
No portion of this publication may be reproduced without written consent.	 41

Develop composite applications
with SAP NetWeaver
Composition Environment 7.1
Part 3 — Modeling collaborative business processes
with SAP tools

by Volker Stiehl

Innovation — finding new ways to approach old problems — is the raison
d’être of the business world, but innovation by itself is not the whole story.
The speed with which you can change the way you approach a problem
is equally as important. It’s what makes your company competitive in the
marketplace. Without the ability to change your approach quickly, your
new solution loses much of its impact. It becomes just another entry into a
crowded field. How can you speed up the process of getting your new and
innovative solution to market? By using composite applications.

Composite applications are defined as packaged applications that sit
on top of existing enterprise solutions reusing their functionality to form
new, collaborative business processes. Composite applications also play an
important role in SAP’s enterprise service-oriented architecture (enterprise
SOA) strategy. In fact, the announcement of SAP NetWeaver Composi-
tion Environment (SAP NetWeaver CE) in 2007 provided customers and
partners with a design-time and runtime environment for composite appli-
cations for the first time. Since that announcement, the interest in compo-
site applications and their development has grown dramatically.

This is the third and final installment in a series of articles that intro-
duces you to the world of composite applications, their characteristics, their
architecture, and the challenges you typically face developing them. The
first installment (SAP Professional Journal, May/June 2008) introduces
composite applications, SAP NetWeaver CE, and SAP Composite Appli-
cation Framework (SAP CAF) and discusses the bottom layer of the
composite application architecture shown in Figure 1 on the next page:
services and business objects. This first article also sets up the customer
service complaint example.

The second installment (SAP Professional Journal, July/August 2008)
delves into the next layer of the composite application architecture: user
interfaces (UIs). It discusses the tool that you should use to create light-

Volker Stiehl
Product Manager,
SAP AG

Volker Stiehl received a degree
in computer science from the
Friedrich-Alexander-University
of Erlangen-Nürnberg, Germany.
He was a consultant for distrib-
uted J2EE-based business solu-
tions and integration architec-
tures at Siemens for 12 years. In
2004 he joined SAP’s product
management team for a com-
posite application development
toolset, where he’s also
responsible for methodologies
and best practices. He holds
workshops in composite appli-
cations and is a regular speaker
at conferences, such as
SAPPHIRE, SAP TechEd, and
JavaOne. You may reach him at
volker.stiehl@sap.com.

SAP Professional Journal • September/October 2008

42	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

weight UIs: SAP NetWeaver Visual Composer. This
installment also explains two techniques for consuming
Web services and their advantages and disadvantages.
It concludes by examining some advanced features
available for composite applications.

This article, the third installment, explores the
top layer of the composite application architecture:
the process layer addressing the steps of the process
with their assigned roles. This collaborative process
modeling is carried out using SAP Guided Procedures
(SAP GPs).

For this article, I assume that you have read the
previous two articles in this series. This article builds
upon that knowledge. As the previous articles have
shown, you can break down a composite application
development project into five steps:

Step 1: Search for services in SAP Enterprise Services
Workplace (ES Workplace)

Step 2: Simplify the service interfaces with
SAP CAF

Step 3: Create UIs with SAP NetWeaver Visual
Composer

Step 4: Model business objects with SAP CAF

Step 5: Model collaborative processes with SAP GPs

Steps 1 and 2 were covered in Part 1 of this series,
and Step 3 was discussed in Part 2. This article deals
with Steps 4 and 5.

This step-by-step division helps to identify the
different artifacts that make up a composite applica-
tion: business objects, services, UIs, and processes.

Figure 1	 Architecture of a composite application

C
O

M
P

O
S

IT
E

 A
P

P
LI

C
A

TI
O

N
B

A
C

K
 E

N
D

Services Services Services

CRM BI ERP

UI UI

Step 1 Step 2 Step 3 Step 4

UI

Role 1 Role 2

Remote
servicesRemote

services

Business objects

Local Remote

Local
services

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 43

Learn how to model processes with SAP GPs. As
composite applications reuse existing functionality,
part of this example is the consumption of real-world
enterprise services provided by ES Workplace.
Finally, you’ll execute the process and learn how the
SAP GP’s framework helps you to navigate through
the process steps.

Whether you’re a Java developer or a business
process expert looking for detailed information about
composite applications and their development process,
this article will give you a solid foundation from
which to start your own journey into the world of
composite applications.

Modeling business objects
Before coming to the process modeling part of the
example, you have to think about the business objects
on which the process is working. Let’s recall the
process flow of the example scenario: The last step is
responsible for persisting the complaint data in a data-
base. As SAP NetWeaver CE comes with its own
database, it’s possible to save application data there as
well. Local persistency is necessary in cases where
data isn’t yet available for back-end systems. You can
assume that a business object such as “complaint” isn’t
yet available, so you have to define the fields of this
business object. Just by defining business objects, SAP
CAF assumes all the cumbersome and error-prone
tasks such as handling the data’s persistency-inclusive
database-locking, handling transactions, writing logs,
and handling authorization and authentication.

