the purpose of embedding or navigating to
that component’s interface view via the parent’s own
UI? What if the parent component needs to consume
or transfer context data across component borders?
Or what if the parent component wants to invoke
methods implemented by its used Web Dynpro child
component, or subscribe to events fired by the child
component?

Motivation: You want to be able to reuse existing
functionality implemented in another Web Dynpro
component or defined inside another abstract Web
Dynpro component interface definition (as defined in
the second article). You want to compose a rich user
interface by nesting visual Web Dynpro components
(i.e., component interface views). You want to share
(send or retrieve) context data across component
borders, or perhaps connect to the business logic
(represented by a Web Dynpro model) in a faceless
Web Dynpro component.

Example: In the Web Dynpro case study application,
the PoSelectComp component for selecting purchase
orders is reused by all three root components (i.e.,
PoGRComp, PoApproveCom, PoChangeComp). The
purchase order component PoSelectComp itself reuses
the TripSelComp search component for searching
buildings, cost centers, and projects.

�	 Examples of “interdependency” between two Web Dynpro components
or, more precisely, between a parent component and its child compo-
nent, include component interface view embedding, cross-component
navigation, cross-component eventing, cross-component context map-
ping, or component interface controller method invocation.

�	 See the “Defining Web Dynpro component usage dependencies” section
in the second article of this series.

Solution: Add a Web Dynpro component usage to
the parent component that points to the used Web
Dynpro child component. Whenever functions
provided by another Web Dynpro component (or
functionality defined by a Web Dynpro component
interface definition without implementation) have to
be used in an embedding Web Dynpro component, a
corresponding Web Dynpro component usage entity
must be declared first inside the Web Dynpro Tools
development environment.

	 Declaration:
In Web Dynpro Explorer, select the parent compo-
nent (PoSelectComp), as shown in Figure 1. In
the Used Web Dynpro Components node, select
the context menu item Add Used Component.
In the New Component Usage dialog, enter a
component usage name, for example, POSelection
(). Select the Web Dynpro child component
to be used via Browse button (), and keep
the default Lifecycle property createOnDemand
unchanged in most cases (). Click on Finish.

Note!

A Web Dynpro child component can only be
used by its embedding parent component when
either the child component is contained in the
same Web Dynpro development component,
or stored in another Web Dynpro development
component when it is made “visible” by
defining a corresponding public part usage
relation between both development
components.

Now that you’ve added the newly named Web
Dynpro component usage entity to the parent compo-
nent (listed in Web Dynpro Explorer under the Used
Web Dynpro Components node () so you can define
other child component-specific relations (e.g., context
mapping, event subscription, component interface
view embedding, and navigation link definition).

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 99

Component interface controller
invocation pattern

This componentization pattern requires that the
component separation pattern and the component
usage declaration pattern be applied first.

Problem: How can a parent component interact
with its embedded child component? How can a Web
Dynpro parent component delegate the controller
logic to a child component (i.e., to one of its
comprised component or custom controllers)? How
can a parent component invoke methods exposed
by the component interface controller of a child
component?

Motivation: Many used Web Dynpro components
expose methods in their interface controller to be
called inside the embedding parent component. You
want to implement controller logic once inside a
single Web Dynpro component, and you want to
call that controller logic from another component.
You want a child component to react on the changes
inside its parent component. A visual Web Dynpro
parent component must execute a back-end call
implemented in a faceless child Web Dynpro compo-
nent that is bound to a Web Dynpro model. A child
component needs to be initialized or “configured”
by its embedding component to run correctly.

Solution: Inside a controller of the parent component,
invoke a method exposed by the IExternal API of the
child component’s interface controller.

	 Declaration:
Declare a method in the interface controller of
the used child component. Based on this declara-
tion, the generated IExternal API with the name
IExternal<child component name> gets auto
matically enriched with the defined method to
be “externally” invoked in a parent component.
In the invoking controller of the parent compo-
nent, declare a controller usage relation to the
component interface controller of the used child
component.� After you define a component inter-
face controller usage relation, the IPrivate API
(accessed using the shortcut variable wdThis) of
the invoking controller gets automatically enriched
with the method wdGet<child component usage
name>Interface(), which returns the typed
IExternal API of the child component’s interface
controller. (For more information on the compo-
nent interface controller as it relates to this
context, see the sidebar on page 100.)

�	 This is done in the Properties tab of the invoking controller (custom,
component, view, interface view) of the parent component. A corre-
sponding component usage relation to the child component must be
declared beforehand.

Figure 1	 Adding a Web Dynpro component usage to the parent component

SAP Professional Journal • September/October 2008

100	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

	 Implementation:
Implement the defined method in the child
component’s interface controller by delegating
the interface controller method call to that
same method inside the component controller.
(This delegation principle is explained in the
“Component controller delegation pattern” section
on page 108.) In the parent component’s controller
class, invoke the interface controller method of the
used child component with the code line:

wdThis.wdGet<child component usage

 name>Interface().<method name>();

Example: In the case study application, the user
approves a purchase order in the PoApproveComp root
component. To make the embedded child component
PoSelectComp react on this approval step triggered by
the user, its parent component PoApproveComp invokes
the method refreshData() exposed by the child
component’s interface controller with the code line:

wdThis

 .wdGetPOSelectCompInterfaceController()

 .refreshData();

To invoke this method in the component controller
of component PoApproveComp, you must first define
a controller usage relation to the interface controller
of the used component POSelectComp. The
wdGetPOSelectComInterfaceController() method
gets automatically added to the IPrivate API of the
invoking root component controller after you’ve
defined a corresponding interface controller usage
dependency. This generated method returns the
IExternalPOSelectCompInterface API of the child
component’s interface controller in which the declared
interface controller method refreshData() can be
invoked. See Figure 2.

Cross-component eventing pattern

This componentization pattern requires that the
component separation and the component usage
declaration patterns be applied first.

Problem: How can a child component interact with
its embedding parent component? How can a child
component make its parent component react on its

Defining the right usage dependency
After you’ve defined a component usage within the embedding component, you can then define up to
three types of usage dependencies at controller or UI level at design time:
•	 Component usage: A controller of the embedding component uses the component usage to control

the life cycle of the associated component instance. It is also possible to provide a component usage
with the reference to another component usage of the same type. The used component usage can be
accessed by a controller via the IWDComponentUsage API.

