
No portion of this publication may be reproduced without written consent.	 19

The power of loosely coupled composite applications can be summed up
in one word: flexibility. Whether your company upgrades to the latest SAP
release, requires new business logic, or needs to integrate new back-end
systems as the result of an acquisition, the capability of composite applica-
tions to replace enterprise services enables you to change functional imple-
mentations as needed for your business. In fact, this flexibility through
replacement is one of the key benefits of composite applications.

The replacement technique accelerates the development process by
decoupling dependencies between the tasks of various developers. Because
you define one common interface for a composite application, you can plug
in various types of business logic — different implementations — on the
other side of that interface. You can even delegate an implementation to
any back-end system in your landscape by mapping the data from your
interface to the interface of the back-end service that you need.

I hope you can see the beauty of this technique: You can create a well-
defined interface for your composite application and then plug in whatever
implementations you need, such as:

A dummy implementation to speed up development so you don’t have
to wait for other developers to finish their tasks

Your self-developed business logic in the form that the composite
application requires

A standard SAP enterprise service that already exists

Any back-end service you have that fulfills the business need

A call to SAP NetWeaver Process Integration (SAP NetWeaver PI) to
integrate service-enabled legacy systems

These examples demonstrate one of the core benefits of composite
applications: flexibility. You can react to almost any change that occurs in

•

•

•

•

•

Unveil the power of loosely
coupled composite applications
by replacing services for
additional functionality

by Volker Stiehl

Volker Stiehl
Product Manager,
SAP AG

Volker Stiehl received a degree
in computer science from the
Friedrich-Alexander-University
of Erlangen-Nürnberg, Germany.
He was a consultant for distrib-
uted J2EE-based business solu-
tions and integration architec-
tures at Siemens for 12 years. In
2004 he joined SAP’s product
management team for a com-
posite application development
toolset, where he’s also
responsible for methodologies
and best practices. He holds
workshops in composite appli-
cations and is a regular speaker
at conferences, such as
SAPPHIRE, SAP TechEd, and
JavaOne. You may reach him at
volker.stiehl@sap.com.

SAP Professional Journal • November/December 2008

20	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

either your IT landscape or your business function-
ality. Just plug the newly required functionality into
your composite application, and you’re done! The
composite itself remains untouched.

This article adds some important functionality to
my earlier three-part series on developing composite
applications: “Develop composite applications with
SAP NetWeaver Composition Environment 7.1:
Part 1 — Enterprise services and their usage within
a composite application” (SAP Professional Journal,
May/June 2008); “Develop composite applications
with SAP NetWeaver Composition Environment 7.1:
Part 2 — User interfaces and the tools that help you
create them” (SAP Professional Journal, July/August
2008); and “Develop composite applications with SAP
NetWeaver Composition Environment 7.1: Part 3 —
Modeling collaborative business processes with SAP
tools” (SAP Professional Journal, September/October
2008). In this article, I refer to these articles simply as
Part 1, Part 2, and Part 3, respectively. This series of
articles has shown you how to approach developing
a complete composite application from scratch and
has given you insights into the overall development
process for applications sitting on top of an enterprise
service-oriented architecture (enterprise SOA) land-
scape. I assume that you have read the articles in that
series; this article builds upon that knowledge.

This article also contains a tip that is useful in
developing SAP Guided Procedures (SAP GPs),
which were discussed in Part 3. This tip, shown in
the sidebar on the next page, explains how to monitor
processes while they are running and how to analyze
issues during process execution.

Replacing enterprise services
In Part 1, I showed you how to provide a simplified
interface for a complex enterprise service and how to
create a dummy implementation for that interface to
give it as much flexibility as possible. This article
shows you how to replace that dummy service imple-
mentation for the GetCustomerBasicData call with an
actual enterprise service, demonstrating the real value
of back-end abstraction in action. As you know, all
three user interfaces (UIs, detailed in Part 2) use

the GetCustomerBasicData call. As a consequence,
all UIs benefit immediately from this replacement
without needing to explicitly adapt their models.
This may sound like a miracle, but in fact, you just
benefit from applying good composite application
best practices.