Before you start modeling, think about your busi-
ness object. Which fields are necessary to describe a
complaint thoroughly? In most cases, you save the
data that the process collected during execution. So
far, the SAP GP has been responsible for persisting
the data. Once the process ends, however, you lose all
the collected data. As you want to run reports on com-
plaints to improve quality, you must get access to this
collected data. In essence, you collected information
about the customer, the complaint, and the correspon-
dence between customer, call center agent, and
complaint manager.

It’s not necessary to save all of the customer
fields, such as name, city, or street. It’s enough to
save the customer’s primary key (customerID) so that
you can access the customer’s details via an enterprise
service call, if necessary. The customer address may
change as well, so it’s a good idea to call the enter-
prise service whenever you need it to fetch the latest
customer details. You also need to know what types
the fields are. First, consider which fields have their
origin in a service call and which ones were newly
defined for your scenario. Remember, you should
always reuse the data types of those fields coming
from the service calls. This leads you to the following
list of fields for your complaint business object:

customerID of type PartyIDContent (reused data
type from the enterprise service)

complaint of type LongText (new field)

comment of type LongText (new field)

approved of type Boolean

To reuse existing data types, you can import an
enterprise service call directly into your SAP CAF
project. With this technique you gain access to all of
the data types used in the service call. However, if
you want to separate your composite application into
different SAP CAF projects, you must import the
enterprise service into every SAP CAF project that
needs access to it. If the interface to the enterprise
service changes and you have to reread it, then each
of the projects relying on that service has to reread
the interface.

Therefore, the recommended approach is to create
one SAP CAF project, which is solely responsible for
the external data types (those used by enterprise
services), and let other SAP CAF projects that need
the data types simply reference this SAP CAF project.
That way, the referencing SAP CAF projects don’t
have to import the interfaces as well. The following
steps describe how to implement this recommendation:

1.	 Create a new SAP CAF project, as shown in Part 1
of this article, and name it spj_datastructs.

2.	 Right-click on your project’s external node, and
import the service customerBasicDataByID via
the Services Registry (for details, see the section

•

•

•

•

SAP Professional Journal • September/October 2008

44	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Figure 4	 Creating a new business object
— Complaint

“Step 2: Simplify service interfaces with CAF”
in Part 1 of this series).

3.	 Create another SAP CAF project, and name it
spj_complaint.

4.	 Open this spj_complaint project by double-
clicking on its root node in the SAP Composite
Application Explorer and the project’s editor
opens in the pane to the right of the Explorer.

5.	 The editor consists of two tabs: General and
Reused projects. Switch to the Reused Projects
tab, and click on the Add button. This enables
you to set references to other SAP CAF projects,
which saves effort because only one SAP CAF
project has to import the interfaces.

6.	 In the dialog that pops up, select Reused Projects,
expand the MyComponents node, and set the
checkmark for the spj_datastructs project. Click on
Finish to set the reference (as shown in Figure 2).

The projects appear in the Composite Application
Explorer, as shown in Figure 3. Now that this refer-
ence is set and the data types of the enterprise service
are available for the business object, you can start the
modeling process. Follow these steps:

1.	 Right-click on the modeled node of the spj_
complaint project, and choose New Business
Object from the context menu. Set the new busi-
ness object’s name to Complaint and click on
Finish. A new tab entitled Complaint opens, as
shown in Figure 4.

2.	 Open the Structure tab at the bottom of the page
to define the business object’s data fields. SAP
has already created some housekeeping fields for
you, such as key (the business object’s primary
key), createdBy, createdAt, modifiedBy, and
modifiedAt. SAP CAF fills them at runtime. You
only have to fill the fields that you added to the
business object.

3.	 Click on the Edit Main Structure button in the
upper-left corner of the screen to open the attribute
editor. On the left side of the editor’s screen, you
see the available existing data types from which
you can choose; on the right side, you have a list
of the attributes your business object contains.

Figure 3	 The Composite Application Explorer

Figure 2	 Setting references to other projects

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 45

6.	 Repeat the assignment of fields (complaint,
comment, and approved) so that your final busi-
ness object looks like the one in Figure 6.

When you open the business object for the first
time, this list contains only the housekeeping
fields generated by SAP CAF.

4.	 Let’s start with the customerID field. Find the
appropriate data type in the Existing Types sec-
tion of the screen (on the left). The customerID
has a data type of PartyIDContent (party as in
customers, suppliers, etc.), and it’s part of the
external service. Therefore, you should expand the
spj_datastructs → external → sap_xi_appl_se_global
nodes, select PartyIDContent, and click on the Add
button, as shown in Figure 5.