•	 Component interface controller: A controller of the embedding component uses the component
interface controller that is associated to the component usage. Thus, the context exposed in the
component interface (for defining context mapping chains) and its methods and events are visible to
the controller. The component interface controller provides its IExternal API as an interface to a used
component.

•	 Component interface view (optional): A window or ViewContainer UI element can embed the
component interface view of the component instance associated to the component usage. By using the
inbound and outbound plugs defined by the component interface view, navigation links can be defined
across components. Because non-visual components do not have component interface views, this
usage dependency is only available to UI components.

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 101

own controller logic or on user actions? How can a
parent component handle events fired by its child
component?

Motivation: A child component needs to interact with
its parent component on the controller logic level so
that the parent component can react on it. ���������� Since one
of the most important requirements for components
is that they don’t make any assumptions about their
“surrounding,” there cannot be any direct interaction
between a child component and its embedding parent
component via a method invocation. You need to
create an “outbound” interaction in which the child
component is released from “knowing” its parent
component.

Solution: Create �������������������������������������� an outbound interaction of type event
source/event sink so the used child component can
throw events that you defined in its component inter-
face controller (event source) and the events can be
captured by an event handler in a controller of the
embedding parent component (event sink).

	 Declaration:
Declare an event in the interface controller of the
used child component. In the parent component,

define a component usage for this child compo-
nent. Optionally, you can transfer values or objects
to the event handler by defining event parameters.
In a controller of the parent component, declare
a controller usage relation to the component
interface controller of the used child component.
(For more information on the component interface
controller, see the sidebar on page 100.) In the
same controller, declare an event handler� (e.g.,
onReceiveBuildingSearch) and subscribe it to the
event (e.g., BuildingSearch) exposed by the child
component’s (e.g., TripSelComp) interface
controller (see Figure 3 on the next page).

	 Implementation:
After you define an interface controller event
in the child component, the IPublic API� of the
component interface controller gets enriched
with the new method wdFireEvent<event
name>([event parameter {"," event
parameter}]). To fire the interface controller

�	 This is done in the Methods tab of the event-handling controller
(custom, component, view, interface view) of the parent component.

�	 The IPublic API of a Web Dynpro controller can only be invoked by
other controllers of the same Web Dynpro component.

POApproveComp

Component
Controller

Model

POSelectComp

Component
Controller

Component Usage: POSelect

Interface controller usage

wdThis.wdGetPOSelectInterface().refreshData()

IExternalPO-
SelectComp-API
refreshData()

Figure 2	 Applying the component interface controller invocation pattern

SAP Professional Journal • September/October 2008

102	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

event from within the component controller in
the same component,� first declare an interface
controller usage relation in the Properties tab of
the component controller. Then, in the component
controller class, you can fire the interface
controller event with the following code line:

wdThis

 .wdGet<component

 name>InterfaceController()

 .wdFireEvent<event name>(

 [event parameter {","

 event parameter}]);

	 Based on the declared event subscription inside
the parent component, the Web Dynpro Java
Runtime environment invokes the subscribed
event handler in a controller of the parent
component.

Example: In the Web Dynpro case study application,
the user selects one of three criteria buildings, cost
centers, or products to search purchase orders that
relate to the selected criteria. The lowest-level reus-

�	 For the sake of a simpler, optional component migration in SAP
NetWeaver CE 7.1, you should only call the component interface con-
troller from within the component controller, not from within a custom
or view controller directly. See the section “Component controller dele-
gation pattern” later in this article.

able component, TripSelComp, only implements the
user interface for the search input form (choose a
building, cost center, or product), whereas its embed-
ding parent component PoSelectComp implements
the controller logic to retrieve all matching purchase
orders and display them in a table UI.

The child component TripSelComp fires the interface
controller event BuildingSearch after the user’s
building search criteria selection. The embedding
purchase order selection component PoSelectComp
must then handle this event to retrieve and display
all matching purchase order search results.

We now assume that the required declarations are
correctly made. As shown in Figure 4, the call
sequence from firing the interface controller event
BuildingSearch in child component TripSelComp to
handling it in parent component PoSelectComp should
work like the following:

•	 In the child component TripSelComp: In the
selection view controller, the action event-handler
invokes a public component controller method
fireBuildingSearch(). This method is addition-
ally declared in the component controller to avoid
a direct invocation of the component interface
controller from within the view controller (see
the section “Component controller delegation
pattern”).

Figure 3	 Declaring an interface controller event subscription inside a parent component

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 103

• 	 In the child component TripSelComp: The compo-
nent controller method fireBuildingSearch()
fires the defined interface controller event
BuildingSearch with one code line:

wdThis

 .wdGetTripSelCompInterfaceController()

 .wdFireEventBuildingSearch

 (criteriaString);

•	 In the parent component POSelectComp: The
parent component controller event handler
onReceiveBuildingSearch() is subscribed to
the interface controller event BuildingSearch of
the used component TripSelComp. The event

POSelectComp

Component
Controller

TripSelComp Component
Controller

Component Usage: TripSel

Interface controller usage IExternal-
TripSelComp

-API

POListView
Subscribe event handler onReceiveBuildingSearch()
to interface event BuildingSearch

Event:
BuildingSearch

View
Controller

Selection View

Figure 4	 Cross-component eventing between two Web Dynpro components

Note!

Download the Web Dynpro naming
conventions document from the SAP
Professional Journal Web site at
http://www.sappro.com/downloads.cfm.
Adhering to consistent naming conventions
will help to ensure the successful support,
modification, and maintainability of your
component-based Web Dynpro applications.

Note!

Web Dynpro does not yet support the
“external” subscription of interface controller
event handlers. This means that a parent
component cannot “externally” subscribe an
event handler method of its child component’s
interface controller to its own “external”
event source. This would be an alternative
to interface controller method invocation
because the child component would then be
able to react on an event fired by the parent
component. Instead of directly invoking an
interface controller method of one or several
child components of the same type, the parent
component would just fire an event.

SAP Professional Journal • September/October 2008

104	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

parameter searchCriteria is passed to the event
handler so that the controller logic can search
for all matching purchase orders.

Component interface context
mapping pattern

This componentization pattern requires the
component separation and the component usage
declaration pattern to be applied first.

Problem: How can a parent component access
context data stored in an embedded child
component?

