
No portion of this publication may be reproduced without written consent.	 95

Take full advantage of the SQL
functionality of your database
with ABAP Database Connectivity
(ADBC)

by Thomas Raupp and Tobias Wenner

ADBC? Sounds like JDBC — Java Database Connectivity — the
well-known SQL programming model in the Java world. And indeed, the
association between these two acronyms is intended. ADBC stands for
ABAP Database Connectivity and is the name of an object-based ABAP
API for programming relational database accesses, which in its class and
method structure follows the JDBC diction, although — as you will see
in this article — it is in no way an ABAP implementation of the JDBC
interface. There are simply too many differences in the nature of these
languages.

So, have ABAP developers been unhappy with the available database
programming models and requested some fancier alternative — something
similar to JDBC, for example? The answer is a very clear no! ABAP Open
SQL is, and will remain, the SQL programming model of choice for the
vast majority of application developers. The seamless and tight integration
of database access via Open SQL is a major strength of the ABAP language
and allows for optimal performance, platform independence, and compile-
time syntax checking. So, why might ABAP developers need another
SQL API?

ADBC was developed as an amendment to the ABAP Native SQL
functionality provided with the EXEC SQL command. With the EXEC
SQL command, developers can execute database-specific SQL statements
that are not covered by the Open SQL functionality, and access database
tables that are not managed by the ABAP Dictionary, which allows
developers to address data created independently of SAP NetWeaver
Application Server (AS). However, some deficiencies and conceptual
weaknesses in the EXEC SQL command approach limit its applicability in
some important cases:

The EXEC SQL command supports only static SQL statements.
This means that it cannot be used for a certain class of tasks requiring

•

Thomas Raupp
Development Manager,
SAP AG

Tobias Wenner
Senior Developer,
SAP AG

(full bios appear on page 114)

SAP Professional Journal • September/October 2007

96	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

dynamic SQL, such as generic queries.� Of course,
it’s always possible to dynamically create and
execute an ABAP program in such cases, but this
is cumbersome to program and also inefficient at
execution.

Error handling is rather inflexible. If the
execution of a SQL statement fails for some
reason, the ABAP runtime system aborts the
current application transaction and raises a run-
time error. However, in some cases, an application
program may still want control after a SQL error
has occurred. For example, the program might
want to evaluate the SQL code returned and react
differently depending on its value.

Dealing with multiple database connections
requires the utmost programming discipline
and is fairly error-prone. The reason is that SQL
statements are executed in the context of a global
connection state, rather than on behalf of dedi-
cated connection objects that can be passed as
parameters between program units. This situation
invites the same kinds of pitfalls and unpleasant
surprises encountered with the use of global
program variables.

Because there was no clear-cut way to overcome
these deficiencies with the existing EXEC SQL
concept, ADBC was introduced as a new offering for
ABAP programmers who need more flexibility in
executing Native SQL statements. ADBC is an object-
based call-level API that addresses the limitations of
EXEC SQL. This API provides access to the entire
SQL functionality of the underlying database system.
All SQL statements can be created dynamically and
executed through respective API methods. Further-
more, the ADBC API provides a clean concept for
dealing with multiple database connections. Each
opened database connection is associated with a
connection object that you can then use to create and
execute SQL statements through this connection. And
finally, in case of error situations, all methods of the

�	 For more on dynamic Open SQL, see the article “Enhanced ABAP
Programming with Dynamic Open SQL” (SAP Professional Journal,
September/October 2001).

•

•

ADBC API throw well-defined exceptions that can be
caught and handled by the caller. The programmer
then has full control and can handle any error situation
that arises.

This article shows ABAP programmers how to
take full advantage of SQL functionality by using
ADBC to reach beyond the capabilities of Open SQL.
We provide details on the most relevant topics of SQL
programming with ADBC by walking through the
following examples:

Establishing a connection to the database

Inserting data into a table

Retrieving data from a database

Creating and changing database objects

Executing database procedures

Committing and rolling back transactions

Accessing secondary connections

Handling errors

These examples are intended to help you under-
stand the basic concepts of the ADBC classes and
their most important methods. For illustration
purposes, we have intentionally kept the examples
simple. However, keep in mind that the code
presented in these examples also works for more
complex SQL statements that cannot be expressed by
Open SQL. Since the ADBC API is based on ABAP
Objects, you should have a basic knowledge of
programming with ABAP Objects in addition to some
SQL skills.�

Before you can send SQL commands to the data-
base and receive results, you need a connection
between your SAP system and the database you want
to access. So, let’s start our ADBC tour by taking a
look at how to establish a connection to the database.