5.	 The field appears below the existing attributes
ready for renaming. Name it customerID.

Important!

Give the same name to all of the fields in your
composite application that contain the same
information. I cannot stress this enough; its
importance becomes obvious later in the SAP
GP part of this article.

Figure 5	 Adding the customerID field as a data type

Figure 6	 Defining the Complaint business object

SAP Professional Journal • September/October 2008

46	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

However, it is recommended that you also look
at the other tabs (see Figure 7):

On the Associations tab, you can model relation-
ships between business objects, for example,
one-to-many, many-to-one, many-to-many, and
even bidirectional relationships, to name just a
few. Behind the scenes, SAP CAF takes care of
transactional integrity.

On the Operations tab (shown in detail), you get
a list of all generated life-cycle methods for your
business object.

This screen shows you another consequence of
setting the field’s cardinality field to 1:1. The selected
Create method has input parameters, which wouldn’t
be the case if you had left the initial settings for the
fields. In addition to the methods listed, you can add
more finder methods (search methods for which the
names begin with “find”), depending on the needs of
your composite application.

For example, if you need to search for those
complaints that contain a certain text within their
comment field, then it’s a good idea to add a
findByComment search method. To name it, I
recommend you start with findBy followed by the
fields on which the finder relies. However, you can

•

•

assign any name you want. Just click on the Add
button, pick the fields for your finder method’s input
parameters, and provide an appropriate name. That’s
it! SAP CAF automatically covers the rest, especially
implementing the search functionality.

On the Permissions tab, you define whether you
need access rules for your business object. On
this tab, you simply enable or disable permission
checks. The access rules themselves are defined
outside the SAP NetWeaver Developer Studio
(NWDS) with a configuration tool that comes with
SAP CAF. Simply put, just remove the checkmark
from the Permission checks enabled checkbox.

On the Persistency tab, you switch between
local and remote persistency. You can also deter-
mine which database tables will be created based
on your business object’s fields. The database
table being created for the complaint looks like
the one shown in Figure 8.

To access the Create method from the process
layer, you must make it accessible via a Web service
call. Here again, SAP CAF can help you tremen-
dously: Simply right-click on your business object

•

•

Figure 7 	 Life-cycle methods of the Complaint
business object

Important!

All of the new fields — customerID,
complaint, comment, and approved — have 1:1
cardinality. This means that those fields are
mandatory now, and you must fill them each
time a new business object of that type is
created. This cardinality also tells SAP CAF
that the method for creating business objects
needs to use those fields as input parameters.
Adapt the drop-down field in the Cardinality
column accordingly by simply clicking into the
field and choosing 1..1 from the list. Believe it
or not, that’s all you have to do to model a
business object with its own persistency.

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 47

node in SAP Composite Application Explorer, and
select Expose service as Web Service from the context
menu. In the dialog that pops up, select the service
you want to enable as a Web service and provide an
appropriate name. For the example, you only need the
Create method; use CreateComplaintWebService to
name the service (see Figure 9) and click on OK.

Generate, build, and deploy

With the Web service now in place, you can generate,
build, and deploy your business object. Right-click
on the spj_complaint project node in SAP Composite
Application Explorer, and execute the following:

Generate pure Java code for your business object

Translate the code into Java binaries and pack
them into deployable Java archives

Deploy the archive to the Java server on which the
application will run

Your newly created business object is now ready
for testing.

Right-click on the business object Complaint in
the Composite Application Explorer and click on
Test Service from the context menu. The Service
Browser (explained in Part 1) opens in a new browser
window. Drill down in the tree at the left side of the
window until the business object Complaint appears
and select it.

To test the persistency functionality, click on the
New button (a new empty row appears in the table
representing the contents of the database) and enter
data only for those fields of your business object that

•

•

•

Figure 8	 Associated database table for Complaint business object

Figure 9 	 Exposing life-cycle methods as Web
services

SAP Professional Journal • September/October 2008

48	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

you’ve added to it (customerID, complaint,
comment, approved). Click on Save to call the
complaint’s Create method (if it’s a new entry)
or the Update method (if you’re modifying an
existing entry).

Each of the buttons in the Data Component pane
connects to the life-cycle methods of the business
object. Clicking on a button generates the primary
key and automatically fills the bookkeeping fields
(e.g., createdBy, createdAt) to indicate that the
method has successfully created the new Complaint
business object in the database table (see Figure 10
for details).

This table lists all instances of existing business
objects. The findAll method (under Available
Services on the left) conveniently lists all database
entries; one database entry reflects one Complaint
business object. To have local persistency in your
composite application, you need to save all created
complaints for later analysis.

To consume the Create method on the process
layer using a Web service call, SAP recommends
that you check the generated Web service as well.
To do this, you use the SAP NetWeaver Web
Services Navigator. When the Web service success-
fully calls the business object, you see the results in
a format like that in Figure 11.