Motivation: Web Dynpro uses contexts as hierar-
chically structured storage places inside a controller.
Contexts are located across several controllers and
components. You want to avoid passing multiple
objects, object lists, values, or nested data structures
across component borders based on method invoca-
tion or server side eventing, because it implies
additional and often complex controller coding
to transfer and receive them. You also want to
avoid copying context data from one context to
another via method call (based on value semantics)
to optimize performance by reducing memory
consumption on the server side. Store context data
once and share it across component borders via
context mapping (based on reference semantics)
because it yields an automated data transport
performed by the Web Dynpro Java Runtime
environment.

Solution: Expose context data to other components
in the component interface controller context. Other
components can then reference this context data
after having defined a context-mapping relationship
to the interface controller context of the used
component.

Declarations:
Child component: In the child component’s
interface context, define the context elements
that are mapped to the data context inside
the child component (in component or
custom controller context). Do not define a
data context (un-mapped context storing the

-

original context data) in the interface
controller context itself (see the “Component
controller delegation pattern” section for
more details).

Parent component: Declare a component
usage relation to the child component
inside the parent component. Open the Data
Modeler dialog via the Open Data Modeler
context menu item inside the Web Dynpro
Explorer. Inside the Data Modeler, draw
a data link from a parent component’s
controller to the interface controller of the
used child component. Then you can define
a context-mapping relation to the interface
controller context of the used child compo-
nent via drag and drop. The mapped context
can then be used to map other contexts to it
or to bind UI elements to it, as shown in
Figure 5.

	 Implementation:
Based on the declared context-mapping relation
to the child component’s interface controller
context, you can programmatically access its
context as if it were defined inside the parent
component. Note that context-mapping-based
data access is based on a reference, not on a
value semantic. This means that you access the
data context stored inside the child component
via reference, not via copied value.

Example: In the Web Dynpro case study applica-
tion, the component PoSelectComp uses the child
component TripSelComp as a search form for
entering purchase order search criteria. The
component PoSelectComp needs access to addi-
tional data (e.g., company codes or user roles)
besides the searchCriteria string retrieved via inter-
face controller eventing stored inside the child
component TripSelComp.

To easily reference this context data inside the
POSelect component controller, you can map
elements in the component controller context to the
interface context elements (nodes and attributes) of
the used TripSelComp interface controller context
as shown in Figure 6. You can then access the
interface context of the used child component

-

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 105

Figure 5 	 Data Modeler displays interface context mapping as data link

Figure 6	 Edit Context Mapping dialog for defining the relationship between POSelectComp and
TripSelCompInterface

SAP Professional Journal • September/October 2008

106	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

TripSelComp by invoking typed context APIs� in the
POSelect component controller:

ICompanyCodesElement elem =

 wdContext.nodeCompanyCodes().

 getCompanyCodesElementAt(0);

External component interface context
mapping pattern

This componentization pattern requires that the
component separation and the component usage decla-
ration pattern be applied first. We did not apply this
pattern in the Web Dynpro case study application.

Problem: How can a child component access context
data stored in its embedding parent component?

Motivation: A child component needs to access
external context data stored inside its parent compo-
nent. As a child component must not and cannot
define a cyclic component usage relation to its parent
component, it cannot map its own interface context
to the parent component’s external data context.

Solution: Apply the external interface context
mapping technique. Mark interface context elements
of a child component as input elements first. To get
the same context structure, copy the required structure
of the parent’s data context, and then paste it to the
child’s interface context. Its parent component then
externally maps the interface controller context’s input
elements (e.g., marked nodes and attributes) to its
own external data context (e.g., inside the component
controller). In this way, the context mapping chain is
completely defined.

Example: You can find a practical example of
external interface context in sample application

�	 Typed context APIs are context interfaces that are generated for the
declared context nodes and attributes. For every declared context node
<node name> a corresponding pair of typed context APIs, I<node
name>Element and I<node name>Node, gets generated. Return types
and parameter types of typed context API methods are not the generic
Web Dynpro context APIs (IWDNode and IWDNodeElement), but the
typed context APIs themselves.

“Server-Side Eventing”10 in the Web Dynpro Java
tutorial on SDN.

Component interface view embedding
pattern

This componentization pattern requires the compo-
nent separation and the component usage declaration
pattern to be applied first.

Problem: How do you visually embed the user
interface of a child component inside its parent
component?

Motivation: You want to be able to reuse user
interface parts implemented once by a visual
Web Dynpro component inside other components.
You need to design nested user interfaces based
on component separation.������������������������ Based on the black-box
principle described in the second article, you cannot
directly embed a view of a child component into
a view of its parent component because inner
component parts, like views, are not directly
visible outside.

Example: The Web Dynpro case study application
realizes a multicomponent-based application user
interface by nesting the user interface of search
component TripSelComp into the purchase order
selection component POSelectComp, which is in
turn nested or embedded into all three root compo-
nent user interfaces. This nested embedding of
component interface views, implemented in two
separate Web Dynpro components, is shown in
Figure 7.

Solution: Embed the component interface view
exposed and implemented by a used Web
Dynpro component into a window, view area, or
ViewContainer UI element of the parent component.

Every window defined inside a Web Dynpro child
component gets exposed to a parent component with

10	 You can download this Web Dynpro sample application from SDN
on the Web Dynpro Java Sample Applications and Tutorials for SAP
NetWeaver 2004 Web page. Login credentials are needed for access
to SDN.

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 107

a unique component interface view.11 The parent
component can embed this component interface view
like any other view, so the parent component acts as
a “component interface view embedder” or simply
as an embedder. In this way the child component’s
interface view is part of the navigation schema of the
embedder. The embedder can navigate to a component
interface view via an inbound plug (and trigger the
associated event handler in the component interface
view controller). The embedded component can cause
navigation to the embedder by triggering an outbound
plug of its interface view (cross-component
navigation12).

Declaration:
Child component: Every window (i.e., embed-
ding views or other component interface views)
inside a Web Dynpro component is automati-

11	 In SAP NetWeaver 2004 and 7.0, there is a one-to-one relation between
a component interface view and a corresponding window inside the
component.

12	 See Web Dynpro Java tutorial and sample application “How to
Navigate Inside Web Dynpro Component Interface Views” on SDN to
get more details on this topic.

-

cally exposed to other components as a
related component interface view.13 To declare
navigations links to or from an embedded
interface view inside the parent component,
define inbound or outbound plugs on the
component interface view level.