You may be wondering why you would want to
replace your implementation. Here are a few potential
use cases:

•	 Start with a dummy service implementation
and then replace it with the real-world service:
This is the use case I showed in the example in
Part 1. Often, complex services just aren’t ready
for consumption. However, you already know
the service interface, so why wait for the service
implementation? To continue with development
on the consumer side from either the UI (Part 2)
or the process layer (Part 3), provide some sample
data as part of a dummy implementation and then
replace it afterward. When you do this, you get the
best productivity from your developers because
you have reduced the amount of time they spend
waiting for each other.

•	 If you’re not satisfied with an implementation
or your business requirements have changed:
You figure out that a given default implementa-
tion of a service doesn’t fit your needs in some
aspects. In this case, you want to enhance the
service’s functionality. Once the new implemen-
tation is available, you want to be able to switch
to it easily.

•	 If your landscape beneath the composites
changes because of a release update or a
merger or acquisition: This is a common use
case. Since composite applications work on top of
existing applications, the probability of a release
change in one of those systems is very high. In
addition, the interfaces of the existing applica-
tions’ APIs often change as well. You’re in a
situation where the consuming layers don’t
explicitly use those interfaces because you’ve
wrapped the consuming layers in your own inter-
face. So it’s easy to create new implementations
connecting to the new APIs without disrupting
the consuming side.

Unveil the power of loosely coupled composite applications by replacing services for additional functionality

No portion of this publication may be reproduced without written consent.	 21

Monitoring SAP Guided Procedures
Imagine that you’ve started executing an SAP GP and you find that a particular work item doesn’t appear
on your work list. How can you determine in which step the error occurred and why? An SAP GP comes
with a tool for monitoring your processes independent of their state (e.g., erroneous, still running, termi-
nated). It’s part of SAP NetWeaver Administrator.

To find out where the error occurred, call SAP NetWeaver Administrator via http://<host>:<port>/nwa,
and navigate to Availability and Performance Management → Process Monitoring → Guided Procedures.

This page has several tab strips, the most interesting of which, in this example, is the Process Instances
tab strip shown in the first figure. Navigate to this tab and search for either Completed (if your process
finished successfully) or Erroneous instances. Then, add the user and account with which you instantiated
the process to the Initiator field and click the Go button.

Select the process instance that was found and click the Process Items button. Now you should see your
process with all of its completed actions in the second figure.

Next, select the entry in the process instance list that appears. A details section about the selected process
is also shown below the list. Now, click the Process Items button.

SAP Professional Journal • November/December 2008

22	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

•	 If you move your application to a different
department or region or you want to sell your
composite to a new customer: These two scenarios
have one thing in common: You can’t expect to
find the same system landscape in the new location
that you initially used to build the composite. It is
probable that the new landscape — along with the

service APIs — will differ significantly and you
will have to wrap them according to your composite
application’s needs. Once again, the technique of
back-end abstraction comes to the rescue.

In all of these cases, you need exactly the kind
of flexibility that replacement gives you and that

Then, select one completed action and browse through the various tab strips to get a feel for the data
captured during runtime. In the figure, the Approve Complaint step is selected together with the data
being entrusted to the step (the figure shows the Input Context tab). If you click the Output Context
tab, you see the data that the step returned to the SAP GP context. By using this monitoring tool, you
can get a fairly good understanding of how the process executed — in what sequence — and how the
data flows during runtime.

A word of caution:

As the figure shows, the SAP GP framework records three contexts: input, local, and output. This
data is all stored in the database. However, consider what happens if the SAP GP’s context memory
becomes too large, for example, 1GB. (I’m talking about an average size of 1GB for all nodes; note
that every node [process, block, action] has its individual context size depending on the modeled
parameters.) For every action in the Process Tree section of the second figure, SAP GP captures the
three contexts; it also captures them for the block and the process (see column Type in the top part
of the figure).

The developer should keep an eye on the SAP GP context because the disk space needed for the
context data can easily explode and generate quite a lot of data in the associated database. To
calculate the amount of space you should take into consideration for the context space, you would
have to multiply the context size by the number of executed process, block, and action nodes (in
this case, 8); then you multiply this total by 3 for the three contexts. Altogether, you get a final
result of (8 nodes * 3 contexts * 1GB) = 24GB of space allocated to get 1GB per SAP GP context.
This formula should help you roughly estimate the required disk space for each process instance.