With the Create Web service for the Complaint
business object now in place, you need to create a
logical destination for the Web service. You want
to clearly decouple the service consumers from the
service providers (as explained in Part 1) by using
logical destinations. Therefore, create the logical
destination CafComplaintWebServiceDest in SAP
NetWeaver Administrator (NWA), and assign your
newly created Web service to it. Here, the business
object-modeling exercise ends.

Now, let’s review what you’ve done in this exer-
cise with just a few mouse clicks: You’ve created a
business object for which you produced a database
table, generated life-cycle methods, provided a Web
service, and defined access control. For this entire
sequence, SAP CAF covers the database-handling,
inclusive, database entry-locking and transaction
management. Imagine that you had to build all of this
functionality manually with other technologies, such
as pure Java. This relative simplicity is the real value
of model-driven development and code generation.

In the previous steps, you’ve created all of the
artifacts you need for your composite application.
Now you glue them together into a collaborative
process using SAP GPs.

Modeling collaborative
processes
SAP GP is the tool of choice for modeling workflow
processes that involve human interactions as well as
background steps, which call services in back-end
systems. SAP GP is a complete framework for
modeling and managing processes and is designed to
implement business processes with greater ease and
speed across multiple applications. Although it lacks
a graphical design time, the framework enables even
those users without specialized software development
skills to easily set up and execute collaborative
processes.

During runtime the end users receive notification
of their participation in a process in which the partici-
pants fill out either online forms or interactive offline
forms based on Adobe technology. This is how SAP
GP navigates (guides) the participants through the
process. It’s a push mechanism, and the notifications

Figure 10 	 Creating an entry in the database table

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 49

contain links to the screen that the end user has to fill
out. So the end user is actually guided. That’s why it’s
called Guided Procedures.

In contrast to the online scenarios, SAP GP also
supports offline scenarios. Here, an offline interactive
form based on Adobe technology (e.g., a PDF form)
takes over the interactive step. You can store the
PDF locally on an end user’s notebook: the user can
fill it out whenever he or she wants, and then transfer
it back to continue the process when he or she is
online again.

In essence, SAP GP consists of three major parts:

Design time: In the SAP GP design time, you
primarily decide upon the process flow, assign
concrete executable applications to each step of
the process, manage the data flow between steps,
and assign process roles to each step. In the end
you model a process template, which can be
instantiated via a simple Web URL, a Web service
call, or a Java API.

Runtime: During the instantiation of the process,
you assign concrete users or groups to the various
process roles so that the SAP GP runtime knows
to whom to send notifications. These notifications
are work items that show up in the user’s

•

•

Figure 11 	 Calling the Create method using a Web service

SAP Professional Journal • September/October 2008

50	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Universal Worklist (UWL) inbox. From there, the
user can navigate to the appropriate step of the
procedure.

Administration: You need SAP GP adminis
tration to maintain processes (e.g., terminate a
process), maintain the email templates you need
to circulate PDF forms, schedule process instan-
tiation, or transport processes, just to name a few
functions.

Now, let’s develop the process flow for the
example scenario (described in Part 1).

Process flow

You need to model four steps, which execute sequen-
tially with one jump back to the review step if the
complaint manager has further questions. Start the
portal via the URL http://<host>:<port>/irj, log on to
the portal, and, by first- and second-level navigation,
go to the SAP GP’s design time. If you don’t see the
tabs for SAP GPs, you need to assign SAP GP roles to
your user account. Details about the roles you need to
work with SAP GP can be found on the SAP Help
Portal (http://help.sap.com/ → SAP NetWeaver → SAP
NetWeaver CE → SAP NetWeaver Composition

•

Environment Library → Administrator’s Guide →
Configuration of SAP NetWeaver CE → Configuration
for CE Additional Components → Configuring Guided
Procedures → Setting Up Portal Roles).

If you need a more thorough introduction to SAP
GPs, I recommend online help for SAP NetWeaver
CE. I also recommend the basic tutorial, “Developing
Your First Process,” on the SAP Help Portal (http://
help.sap.com → SAP NetWeaver → SAP NetWeaver
CE → SAP NetWeaver Composition Environment
Library → Developer’s Guide → Developing and
Composing Applications → Designing Composite
Processes with Guided Procedures → Reference →
Tutorials) for a taste of the environment.