Parent component: Declare a component
usage relation to the visual child component
inside the parent component. Open the
Navigation Modeler dialog via the Open
Navigation Modeler option on the context
menu inside the Web Dynpro Explorer. Inside
the navigation modeler, embed a component
interface view of the used child component
(Figure 7). (For more information on the
component interface view, see the sidebar
on page 100.) You can then set the initial
visibility of this component interface view

13	 In SAP NetWeaver CE 7.1, the Web Dynpro component model no
longer exposes windows as interface views by default. Instead a win-
dow must explicitly implement one or more component interface
views defined in a local or in a standalone component interface defini-
tion to be visible for other components outside.

-

POSelectComp

Component
Diagram

TripSelComp

Web Dynpro Client − User Interface Web Dynpro Tools − Navigation Modeler

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

x

x

x
x

x
x

x

x
x

x

x

x
x

x

x
x

x

x
x

x x x

Figure 7	 Embedding the component interface view of component TripSelComp

SAP Professional Journal • September/October 2008

108	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

with the Boolean property of default, or
you can define navigation links to and from
inbound and outbound plugs of the embedded
component interface view.

	 Implementation:
To make a Web Dynpro component interface view
visible on the user interface programmatically at
runtime (i.e., based on controller code), make sure
that the following two alternatives exist14:

Component interface view navigation

Component instance creation and destruction15

To navigate to a component interface view, first
define a navigation link to an inbound plug of the
used component interface view (navigation target).
Fire the outbound plug in the view controller of the
navigation source (wdThis.wdFirePlug<outbound
plug name>()) to display the component interface
view on the user interface. In case the navigation
target component instance does not yet exist, the
Web Dynpro Java Runtime creates it automatically
if the related component usage is declared with the
Lifecycle property set to createOnDemand.

When a visual component is used with the
component usage Lifecycle property is set to manual,
the Web Dynpro Runtime will not automatically
create or display it when its component interface view
is reached via navigation link. Also, it will not destroy
this component when the view has disappeared from
the UI via navigation. In this case, you have to
explicitly create the visual component (invoking the
IWDComponentUsage API) to make an interface
view appear, or you have to destroy the component
instance so the interface view disappears. This second
alternative is recommended for scenarios in which
navigation away from a displayed component inter-
face view (no longer displayed afterwards) should be

14	 A component interface view is displayed by default with its embedding
component when the component interface view usage (defined in a
window using the Web Dynpro Tool Navigation Modeler) has defined
the property default equals true. In this case, you need not implement
controller code to display the component interface view on the UI.

15	 See the “Differentiating a Web Dynpro component usage from its asso-
ciated component instance” and “Understanding the Lifecycle property
of a component usage” sections in the second article of this series.

-

-

combined with the explicit destruction of the associ-
ated component instance. Otherwise, the Web Dynpro
Java Runtime won’t explicitly delete the embedded
component instance.

Component controller delegation
pattern

We recommend (it is not mandatory) that you apply
this componentization pattern in all SAP NetWeaver
2004 and SAP NetWeaver 7.0 Web Dynpro Java
applications so that you can migrate your applications
easily to the enhanced Web Dynpro component model
in SAP NetWeaver CE 7.1.

Problem: How do you implement the component
interface controller class?

Motivation: The component interface controller class
no longer exists in the new Web Dynpro component
model introduced in SAP NetWeaver CE 7.1. Instead,
component interface controller will be implemented
by the component controller class. You want to avoid
moving code from the component interface controller
class to the component controller in SAP NetWeaver
CE 7.1. You should also avoid refactoring controller
usage dependencies to the component interface
controller, which will no longer be provided in
the enhanced component model.

Solution: Implement and declare the component
interface controller as a pure delegator of interface
functions (such as methods, events, or context-based
data transfer) between an external user of the compo-
nent interface controller (a controller inside the parent
component) and its implementation inside the child
component using the following guidelines:

•	 For every interface controller event, declare a
public method inside the component controller to
fire this event. In this method, you should fire the
interface controller event by accessing the inter-
face controller’s IPublic API.

•	 Copy all of the methods declared in the
component interface controller to the component
controller and implement them there. Delegate
to these methods inside the component interface

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 109

How reusable components can adapt their flavor
You might have already wondered how the two Web Dynpro components, TripSelComp (search compo-
nent) and POSelectComp (purchase order selection component), adapt their flavor — that is, specialization
or adaptation of a component to the context in which it is running — to the root component (PoGRComp,
PoApproveComp, or PoChangeComp) in which they are actually running.

In the Web Dynpro case study application, we met this requirement by defining application properties
on the Web Dynpro application entity level and accessing them within the reused child components. We
made sure that all three root components started with three separately defined Web Dynpro applications.

For a Web Dynpro application entity, you can set pre-defined application properties (such as authentica-
tion or LogoffULR) and self-defined application properties (such as a property to identify the application
type). For example, the PoApprove application starting root component PoApproveComp defines the two
custom application properties — ApprovalLimit and POListType as shown in the screenshot below.

The search component TripSelComp can then access this application property by invoking the generic
IWDApplication API to adapt its flavor (e.g., display or hide fields in view layout):

IWDApplicationPropertyInfo appPropertyInfo =

 wdComponentAPI.getApplication().getApplicationInfo()

 .findInApplicationProeprties("POListType");

if ("Approve".equals(appPropertyInfo.getValue()) {...} else {...}

As an alternative, a root component can pass such configuration data to its embedded child component by
means of external context mapping — that is, the parent component writes configuration data into its own
context and the child component accesses the mapped context in its wdDoInit() controller hook method.
You can also initialize child components by invoking a component interface controller method from the
embedding parent component.

SAP Professional Journal • September/October 2008

110	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

controller after defining a component controller
usage relation.

•	 Do not declare data contexts inside the interface
controller context. Instead, map the interface
context to the component controller’s data context.

•	 Do not declare any direct controller usage relation
to the component interface controller in a view
controller or in a custom controller (bypassing
the component controller) to invoke interface
controller methods, fire interface controller events,
or access the interface controller context via
context-mapping. Instead, access the component
interface controller from other controllers in the
same component using the component controller
as delegator.

Component usage referencing pattern

This componentization pattern requires that the
component separation and the component usage
declaration pattern be applied first. We did not apply
this pattern in the Web Dynpro case study application.
Nevertheless, this pattern provides a solution for
sharing a single instance of the component in a

componentized Web Dynpro Java business
application.

Problem: How can different components use the
same instance of another component?