�	 For a detailed introduction to ABAP Objects, see the article “Not Yet
Using ABAP Objects? Eight Reasons Why Every ABAP Developer
Should Give It a Second Look” (SAP Professional Journal, September/
October 2004).

•

•

•

•

•

•

•

•

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 97

Establishing a connection to
the database
The first thing you have to do is obtain a connection
object that points to the database that you want to
access. The code snippet in Figure 1 shows how you
can get a connection object for the “default” connec-
tion — that is, the database connection that each work
process of an application server automatically estab-
lishes to the database of the SAP system. (We discuss
establishing connections to external databases later in
this article.)

A connection object is an instance of class
CL_SQL_CONNECTION, which can be created by
calling the factory method GET_CONNECTION of
this class. In the example, GET_CONNECTION is
called without any arguments, which means the
object returned refers to the default connection.
Throughout the examples in this article we assume that
the CON_OBJ variable has been initialized this way
and use it to operate on the default connection. The
connection object is the crucial point for working with
a database, and the anchor for the creation of addi-
tional objects required for sending commands to the

database and retrieving results. All commands in the
context of a certain connection object will be executed
on the database connection represented by this object.

Let’s start with a simple example that inserts new
rows into a table.

Inserting data into a table
To add new rows to a database table, we need to
execute an INSERT statement. Two classes, namely
CL_SQL_STATEMENT and its subclass CL_SQL_
PREPARED_STATEMENT, provide methods for
executing SQL statements. You should use objects
of class CL_SQL_STATEMENT if a SQL statement
will be executed only once. However, when a SQL
statement will be executed several times, but with
different input values (e.g., called in a program
loop), it’s more efficient to use prepared� statements
that can be created as instances of class CL_SQL_
PREPARED_STATEMENT.

We’ll take a look at both of these classes individu-
ally. We will also explain how to reuse a prepared
statement and how to efficiently bind a structured
data object to a statement object. Let’s start with the
CL_SQL_STATEMENT class.

�	 Before a SQL statement can be executed, it first needs to be “prepared,”
which means that the database compiles the statement and computes
a plan for its execution. In the case of statement objects of class
CL_SQL_STATEMENT, the “prepare” step is performed implicitly
each time a statement is executed. Depending on the complexity of the
SQL statement, statement preparation can be a rather expensive opera-
tion. Hence, for multiple executions of the same statement using pre-
pared statements is preferable. In this case you prepare the statement
only once and then execute it several times.

Note!

The ADBC API was introduced with SAP Web
Application Server (AS) 6.10, and since then its
functionality has been slightly enhanced. All
the examples given in this article, however,
cover functionality that is available in release
6.10 as well as higher releases.

DATA con_obj TYPE REF TO cl_sql_connection.

con_obj = cl_sql_connection=>get_connection().

Figure 1	 Getting the connection object for the default connection

SAP Professional Journal • September/October 2007

98	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

CL_SQL_STATEMENT

The example in Figure 2 demonstrates how to
enter a new flight connection into the database table
SFLIGHT. Use the connection object we just defined
(CON_OBJ) to create a statement object by calling
method CREATE_STATEMENT. This object offers
the method EXECUTE_UPDATE, taking the SQL
statement text (in this case an INSERT statement)
as its argument of type STRING.

You can use the EXECUTE_UPDATE method
in the same way to send UPDATE or DELETE
statements to the database. After the successful
completion of any of these statements, the method
returns the number of rows processed (inserted,
updated, or deleted) as the result to the caller. In the
case of our INSERT example, the return value is 1.

Very often, the values to be written to the database

are already given by ABAP program variables
(for example, variable PRICE in Figure 3). Using
the CONCATENATE command to construct the
SQL statement text is cumbersome in such cases.
Therefore, ADBC offers another approach by using
placeholders in the SQL statement text and binding
them to ABAP variables. Let’s reuse the example in
Figure 2, but in this case, let’s assume that the price
information is now given by an ABAP variable.

The code in Figure 3 shows that the statement
text now contains a placeholder — indicated by a
question mark (?) — instead of a real column value.
Before the statement is executed, the program variable
PRICE is bound to the placeholder. This binding
is achieved by calling method SET_PARAM and
passing a reference to the PRICE variable as its
input parameter. At execution time the reference is
evaluated and the current value of the PRICE variable
is taken as an input value of the column that is marked
by the placeholder.

Sometimes you need to execute a SQL statement
several times but each time with different values
for its input variables. In this case, you should use
prepared statements. Let’s take a look at populating
the database tables using the class CL_SQL_
PREPARED_STATEMENT.