Create a new process in a folder of your choice,
and name it Complaint Management Process (see
Figure 12 for details). Underneath the process node,
place a sequential block with the same name as the
process node (in this case, Complaint Management
Process). The block itself contains five actions repre-
senting the different activities that the process must
execute. They are:

Enter Complaint

Approve Complaint

•

•

Figure 12 	 Newly created process in the SAP GP design time

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 51

Review Complaint

Jump to Approval

Create Complaint

New to the initial process (described in Part 1) is
the Jump to Approval action. SAP GP has no graph-
ical process flow development environment. As the
block is sequential, all five of these actions execute
one after another. Jumps are only possible if a UI
fires a result state or if a dedicated jump action
occurs. I use both options in this series of articles.
Remember from the UI modeling exercise in SAP
NetWeaver Visual Composer (described in Part 2),
the Approve Complaint action can signal one of two
result states: Finish or Review. If the option is
Finish, you jump directly to the final action, Create
Complaint. If the option is Review, you don’t jump
immediately. Instead, the process continues with the
Review Complaint action. Then, it executes the Jump
to Approval action, which actually jumps back to the
Approve Complaint action.

After you’ve entered the actions, the flow looks
like the one shown in Figure 13.

Each action functions as a placeholder for either

•

•

•

an interactive step or a background call. The next
task is to assign the appropriate callable object to
each of the actions. A callable object is an SAP GP-
related term for something executable, either in a
dialog or in the background.

Enter Complaint
Assign a callable object of type Web Dynpro for
Visual Composer (WD4VC). Figure 14 on the next
page shows you several UIs you can plug into an
action. However, for a tight integration between SAP
GP and a UI, SAP recommends only the first two
entries: Web Dynpro Component (GP Interface)
and WD4VC Application. This is because only those
UIs can receive parameters from SAP GP and return
parameters to SAP GP at the same time. You can
either call other UI technologies without any data
transfer or with data transfer from SAP GP to the UI
(but not vice versa). Therefore, if you want a smooth
integration between the UI and SAP GP, stick with
Web Dynpro Component (GP Interface) and
WD4VC Application.

It’s also a good habit to name the callable object
the same as the action to which it is assigned. Click

Figure 13	 Process flow after adding the five actions

SAP Professional Journal • September/October 2008

52	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

on Next to choose the appropriate UI, as shown in
Figure 15.

Because of your selection of WD4VC as a filter
criterion (Figure 14), SAP NetWeaver Visual
Composer UIs are listed here. Use the filter capability
of this dialog (below and to the right of the funnel

icon), especially if you have a large number of UIs.
Finish the wizard that creates the callable object by
walking through all of the wizard screens. After
finishing the creation of the SAP NetWeaver Visual
Composer callable object, the process flow editor
looks like the one shown in Figure 16.

Figure 14	 Creating a callable object of type WD4VC

Figure 15 	 Assigning an SAP NetWeaver Visual Composer UI to a callable object

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 53

Next, it’s important to test your UI in the SAP GP
environment. The SAP GP design time enables you to
test each callable object individually and shows you
how it interacts with the rest of SAP GP. For example,
you can figure out whether the data transfers correctly
to the UI or is handed back from the UI to SAP GP
and whether the result states fire correctly. Only Web
Dynpro and SAP NetWeaver Visual Composer UIs
can exchange data with SAP GP in both directions.

In the process flow editor, select the row of the
newly created callable objects. Beneath the table, you
find several tabs that allow you to configure the call-
able object appropriately. One tab is named Test.
Once you select it, a wizard starts.

In step 1 of the wizard, you prepare some input
data for your UI. SAP recommends that you always
make use of this feature. By doing this, you ensure
proper behavior during runtime. However, the Enter
Complaint step doesn’t require any inputs, so you

proceed to step 2 of the wizard by clicking on
Execute, which shows the SAP NetWeaver Visual
Composer UI as if it would run in the SAP GP
runtime. Play with the UI to see that the service calls
work. Fill the input fields and click on Send to
Complaint Manager on the modeled SAP NetWeaver
Visual Composer screen to leave the Enter Complaint
test screen. At the same time, you reach the last step
of the test wizard. Here, you can analyze the return
values, as shown in Figure 17 on the next page.

First, make sure that the execution completes
successfully. Next, analyze the result state. In this
case you didn’t model a result state; therefore, the
system displays the default result state. Finally, check
the returned parameters. I highly recommend that you
always check your callable objects this way. It saves
you a lot of time if you run into problems while
executing your complete process, and you know for
certain whether the individual callable objects behave
as expected.

Figure 16	 Process flow editor after assigning a callable object to Enter Complaint

SAP Professional Journal • September/October 2008

54	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Figure 18	 Correct result state for the Approval screen

Figure 17	 Analyzing the return values of the callable object test

Approve Complaint

Repeat the assignment of a callable object to an action
for the Approval step. It’s a type WD4VC callable
object, so just follow the steps described in the “Enter
Complaint” section on page 51. Now, you want to
essentially repeat this process for the second UI
(Approve Complaint), but with two cautions:

Because the Approval UI contains result states
that depend on the button pressed, test both
buttons (Finished and Return to CC) and double-
check the result states to see whether the result
state you modeled in Part 1 fired successfully
after execution. For example, look at
Figure 18.