Motivation: You have multiple Web Dynpro parent
components that use the same child component via
their own independent component usage relations.
These component usages have a default Lifecycle
property of createOnDemand, which implies that
all parent components separately create their own
independent child component instances. You want
to be able to release a component from managing the
life cycle of its used child component individually,
so that other components (e.g., “sibling” components)
can share the same child component instance.
Therefore, you want to centrally manage the life
cycle of a single component instance in a higher-
level component (e.g., the root or application
component) and share this component with other
child components.

Example: A typical use for this pattern is a central,
faceless Web Dynpro model component (connecting
to business logic) in mostly visual Web Dynpro
components. The other components must all use the
same model component instance at runtime. See an
example of this pattern in the “Faceless model
component pattern” section on page XX.

Solution: Enter the model component usage managed
by the root component in the referencing mode within
both child components. The child components then
jointly reference the same model component instance
to which the referenced model component usage
points.

	 Declarations:
Child component: In child components that
need to share the same component instance,
declare a component usage relation to the
jointly used faceless component. Explicitly
set the Lifecycle property for all of these
component usages to manual. Also,
declare an interface controller method
referenceComponentUsage

 (IWDComponentUsage sharedUsage)
and implement the method in the component

-

Note!

In SAP NetWeaver 2004 and 7.0, you can
apply the component usage referencing pattern
only to faceless Web Dynpro components,
which do not implement user interfaces. You
cannot apply this pattern to visual Web Dynpro
components. In SAP NetWeaver CE 7.1, you
will be able to reference a component usage
that points to a visual component instance.
With this technique, you can display a child
component in a component user interface
without being responsible for its life cycle
management. This is particularly useful in
combination with the component interface
definition strategy pattern for loosely coupling
parent with child components.

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 111

controller. For this, first define a usage relation
to the faceless component usage (not to its
component interface controller) inside the
component controller. (See the sidebar on
page 100 for more information on component
usage.)

Parent component: In the parent component,
declare a component usage relation to the
jointly used faceless component. Explicitly
set the Lifecycle property of this component
usage to manual (not mandatory, but recom-
mended). Declare controller usage relations
to all interface controllers of the other used
child components.

	 Implementations:
Parent component: Create an instance of the
faceless child component by invoking the
IWDComponentUsage API. Pass the reference
from the faceless child component usage to
all other child components by invoking the
defined interface controller method
referenceComponentUsage

 (IWDComponentUsage sharedUsage).

Child component: Implement this method in all
child components’ interface controllers by

-

-

-

delegating the method to the component
controller. In the component controller, enter
the passed component usage — which that
points to the single faceless component
instance — in referencing mode with the
following line of code:

wdThis.wdGet<faceless component usage

 name>ComponentUsage()

 .enterReferencingMode(sharedUsage);

Afterwards, the child component refers to the
component usage maintained by its parent component
and therefore points to the single instance of the
jointly used faceless component.

Faceless model component pattern

This componentization pattern16 requires that the
component separation and the component usage
declaration patterns be applied first and combined
with the component usage referencing pattern. We did
not apply a faceless model componentization pattern
in the Web Dynpro case study application.

Problem: How can you connect to the business logic
inside a central faceless Web Dynpro model
component?

Motivation: A visual Web Dynpro UI component
should be released from directly accessing a Web
Dynpro model itself (SoC). Instead, it should access
model data via interface-context-mapping. You should
define the context-to-model binding and implement
access to the business logic (e.g., executing model
objects, invalidating response context nodes) in a
faceless Web Dynpro model component.

Example: You have an application in which different
user interface components need access to the interface
context of the same model component instance. In
addition, the user interface components are sibling
components and are therefore not related to one

16	 For more details on this topic, see Web Dynpro Java tutorial and sample
application “Designing Component-Based Web Dynpro Applications”
on SDN.

Note!

When the parent component destroys the
associated component instance by calling a
corresponding method in the child components’
interface controller, the parent component
should inform all child components that
reference the shared faceless component.
The child components must then leave the
component usage referencing mode that they
entered to avoid access to a non-existing
instance of the faceless component afterwards:

wdThis

 .wdGet<faceless component usage name>

 ComponentUsage().leaveReferencingMode()

SAP Professional Journal • September/October 2008

112	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

another. The life cycle of the single model component
instance is centrally managed by the root component,

which uses both sibling components as child
components. To retrieve model data, both sibling
components, using the same model component,
map their contexts to the interface-context of the
model component at design time. They both enter
the central model component usage (managed by
the root component) in referencing mode at
runtime, and then invoke business methods (e.g.,
executeGetList_PoDetails()) exposed in the
model component’s interface controller to update the
referenced interface-context. By entering the same
model component usage in referencing mode in both
sibling components, they can share the same model
data via context-mapping.

Solution: Implement a faceless Web Dynpro
model component and expose model data to other
components in interface-controller-context for
interface-context-mapping. Enter the model
component usage (defined in root component)
in referencing mode within visual Web Dynpro
UI components.

Declarations:
Faceless model component: Declare a model
usage and bind the component or custom
context to the model classes. For executable
model classes, expose corresponding execute
methods in the component interface controller
to be invoked by other components
consuming model data.

Child components that refer to the model
component usage: Apply declarations
described in the “Component usage refer-
encing pattern” section on page 110. Define a
usage relationship to the Web Dynpro Model
to which the faceless model component is
bound.17 Map context(s) inside the child
component to the interface-context of the
used model component. Declare a usage
relation to the model component’s interface-
controller to invoke methods in controller
code. (For more information on component

17	 A model usage must be defined to declare a valid interface-context-
mapping-relation to the model component’s interface context.
Otherwise, the model classes (part of the interface-context-mapping
definition) are not visible.

-

-

Note!

We did not apply the faceless Web Dynpro
model component pattern in the Web Dynpro
case study application, in which we defined
and implemented the context-to-model binding
and the model class execution directly in the
different UI components. Consequently, the
case study application combines model �������access
and user interface display in separate UI
components. Model data that was retrieved in
a UI child component gets exposed to higher
level UI parent components via the UI
component’s interface context.

This approach is feasible in a nested, “vertical”
Web Dynpro component hierarchy where no
sibling UI components on the same component
hierarchy-level are given and where the model
data retrieved in a child component must only
be accessed by higher level parent components.
As soon as multiple sibling UI components are
used by the same parent component, sharing
model data between these sibling components
becomes more difficult.

The best solution for sharing the same model
data across independent Web Dynpro UI
components (e.g., for two child components
of the same parent component) is the faceless
Web Dynpro model component pattern
combined with the component usage
referencing pattern.