You can imagine how the size of the context data can increase if you think of really large processes
with lots of data being stored in the SAP GP context. I recommend storing only the primary
keys for master data in the SAP GP context and rereading the data in the UIs if necessary. I
also recommend splitting large processes into several smaller chunks so that you can reduce the
nesting of blocks within blocks to a minimum. In addition, I advise that you use 15 actions as an
appropriate number of steps per process. Make sure you check out the “Usage guide for creating
Guided Procedures” on SDN.�

�	 https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/7308

Unveil the power of loosely coupled composite applications by replacing services for additional functionality

No portion of this publication may be reproduced without written consent.	 23

you will lose if you connect applications by hard-
wiring them.

How to achieve application
replacement

Step 1. Create a new project in the SAP Composite
Application Framework (SAP CAF) and name it
spj_provider2. This project will contain the new
service that will replace the dummy implementation
I provided in the project named spj_provider1 (in
Part 1).

Step 2. Create a new code skeleton for the inter-
face you’d like to replace. This step is crucial.
Since you want to replace a service implementation,

it must have exactly the same interface based on the
Web Services Description Language (WSDL) as the
original service implementation.

1.	 To determine which interface was the original
one and where to find the WSDL, recall Part 1.
You published the original interface as a Web
service in Part 1. Because you need the URL of
the WSDL file (it’s used as a blueprint for the
new service), open the Web Service Navigator
and select the ReadCustomerBasicData service,
as shown in Figure 1.

2.	 Once you have selected the service, you will see
the URL for the service’s WSDL file on the next
screen (see Figure 2 on the next page). Copy the
URL (you’ll need it in SAP CAF).

Figure 1	 Searching for the enterprise service you need to replace

SAP Professional Journal • November/December 2008

24	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

3.	 In SAP CAF, right-click the external node of your
newly created project and select the Create Web
Service Provider option from its context menu,
as shown in Figure 3.

4.	 The WSDL importer starts and asks for the source
URL of the WSDL file. Since you want to provide
the WSDL URL directly, select the Remote

Location/File System radio button, as shown in
Figure 4, and proceed to the next screen.

5.	 Paste the copied URL into the input field and
click Finish, as shown in Figure 5.

6.	 Behind the scenes, SAP CAF retrieves the WSDL
file and automatically creates a new application
service that has exactly the same interface as
the original service that you implemented in
spj_provider1. At the same time, SAP CAF makes
the application service available as a Web service
as well. Figure 6 on page 26 shows you the result
of this step. Note that the interface in project spj_
provider2 is identical to the interface in project
spj_provider1.

Step 3. Import the enterprise service you want to
call. The goal is to delegate the service call to an
external enterprise service. To do this, you need its
service interface. Import the appropriate service
CustomerBasicDataByIDQueryResponse_In by
right-clicking the external node and choosing the
Import Web Service option from the context menu.
(If you need a detailed description of how to do this,
see the section “Step 2: Simplify service interfaces
with CAF” in Part 1.)

Step 4. Map the simplified interface of your appli-
cation service to the complex interface of the
external enterprise service. To achieve this, you
have to open the newly created application service

Figure 2	 The URL of the original service’s WSDL

Figure 3	 Creating a Web service provider in
SAP CAF

Unveil the power of loosely coupled composite applications by replacing services for additional functionality

No portion of this publication may be reproduced without written consent.	 25

ReadCustomerBasicData. Since this application
service was automatically generated, it isn’t placed
under the modeled node, as you might expect. You’ll
find it under the external node, as shown in Figure 6
on the next page.

1.	 Open the ReadCustomerBasicData application
service and select the Operations tab strip. You’ll
find that your operation is already defined, but

the checkbox in the Implemented column is set
to Yes. This means that you want to implement
the functionality yourself via Java programming.
In this case, you should delegate the call, not
implement it.