•

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 55

Make sure that both result states appear in the
process flow editor as well. In addition, model
a jump target for the Finished result state.
Remember, you have to jump to the Create
Complaint action in case the user clicked on the
Finished button (see Figure 19).

Review Complaint

With this knowledge, you are now prepared to add
the third screen to the Review Complaint screen and
finish the UI part of the process.

• Jump to Approval

Next, you move on to the Jump to Approval action.
To assign a jump step to the process, you make use
of another predefined callable object type; it’s named
Decision (Comparison to Predefined Value) and you
can find it underneath the Process Control node, as
shown in Figure 20.

This callable object consists of one input parameter
which is then compared to the predefined fixed value
you are going to define next. Depending on the outcome
of this comparison, the callable object fires one of two

Figure 19	 Defining a jump target for a result state

Figure 20	 Callable object type decision

SAP Professional Journal • September/October 2008

56	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

possible result states: either equal or different. The call-
able object’s input parameter has the name Input
parameter as you can verify with the Define Input step
of the wizard. Click on Next until you reach the Set
Configuration step. Here, you define the comparison
value to which to compare the input parameter. You can
use any value you like. In the example, I used true as
the comparison value (see Figure 21).

That’s all you need to do to define the callable
object.

So far you have only defined the comparison value
but how do you make sure that the process really
jumps back? Well, this brings me to the next feature
of SAP GPs I’d like to explain: default values. It’s
possible to assign default values to certain parameters.
Obviously, you can do this for the newly created call-
able object as well. It has only one input parameter,
and I’d like to set it to exactly the comparison value
above. By doing this, you make sure that the outcome
of the comparison is always equal. Therefore, select
the action in the process flow editor to which your
callable object is assigned (default values can only be
set on the action level), and select the Parameters tab
on the lower part of the screen. Select the only input

parameter the associated callable object has (named
Input parameter), and click on the Default Value
button. Enter true as its value and confirm this entry
by clicking on Set, as shown in Figure 22.

What’s left is to set the jump target. For this, look
at the result states: The values are equal, and the
values are different. Now that you know that your
comparison will always return equal, you can set the
jump target for it. Let it simply point to the Approve
Complaint step, as shown in Figure 23.

Perfect! This technique allows you to define any
unconditional jump you need.

Figure 21	 Setting the comparison value

Figure 23	 Unconditional jump back

Figure 22	 Setting default values

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 57

Now, let’s continue the process-modeling exer-
cise with the last step of the process: the service
call. The idea is that once you are through with the
complaint-handling between the call center agent
and the complaint manager, you want to save the
data in your database. This is an approach you
should typically follow in your composite processes
as well: Collect data in the SAP GP context, and
once the data is in a stable state, save it for later
reuse in the database.

Create Complaint

Since you want to assign the service call to the Create
Complaint step, select the appropriate row in the
process flow editor and open the New Callable Object
wizard. This time, you select Web Service as the call-
able object type. It’s located under the Service node
(Figure 20). Provide the name Create Complaint and
proceed to the next wizard step, as shown in Figure
24, where the logical destination comes into play:
Activate the Logical Destination radio button and
click on Change. (If you’re calling the dialog for
the first time, the button is labeled Select.)

A new input area appears containing a search form
in which you can select the appropriate logical desti-
nation using the drop-down list from the In field.
(This screen changes in its make-up quite often so
you’ll see the areas mentioned when you get to them.)
Select the entry CafComplaintWebServiceDest and
click on Search. A result table with available services
shows the entry for your Complaint business object.
Select the appropriate row of the result table and click
on the Accept button. Next, you get a list of service
operations for the business object. In this case, it only
contains the Create method. Click on it and choose
CafComplaintWebServiceDest from the drop-down
list from Logical Destination Endpoint. By doing this,
you have chosen the operation you want to assign to
this step along with the endpoint location in which the
service actually resides (Figure 24).

Now, you are ready to proceed: Click on Next.
The rest is pretty straightforward. Just follow the
wizard to its end, and don’t forget to test your service
on the Test tab of your callable object. Make sure
that the service sends back reasonable return values;
for example, see Figure 25 on the next page.

Figure 24	 Assigning a Web service to a callable object via logical destination

SAP Professional Journal • September/October 2008

58	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Additional configuration steps

All of the steps are now in place; you have defined
the process flow including all jumps. What’s left?
Basically, two configuration steps that address the
following questions are missing:

1.	 How do you make sure that the correct data is
passed from step to step?

2.	 How do you assign roles to the steps so that the
process framework knows whom to inform when
a step is ready for execution?

Parameter consolidation

So far, you have associated callable objects to actions.
Both input and output parameters have been associ-
ated with each of the steps, and these parameters
together make up the SAP GP’s context. Now, you
need to tell SAP GPs how the parameter’s values

should flow from step to step. This is called param-
eter consolidation in SAP GP terms because you don’t
map each field from step to step. Consolidating para-
meters means treating all parameters assigned to each
other as one parameter from the SAP GP’s point of
view. Let’s see how this works in practice.