You can find more detailed technical
information on how to apply the faceless
Web Dynpro model component pattern with
the component usage referencing pattern
in Web Dynpro Java sample applications
and tutorials for SAP NetWeaver 2004
“Designing Component-Based Web Dynpro
Applications” on SDN.

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 113

interface controller usage, see the sidebar on
page 100.)

In parent component managing the model
component usage: Apply declarations
described in the “Component usage refer-
encing pattern” section.

Implementation:
Faceless model component: Implement
controller logic to bind the context to the
model at runtime. Implement execute()
methods exposed by the component-interface-
controller inside the component controller
(see the “Component controller delegation
pattern” section).

Child components that refer to the model
component usage: Follow the implementation
description in the “Component usage refer-
encing pattern” section. Define a usage
relation to the Web Dynpro Model to which
the faceless model component is bound. Map
context(s) inside the child component to the
interface-context of the used model compo-
nent. Declare usage relation to the model
component’s interface-controller to invoke
methods in controller code.

Parent component that manages the model
component usage: Follow the implementation
description in the “Component usage refer-
encing pattern” section.

Component interface definition
strategy pattern

We did not apply this pattern in the Web Dynpro
case study application. Nevertheless, it provides
a solution for loosely coupling a Web Dynpro
parent component with its child component without
knowing the child component implementation(s) at
design time.18

Problem: How can a Web Dynpro component use

18	 For more details on this topic, see the “Web Dynpro Component
Interface Definitions in Practice” on SDN.

-

-

-

-

another component without knowing the other
component’s implementation at design time?

Motivation: In some scenarios, you need to find
an easy replacement for one Web Dynpro child
component implementation with another at runtime.
“Easy replacement” means that the used component
implementation can be replaced via configuration
but without code modification, or without being
rebuilt and redeployed. For example, a customer
wants to have the possibility to replace your shipped
default component implementation with another
custom component implementation developed by
the customer. A custom component implementation
is needed when the requested component adapta-
tions cannot be handled by configuring or
personalizing the default implementation. For
example, hiding certain form fields can be config-
ured, but extensively changing the component’s
user interface layout cannot be configured.

Solution: At design time, loosely couple a parent
component with its child component using a compo-
nent usage that points to a Web Dynpro component
interface definition, which has no implementation
inside. At runtime, programmatically create a
component instance implementing this component
interface definition.

Declarations:
Parent component: Declare a component
usage relation pointing to a Web Dynpro
component interface definition (implies
that the Lifecycle property is set to manual)
instead of a specific Web Dynpro component
implementation. Use this interface definition
in the parent component to define all
dependencies to the child component
(context-mapping, interface view embedding,
navigation links, event subscription, method
invocation). Define a usage relation to the
component usage (pointing to a component
interface definition) in component or custom
controller.

Child component: Declare an implementation
relation to the component interface definition
inside the child component implementation
(in Web Dynpro Explorer, follow the menu

-

-

SAP Professional Journal • September/October 2008

114	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

path <component node> → Component
Interface → Implemented Interfaces to
specify the declaration).

Implementations:
Child component: Implement the component
interface definition in one or more Web
Dynpro components.

Parent component: In component or custom
controller, read the fully qualified name of
the component instance to be created at
runtime from a database or from a configura-
tion file. Create a concrete child component
instance that implements the used component
interface definition by passing the fully
qualified name of the implementing
child component with method
IWDComponentUsage.createComponent

(componentName, deployableObjectName).

Invoke interface methods and access the inter-
face context via the IExternal API of the used
component interface definition’s interface controller.

Web Dynpro development
componentization patterns
In this section, we move from the Web Dynpro
component-related patterns to the Web Dynpro
development component-related ones. We provide
best practices and guidelines for optimizing the
development component granularity of your Web
Dynpro Java business application and for effectively
separating all comprised development entities,
(such as different types of Web Dynpro components,
component interface definitions, models or diction-
aries) into multiple development components.
Finally we provide some practical tips and tricks
to help you work more efficiently with Web Dynpro
development components inside the NWDI.

The described Web Dynpro development
componentization patterns and development
recommendations can yield an efficient and team-
oriented development process based on an optimized

-

-

granularity of build units,19 as well as better
maintainability and understandability.

Web Dynpro development component
separation patterns

There are Web Dynpro development componentiza-
tion patterns that you can use to separate Web
Dynpro Java business applications into Web Dynpro
development components. There are patterns for
separating certain types of Web Dynpro entities,
such as models, component interface definitions,
local dictionaries, and reusable Web Dynpro compo-
nents. There are also patterns used to separate other
Web Dynpro components, including ������������ the root or
application components, UI components, and face-
less model component�������������������������� . Applying these patterns
yields an optimized development component
granularity required for team-based application
development, rapid build cycles, better maintain-
ability, and easy understandability.

Problem: How can you find the best development
component granularity?

Motivation: Several developers have to jointly
implement a large-scale Web Dynpro Java applica-
tion. You want to minimize the turnaround time
required for completing build, deployment, and run
cycles during the development process. One of the
first tasks is to split this Web Dynpro application
into separately versionable deploy units.

Solution: First, separate special Web Dynpro
entities into different Web Dynpro development
components. Then combine functionally related
development objects into one reusable group.

Keep in mind that development components are
the build units of the Central Build Service (CBS),
so the deployment granularity (number and size
of development components) plays a decisive
role when optimizing the performance of a single
build-deploy-run cycle. You want to optimize the
granularity by applying some simple separation rules

19	 Every Web Dynpro development component is one single build and
deployment unit.

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 115

on how to move different Web Dynpro entities to the
NWDI component model.

Separating Web Dynpro entities

You can separate Web Dynpro models, component
interface definitions, local dictionaries, and reusable
Web Dynpro components into Web Dynpro
components.

Separating models

Separate models into another development component
and expose them as public parts. Web Dynpro models
should be separated into individual development
components (one model per development component).
These models can be referenced in other Web Dynpro
components based on a defined development compo-
nent usage.

Typically, models contain classes that do not
change during development, especially if the inter-
faces have been defined thoroughly. Since it is
optional to build dependant components during design
and build time, the development component that holds
the models can be excluded from the build, thereby
reducing build time as well as deploy time.

Since different development components are not
allowed to share the same namespace, placing each
model in a different development component enforces
the following rule: Put each model in its own
namespace or Java package.

In Figure 8 (on the next page) you see the
component diagram for the Purchase Order Approve
application. The adaptive RFC model entity in
development component PoModel is separated from
the other Web Dynpro entities building the Purchase
Order Approve application ().