2.	 Uncheck the checkbox and go to the Datasource
tab strip, which maps interfaces to each other
(the Source operation hasn’t been assigned yet).

Figure 4	 Importing the target WSDL

Figure 5	 Entering the URL for the original WSDL file

SAP Professional Journal • November/December 2008

26	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Click the Create mapping button to open a dialog
for choosing the enterprise service that you

previously imported in Step 3 (Import the
enterprise service you want to call). Figure 7

Figure 6	 Results after creating the Web service provider

Unveil the power of loosely coupled composite applications by replacing services for additional functionality

No portion of this publication may be reproduced without written consent.	 27

shows you where to find the imported service.
(This is really a very cool feature, almost a Web
service proxy over an existing Web service.)

3.	 Select the service and click OK. Now you have
both interfaces side by side: the simplified inter-
face of the application service and the complex
interface of the external enterprise service, as
shown in Figure 8. What’s left is a mapping
on the field level: You need to determine which
field to transfer from the simplified interface to
the complex one, and vice versa, and how you
can model it within SAP CAF.

4.	 Look at the mapping area you find on the
ReadCustomerBasicData tab. It’s separated into
two parts: on the left side, you have the Target
operation containing all of the fields in your
simplified interface; on the right side, you identify
the Source operation containing all of the fields in Figure 7	 Selecting the source operation

Figure 8	 The table of operations

SAP Professional Journal • November/December 2008

28	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

the complex interface. Drag and drop those fields
that you need to map from left to right for input
fields or from right to left for output fields. The
final result should look like Figure 8.

	 The mapping works very smoothly because you
used the same data types for the simplified inter-
face as you did for the complex interface. This
was one of the recommendations I gave in my
previous articles, and now you can see how nicely
everything fits together. Keep in mind that with
the current version of SAP CAF, it’s not possible
to map fields of different data types to each other.
This change will come in a forthcoming release
of SAP NetWeaver Composition Environment
(SAP NetWeaver CE).

Step 5. Undeploy the old implementation, and
deploy your new application service. Since you’ve
created, more or less, a twin of the original service
with the same WSDL description, you can’t deploy
the new service directly because it will conflict with
an already running Web service (your first implemen-
tation). However, the SAP NetWeaver Developer
Studio (NWDS) comes with a new Eclipse view
called Undeploy View. You can open it from the
menu; select Window → Show View → Other…
and choose the Undeploy View that you find under
the Deploy View node.

Step 6. Use the Undeploy View to connect to
your server instance and retrieve all deployed

applications. From that list, you can choose the appli-
cations that you’d like to remove from the server.
(You have to enter your administrator account to
perform this step.)

1.	 Select the three applications that are in the name-
space spj_provider1 and click Add Items to unde-
ploy list button (), as shown near the top of the
screen in Figure 9).

2.	 Once the applications appear on the list, click
the button Undeploy all items in the list (),
which is also near the top of the screen, to
actually remove them from the server. You’ll
get a message about successful execution. Now
you’re ready to generate, build, and deploy your
new implementation.

Step 7. Provide a logical destination for your
enterprise service. You need to connect the appli-
cation service that you just created to the external
service, which contains the real business function-
ality. Within NWDS, you only imported the service
interface’s description to work with the fields. How-
ever, this doesn’t actually connect the application
service to the interface.

Therefore, you need to create a logical destination,
a function of SAP NetWeaver Administrator that is
delivered with SAP NetWeaver CE. Basically, you
provide a name for your Web service and the service
consumer works only with this name, not directly

Figure 9	 Undeploying applications

Unveil the power of loosely coupled composite applications by replacing services for additional functionality

No portion of this publication may be reproduced without written consent.	 29

with the Web service. To create a logical destination,
follow these steps:

1.	 Open SAP NetWeaver Administrator via URL
http://<host>:<port>/nwa.

2.	 Click SOA Management → Technical
Configuration.

3.	 Click Destination Template Management to get to
the editor for logical destinations. A table lists all
previously defined destinations.