Select the block row of your process model in the
process flow editor. Parameter consolidation only
makes sense on the block level because the parameters
of all steps are only visible to the block that contains
them. Now, select the Parameters tab, which shows
you all the parameters available for this particular
block. In the Defined For column of the Parameters
table, some entries appear twice while others don’t
because of the difference between input and output
parameters. Callable objects with output (or input)
parameters inevitably appear only once, whereas call-
able objects with input and output parameters appear
twice. The Input/Output column tells you which
parameters are input and which ones are output.

Figure 25	 Testing the callable object for Web services

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 59

For example, expand the end node of the first
table row by clicking on the triangle in front of it, as
shown in Figure 26. The three output parameters of
the Enter Complaint step appear. How should you use
those parameters? Think about the process flow: The
data entered in the first step should appear on the next
screen for the complaint manager. Furthermore, the
data should also appear on the call center agent’s
review screen, if needed. Finally, the data should be
used to fill the interface of the Create Complaint Web
service once you finish your process.

Therefore, you must make sure that the output
parameters from the Enter Complaint step are
consolidated to become the input parameters of all
forthcoming steps. This defines the data flow inside
the SAP GPs. You can do this manually by collecting
all those fields individually (hold the Ctrl key down
and select all the rows of those fields that you want to
assign to each other), but this is rather cumbersome and
error-prone. There is a better solution. Let’s take the
first field of the Enter Complaint step as an example:

1.	 Select the complaint field.

2.	 Click on the Propose Consolidation button
(Figure 26).

3.	 Click on the Group button.

4.	 In the dialog that pops up, confirm the consolida-
tion by clicking on Create.

By doing this, the SAP GP framework automati-
cally searches for all parameters with the same name
and proposes them for consolidation. This trick saves
you a lot of effort. Since you are in charge of defining
all parameters for all steps of your process, you can
heavily influence the effort needed to consolidate
parameters. The trick is: If you use the same name
for these parameters, they should be handled as one
parameter across the process. This is a good reason
to wrap external services in the services layer and
provide names for parameters that SAP GP can
easily consolidate later. Be aware of this every time
you define your interfaces for screens and for Web
services. As a result of the consolidation step, you get
a new group that contains all collected fields (see
Figure 27).

Figure 27	 Consolidated parameters

Figure 26	 Parameter consolidation in SAP GP

SAP Professional Journal • September/October 2008

60	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

(keep the Ctrl key pressed down while you select the
rows), fill the Consolidate To input field with Call
Center Agent, and click on Go.

For simplicity’s sake, assign the remaining three
rows to the Complaint Manager role.

This ends the modeling of the process. Now,
you only have to adjust some final parameters on the
process level before you can kick off the process.
Select the first row of the process flow editor, and
then select the Parameters tab to display all process
parameters. This time you don’t want to consolidate
parameters, you only want to make sure that the
process can start without providing input parameters
to it. In other words, processes can start and at the
same time fill their own context with data. This is
convenient if one process ends, kicks off another
process, and passes parameters to it. However,
you don’t need to pre-fill in this example. That’s
why you remove all checkmarks in the Exposed in
Input column.

Next, move to the Roles tab. Here, you get a list
of all previously defined process roles extended by
standard SAP GP roles. SAP GP roles are adminis-
trator, overseer, and owner. These roles have different
rights during runtime (e.g., watching the state of a
process or actively changing role assignments), and
the role names are self-explanatory. However, you
have to define who actually assumes these roles. If

Repeat the parameter consolidation steps for the
fields comment, customerID, and approved. As a final
result, you should have the groups shown in Figure 28.

Role assignment
For each of the steps, you have to decide who should
execute them. Due to your initial planning, you have
the answers already: the call center agent should
execute the steps Enter Complaint and Review
Complaint, and the complaint manager should handle
the Approve Complaint step. For background steps,
you have to find out on whose behalf the service call
should be executed. This is the kind of information for
which you’re looking. These are process roles, not the
roles of users and groups defined in any of your user
databases, Lightweight Directory Access Protocol
(LDAP) systems, or other SAP systems.

Once you initiate a process, you assign concrete
users or groups to the process roles, but during
process-modeling you focus only on the process roles
themselves. You define them on a block level by
selecting the block row in the process flow editor
and choosing the Roles tab, as shown in Figure 29.
On that tab, a table that contains all of the available
actions appears. You select those rows that the same
process role executes and assign an appropriate name
to the role. In the illustration, select Processor of Enter
Complaint and Processor of Review Complaint rows

Figure 28	 Finished parameter consolidation

Figure 29	 Consolidating roles

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 61

you click on the associated Role Type drop-down list,
you have two or three choices:

Initiator: The one who kicks off the process
should take over this role as well.