Separating component interface definitions

Using Web Dynpro component interface definitions
separates the API from the implementation at the Web
Dynpro component level. By combining component
interface definitions within a central Web Dynpro

development component — independent from the
related implementing Web Dynpro components
within other development components — you achieve
a separation of these component interface definitions
from their component implementations on the NWDI
component model and therefore on software life cycle
and deployment level. You want to spend a sufficient
amount of time planning the component interface defini-
tion so changes and re-declarations can be avoided.
We did not apply Web Dynpro component interface
definitions in the Web Dynpro case study application.

Separating local dictionaries
You should centrally declare all required local
dictionary types20 within a separate Web Dynpro
development component. For example, you will need
a local dictionary simple type in a Web Dynpro appli-
cation to populate a DropDownByKey UI element
with a value set, which is not defined in a logical
dictionary of an imported adaptive RFC model.

You can reuse local dictionary types that are
stored in a separate Web Dynpro development compo-
nent within all other Web Dynpro development
components. You only have to make changes within
the definition of dictionary types once and all objects
using these types are automatically adapted (the
advantage is even greater if the type can be used
across several applications). By avoiding a redundant
definition of the same dictionary types within several
Web Dynpro development components, the initializa-
tion process speeds up at runtime.

Separating reusable Web Dynpro
components

To optimize the reuse potential of a generic (and
therefore potentially large) Web Dynpro component,
you should separate its functionalities into an indi-
vidual Web Dynpro development component. Using
this approach, your reusable Web Dynpro components

20	 Local dictionary types are not defined in an ABAP Dictionary on the
back-end side so they are not reflected in a logical dictionary, which
comprises the simple types and structure types within an imported
adaptive RFC model.

SAP Professional Journal • September/October 2008

116	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

will reside in a separate build unit that is independent
from its consumers.

In the Purchase Order Approve application, we
applied this development component separation

PoModel (Web Dynpro DC)

Adaptive
RFC Model

PoApprove (Web Dynpro DC)

PoSelect (Web Dynpro DC)

Select
Purchase Order

Component
(POSelectComp)

TripSel

Search
Component

(TripSelComp)

External
Library DC

JAR File SAP DB

Model Usage

Model Usage

Approve
Purchase Order

Component
 (POApproveComp)

POApproveApp

Root or Application
Component

Web Dynpro
Application

UI Component

Model

Library Component

Key

4

2

3

1

Figure 8	 Web Dynpro development component architecture diagram for the Purchase Order Approve
application

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 117

principle to the two reusable components:
TripSelComp for selecting sites and
POSelectComp21 for selecting purchase orders.
These components are stored in two different
Web Dynpro development components: TripSel
(Figure 8, ) and PoSelect (Figure 8, ).

Separating specialized Web Dynpro
components

In the Web Dynpro case study application, we sepa-
rated the models, component interface definitions,
local dictionaries, and the reusable components into
different Web Dynpro development components.
The following guidelines can help you determine
the best size and number of the Web Dynpro devel-
opment components that comprise the remaining
specialized Web Dynpro components, such as root
or application components, UI components, and
faceless Web Dynpro model components.

You should apply the Web Dynpro development
component separation strategy when partitioning
these Web Dynpro components on the NWDI
development component level. This approach yields
many advantages, such as shorter build and deploy-
ment times for small development components.
Conversely, it increases the total generation and
build time for the complete application because it is
inevitably combined with an additional overhead for
defining usage-relations of entities across develop-
ment component borders.

Nevertheless, the advantages of separating most
Web Dynpro entities within different Web Dynpro
development components outweigh the possible
disadvantages in most cases. This is especially true
within a team-based development scenario because
a partitioning strategy favors small development
components, which can efficiently enhance the
development performance.

21	 The component POSelectComp is reused by additional application
components POChangeComp (purchase order change component)
and POGoodReceiptsComp (purchase order goods receipt
component).

Separate Web Dynpro root or application
components

Embed the Web Dynpro root component into a sepa-
rate Web Dynpro development component. The root
component can be loosely coupled with its contained
visual UI components by using component interface
definitions instead of implementing Web Dynpro
components. With this approach, you can eliminate
an inevitable rebuild of the embedded visual UI
components when rebuilding the Web Dynpro
development component comprised of the root
or application component. Remember that the
development component build process is still nonin-
cremental, so all comprised and even unchanged
Java classes, interfaces, and other resources get
regenerated with every development component
build process.

In the Purchase Order Approve application, you
applied this development component separation prin-
ciple to the three root or application components:
POApproveComp (purchase order approval compo-
nent, Figure 8, ), POChangeComp (purchase order
change component), and POGoodReceiptsComp
(purchase order goods receipt component).

Separate the Web Dynpro UI components

You should separate all visual UI components
into at least one single Web Dynpro development
component. When developing more complex user
interfaces with many visual UI components, you
should separate all of these visual components into
many different Web Dynpro development compo-
nents while keeping all related UI components in
the same development component. For example, a
UI component that uses another UI component as
pop-up window should reside in the same develop-
ment component.

Separate faceless Web Dynpro model
components

You can apply the previous rule to the faceless Web
Dynpro model components. A Web Dynpro model
component centrally i���������������������������� mplements the back-end data

SAP Professional Journal • September/October 2008

118	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

access, but it does not implement any user inter-
face. Within its component interface controller,
the W�������������������������������������� eb Dynpro model component������������� exposes the
accessed back-end data (as interface controller
context) and business functions (as interface
controller methods). Other components can then
refer to this data by defining a context-mapping
relation, and can further invoke the interface
controller methods to access the business logic.

There is one major reason for not combining
Web Dynpro models and Web Dynpro model
components within the same Web Dynpro develop-
ment component. A model comprises a set of
model classes (and in the case of an Adaptive RFC
model, a logical dictionary with several simple
type and structure type definitions), which is not
completely required by a single model component.
For example, you could have a model that contains
ten executable model classes, but your model
component might only use two of them. In this
case, combining model and model component
within the same development component would
unnecessarily increase the required build time.

Web Dynpro development component
recommendations
Here are some practical rules and recommenda-
tions to develop and build Web Dynpro
development components more effectively and
rapidly.