4.	 Click on the Create Destination button to generate
a new destination.

5.	 Fill in the fields as follows:

a.	 Destination Type: WSDL (choose from drop-
down list)

b.	 Destination Name: Enter the name
EsWpCustomerBasicDataDest

c.	 URL: Use the URL of the WSDL file for
CustomerBasicDataByIDQueryResponse_In.
You can find it in the Services Registry of the
Enterprise Services Workplace (ES Workplace).
The details for retrieving the URL are in Part 1.
Take the URL from the Endpoints tab in the
Services Registry, not the General tab.

d.	 Authentication: HTTP Authentication (choose
from drop-down list)

e.	 Activate radio button User ID/Password (Basic).

f.	 Click the Details button so that you can add
the credentials for accessing the back-end
system of the ES Workplace on which the
enterprise service actually runs.

g.	 Enter your credentials in the respective fields:
User ID, Password, and Confirm Password.

6.	 Save your entry and see the final result, as shown
in Figure 10.

Figure 10	 Setting a logical destination for the enterprise service

SAP Professional Journal • November/December 2008

30	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

Step 8. Connect the application service with the
external service. Now that you have defined the
logical destination, you can connect the application
service to the external service. SAP CAF comes with
a configuration tool to do this.

1.	 Call http://<host>:<port>/caf in your browser
(it opens the SAP CAF home page) and navigate
to Administrative tools → External Service
Configuration. Click the Service Registry link
on the left side of your screen, as shown in Figure
11, to get a list of all SAP CAF projects that
require external destinations.

2.	 Expand the spj_provider2 node, drill further
down to Web Services, and select the node
CustomerBasicDataByIDQueryResponse_In.
On the right side, entitled Destinations, expand the
Web Services node. You will see all of the logical
destinations defined on your server.

3.	 Look for the destination that you created in the
previous step, EsWpCustomerBasicDataDest.
Select this node as well. Now that both nodes
are selected, the screen activates the Map button.
Click it to create the connection between the

service requirement of your application service
and the actual implementation. You should see
a checkmark in front of your selected service.
Finally, click Save to store the mapping.

4.	 Start the Complaint Management Process (details
about starting processes can be found in Part 3).
Now that you have changed the implementation,
you should see detailed data for the selected user
retrieved from the back-end system. Try to execute
all three screens to verify that no adaptations are
necessary to apply the change to them immedi-
ately. The following screenshots document the
changes on the first two screens of the Complaint
Management Process: Enter Complaint, as shown
in Figure 12, and Approve Complaint, as shown
in Figure 13 on page 32.

Now you’ve experienced the real power of
composite applications in action. You’ve seen
how easy it is to replace implementations and how
consumers such as the SAP NetWeaver Visual
Composer UIs can immediately benefit from that
change without affecting their models. This holds true
for other consumers as well, as long as they use the
simplified interface.

Figure 11	 Connecting the application service and the implementation

Unveil the power of loosely coupled composite applications by replacing services for additional functionality

No portion of this publication may be reproduced without written consent.	 31

Conclusion

This article completes my discussion of the topics I
introduced in my three-part series on the development
of composite applications. It explains in detail how
to replace services without affecting their consumers
and, thus, shows you for the first time the benefits
of loosely coupled applications. If you employ this

technique, you will be equipped to face the challenges
of changing business requirements or IT landscapes.
It is extremely important that you understand the
replacement technique so you can apply it to your
own development projects. Once you get used to it,
you’ll never want to be without it.

In addition, this article briefly touches on the moni-
toring capabilities of SAP GPs. With the Web-based

Figure 12	 Retrieving detailed data from the back-end system

SAP Professional Journal • November/December 2008

32	 www.SAPpro.com 	 ©2008 SAP Professional Journal. All rights reserved.	

tool that resides in the SAP NetWeaver
Administrator, you can now analyze the process flow
of running, erroneous, or even terminated processes
and determine how the data flow looks and where the
process bottlenecks are. It’s an ideal tool for tracking
down errors.

With that, the journey ends. But stay tuned: A
new SAP NetWeaver CE release is coming with
exciting new features and improvements. SAP is
pushing the development experience for composite
applications to a new level, and I’m already eager to
explain its concepts to you.

Figure 13	 Retrieving data from the back-end system for the account manager screen