Initiation defined: Once a process is kicked off,
the assignment to a concrete user or role has to be
done explicitly.

Runtime defined: The assignment will be deter-
mined during runtime by some calculation (this
option is available for process roles only).

In this case, you assign Initiator to all roles but the
complaint manager, who should have the role type
Initiation Defined, as shown in Figure 30.

The last tab you need to adjust before you start your
process is the Default Roles tab. For every role that has
the assignment Initiation Defined, you can assign users
or groups that the process should use when no users or
groups are assigned to it during process start. In this
case, you can assign any user from your user store to
this role. The only prerequisite is that the user must

•

•

•

have the rights to execute SAP GPs. You just click on
the Add Default button, search your user database for an
appropriate user, and click on the Add button to assign
him or her to the complaint manager process role, as
shown in Figure 31.

Note!

If you don’t want to switch between different
roles and see the notifications being sent
among the process participants, you can set the
role type of the Complaint Manager to Initiator.

Executing the process

Before you start your process, activate it by clicking
on the Activate button () in the upper toolbar. Now

Figure 30	 Role assignment on the process level

Figure 31	 Adding a default role

SAP Professional Journal • September/October 2008

62	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

you’re ready to initiate the process. Select the
Instantiation tab of the process, check the checkboxes
for Include Default Parameters and Start Process
Automatically, click on the Generate Instantiate URL
button, and click on Open Instantiate Application, as
shown in Figure 32.

By providing these settings, you ensure the imme-
diate start of the process without opening a dialog
upfront to ask for roles or parameters you can set
manually. You should also recognize the URL being
created for you. You can use it within other Web
pages to start a process from there.

Once the process has been started, you are auto-
matically guided to the Enter Complaint screen as you
defined the process initiator to also be the processor of
the first step. The screen modeled in SAP NetWeaver
Visual Composer appears, encapsulated by a standard
SAP GP frame, as shown in Figure 33.

Fill in some sample data and click on Send to
Complaint Manager. This action passes the data to

the SAP GP’s framework, which is responsible for
sending out a notification to the next process partic-
ipant. If you’ve set the role type of the complaint
manager role to Initiated, you are automatically
guided to the next step. Otherwise, you have to log
on to the portal as the user you chose during default
role assignment. Once logged on, choose Guided
Procedures from the first-level navigation and
Runtime from the second. You reach the Guided
Procedures Runtime Work Center, as shown in
Figure 34 on page 64, from which you navigate
to the next step.

Just follow the link to the tasks that require
your action and from there navigate to the Approval
screen. Verify that the data entered during step 1
appears correctly on the Complaint Manager’s
screen. This ensures that parameter consolidation
works correctly.

From there, it’s up to you whether you want to
hand back the request to the call center or immedi-
ately end the process by clicking on Finished.

Figure 32	 Initiating the complaint management process

Develop composite applications with SAP NetWeaver Composition Environment 7.1: Part 3

No portion of this publication may be reproduced without written consent.	 63

Figure 33	 Enter Complaint step during runtime

However, once you finish your process, make sure
that it added an appropriate entry to your database; to
do this, you use the findAll method of the Complaint
business object (Figure 10). With this knowledge, you
are now well-equipped to start your own journey into
the world of composite applications.

Conclusion
Congratulations! This has been a long and interesting
journey across the world of composite applications
and their development. I gave you the concept of
composite applications, their characteristics, and

SAP Professional Journal • September/October 2008

64	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

their architecture combined with a methodology
about how to approach them from a development
perspective. In addition, I have included best prac-
tices and recommendations throughout the text to
support you in your own development efforts. I hope
I whetted your appetite for more information about
composite applications and their development. In
Part 1 of the series, I used a dummy service to imple-
ment the functionality to Read Customer Data and
promised to explain how you can replace this dummy
service with a real enterprise service. I will cover this
aspect of composite application development in more
detail in a forthcoming issue of SAP Professional
Journal; this technique unveils the real power of
loosely coupled applications.

Composite applications play an important role in
SAP’s enterprise SOA strategy, and SAP NetWeaver

CE is becoming a solid player in SAP’s product port-
folio. Expect major enhancements and improvements
for SAP NetWeaver CE in the years to come to ease
the developer’s life even further. If you found this
article useful and you are interested in more details,
let me know your thoughts and areas of interest.
Watch for future installments of this publication in
which I’ll delve more deeply into other composite
application topics.

The enterprise SOA idea changes the way we will
develop software in the future. With SAP NetWeaver
CE, SAP provides an environment that supports you
in your efforts to implement innovative collaborative
processes on top of existing IT landscapes. The impor-
tance of composite applications will only increase
over time, and you should become a part of this
successful story.

Figure 34	 The Guided Procedures Runtime Work Center