•	 Optimize public part definitions: You need
to define objects released for use by other
(Web Dynpro) development components as
public parts. Make public parts as specific and
small as possible, including the entire content
of the development component that is still
being changed into a public part. The automatic
rebuild of used development components is
necessary only if your change uses a public
part that refers to the used development
component. You can avoid unnecessary
rebuilds by publishing objects that will
probably be used by different development
components for different public parts. Every
development component

can contain several public parts — even of the
same type.

	 Another reason for creating small and specific
public parts is to limit rebuilds. The fewer
places the public parts are used, the fewer the
rebuilds that will occur. Whenever possible,
refer directly to public parts and not to their
development components.

•	 Create inner development components for
structuring large development components:
Generally, there is no restriction on the size of
a Web Dynpro development component. Since
development components represent the units for
the build process, development component size
considerations can speed up the development
process. Functionality that (almost) always
belongs together should be provided as one
development component or public part so that
it can be referenced with only one dependency.

	 After a change, the entire development compo-
nent must be rebuilt. Therefore, choose the size
carefully so that it does not contain too many
objects. If a development component becomes
big over time, you can split it internally into
smaller child development components and
provide the same functionality and granularity
by the old (now parent) development compo-
nent for the outside world, while having smaller
units of compilation and editing.

	 As a rule of thumb, development components
can reach a size where up to ���������������� four������������ developers
are responsible for Web Dynpro entities.

•	 Apply some practical rules when working
with Web Dynpro development components:
You should apply the following rules when
building Web Dynpro development
components.

Be sure there is a connection to DTR, even
if the complete component is checked out.
The reason is that on save, a deleted object
is moved from “checked out for edit” to
“checked out for delete.”

-

Leverage component-based architecture in Web Dynpro Java business applications: Part 3

No portion of this publication may be reproduced without written consent.	 119

Do not check out Web Dynpro objects that
are checked out by other users.

Do not keep bottle neck resources checked
out (e.g., the complete Web Dynpro
component).

Always use the same activity for objects in
the same Web Dynpro development
component.

Save your changes before performing reposi-
tory operations (check in, sync, etc.) in the
development configurations perspective.

Click on Reload in Web Dynpro Explorer
after performing a repository operation in the
Development Configurations perspective that
adds/deletes/changes files (e.g., sync).

Rebuild a development component as soon
as its public part definition has changed. Be
sure to rebuild a Web Dynpro development
component via the context menu option
“Rebuild Project” (this does not imply the
rebuild of the public part archive). This
archive is only created within a development
component build, which is started via the
context menu entry Development Component
Build.

Perform the Deploy New Archive and Run
step for changed development components.

Finally, we have some guidelines for naming
Web Dynpro components that you download from
the SAP Professional Journal Web site at http:
//www.sappro.com/downloads.cfm. Using a
consistent naming convention will help keep your
development projects organized and sharing them
a smooth and straightforward process.

Conclusion
In the third part of this series, we focused on the
practical aspects of designing, implementing, and
packaging a component-based architecture in Web
Dynpro Java using the NWDI.

-

-

-

-

-

-

-

By introducing a set of 11 Web Dynpro compo-
nentization patterns, we captured proven and mature
solutions for recurrent problems in the Web Dynpro
component context. We started with the component
separation and usage declaration patterns, which
must both be applied first to leverage component-
based architecture in Web Dynpro Java business
applications. We then described a set of patterns
dealing with interface-controller method invocation,
cross-component eventing, and cross-component
context-mapping. To ease a future component
migration to the new SAP NetWeaver CE 7.1
component model, we then recommended applying
the component controller delegation pattern in all
of your Web Dynpro components developed in
SAP NetWeaver 2004 or 7.0. Next, we explored
the component interface view embedding pattern
for creating nested, component-based user inter-
faces. With the next two patterns, component usage
referencing pattern and faceless model component
pattern, we described a solution for accessing
model data provided by a single model component
instance from different sibling components. We
then completed the Web Dynpro componentization
patterns section with the component interface
definition strategy pattern, applied to loosely couple
a Web Dynpro parent component with its child
component implementation by using an abstract
component interface definition at design time.

In the second part of this article, we advised
a clear development component separation of
different Web Dynpro components (UI components,
faceless model components, component interface
definitions) and non-component (models, diction-
aries) entities. By applying these Web Dynpro
development component separation patterns,
you can optimize the Web Dynpro development
component granularity required for effective team-
based application development, rapid build cycles,
better maintainability, and easy understandability.

Finally, we provided some practical rules
and recommendations for building Web Dynpro
development components more effectively and
more rapidly by optimizing the public part, using
child development components or accelerating the
build process.

SAP Professional Journal • September/October 2008

120	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Bertram Ganz studied mathematics, physics, and computer
science for the high school teaching profession at the
Albert-Ludwigs-Universität Freiburg in Germany, where
he completed his first state exam in 1997. In 2000, he
received his teacher certification before working as
technical trainer for Day Software, a provider of integrated
content, portal, and digital asset management software in
Basel, Switzerland. He joined SAP at the end of 2001 as
a member of the Web Dynpro Java Runtime development
team. Bertram’s work focuses on technical knowledge
transfer, training, roll-out, roll-in, documentation, and
development consulting on the Web Dynpro for Java UI
framework. Bertram regularly publishes blogs and articles
on Web Dynpro for Java and is co-author of the books
“Maximizing Web Dynpro for Java” (SAP PRESS, 2006)
and “Java Programming with SAP NetWeaver” (SAP
PRESS, 2008). He is currently working as the senior
product specialist on the SAP NetWeaver UI Foundation
Operations team. You may reach him at bertram.ganz@
sap.com.

Richard Tucker joined Atos Origin as an ABAP consultant
in 1998. He quickly recognized SAP Web development as
an emerging market and was instrumental in building
Atos Origin’s SAP Web development capability. He has
successfully implemented all SAP Web technologies for
the last 10 years for numerous customers. Since 2005, he
has concentrated on Web Dynpro implementations, with a
long track record in building successful component-based
applications. This track record was the basis for his well-
received SAP TechEd 2007 presentation on behalf of SDN.
You may reach him at richard.tucker@atosorigin.com.

Atos Origin is an international information technology
services company with 50,000 employees in 40 countries.
Its business is turning client vision into results through
the application of consulting, systems integration, and
managed operations. Atos Origin is the Worldwide
Information Technology Partner for the Olympic Games
and has a client base of international blue-chip companies
across all sectors. Atos Origin is the 2007 Winner of the
SAP Partner Excellence Award for Customer Satisfaction
and Quality Performance for a third consecutive year.