CL_SQL_PREPARED_STATEMENT

Once a statement has been prepared (compiled) by
the DBMS, it can be executed or reexecuted several
times with different sets of input values without
recompiling.

Tip!

Because ADBC passes the SQL statement to
be executed more or less unmodified to the
database, it is important that the spelling of
identifiers in the SQL text follow the rules
of the underlying DBMS. On some database
platforms, the database catalog is case-sensitive,
and therefore the identifiers in the SQL state-
ment must be identical to those stored in the
catalog tables. Furthermore, table or column
names must be set in quotation marks if they
contain extra characters (e.g., “/BIC/…”).

DATA: stmt_obj TYPE REF TO cl_sql_statement,

 rows_processed TYPE I.

stmt_obj = con_obj->create_statement().

rows_processed = stmt_obj->execute_update (insert into SFLIGHT 

 && `(CARRID, CONNID, FLDATE, PRICE, CURRENCY) `

 && values ('LH', '400', '20070719', '666.00', 'EUR')).

Figure 2	 Inserting data into a table using the CL_SQL_STATEMENT class

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 99

You use objects of the class CL_SQL_
PREPARED_STATEMENT, which is derived from
the CL_SQL_STATEMENT class, to represent
prepared statements. You can create a CL_SQL_
PREPARED_STATEMENT object by calling the
PREPARE_STATEMENT method on a connection
object. This method takes the text of the SQL
statement to be prepared as its argument.

The code snippet shown in Figure 4 illustrates
how you can insert the same flight connection
described in the previous examples using a CL_SQL_
PREPARED_STATEMENT object.

In this example we used placeholders for all input
values of the INSERT statement. For each of these
placeholders, method SET_PARAM was called to

DATA: price TYPE sflight-price VALUE '666.00',

 stmt_obj TYPE REF TO cl_sql_statement,

 rows_processed TYPE I,

 ref TYPE REF TO DATA. "an arbitrary reference to an

 "ABAP data object

stmt_obj = con_obj->create_statement().

GET REFERENCE OF price INTO ref.

stmt_obj->set_param(ref).

rows_processed = stmt_obj->execute_update(insert into SFLIGHT 

 && (CARRID, CONNID, FLDATE, PRICE, CURRENCY) 

 && values ('LH', '400', '20070719', ?, 'EUR')).

Figure 3	 Using placeholders to construct a SQL statement

DATA: prep_stmt_obj TYPE REF TO cl_sql_prepared_statement,

 carrid TYPE sflight-carrid VALUE 'LH',

 connid TYPE sflight-connid VALUE '400',

 flight_date TYPE sflight-fldate VALUE '20070719',

 price TYPE sflight-price VALUE '666.00',

 currency TYPE sflight-currency VALUE 'EUR',

 ref TYPE REF TO DATA.

* Prepare the INSERT statement

prep_stmt_obj = con_obj->prepare_statement(insert into SFLIGHT 

 && (CARRID, CONNID, FLDATE, PRICE, CURRENCY) 

 && values (?, ?, ?, ?, ?)).

* Bind input variables to each of the placeholders in the SQL statement

GET REFERENCE OF carrid INTO ref.

prep_stmt_obj->set_param(ref).

Figure 4	 Using a prepared statement of class CL_SQL_PREPARED_STATEMENT

Continues on next page

SAP Professional Journal • September/October 2007

100	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

pass a reference to the appropriate program variable to
the statement. The call sequence of the SET_PARAM
method defines the binding of the input variables to
the placeholders (i.e., the first call of SET_PARAM
binds the specified variable to the first placeholder,
the second call binds to the second placeholder, and
so on). When the statement is executed, the place-
holders are replaced with the current values of the
bound program variables.

Tip!

To avoid a runtime error when the statement is
executed, ensure that the:

•	 Number of program variables bound to the
statement object corresponds exactly to the
number of placeholders in the SQL text

•	 Referenced program variables are still valid
in the scope of the program unit where the
statement is executed

The code in Figure 4 looks pretty much like that
in Figure 3 where we used a CL_SQL_STATEMENT
object to execute the INSERT statement. So what’s
the point of using prepared statements? Unlike a
CL_SQL_STATEMENT object, you can reuse a
CL_SQL_PREPARED_STATEMENT object to

repeat the same kind of operation with another set of
parameter values. The example shown in Figure 5
demonstrates how to enter several flight connections
by reusing the prepared statement created in Figure 4.

If there is no longer a need to execute a prepared
statement, the method CLOSE should be called on the
prepared statement object. The CLOSE method frees
all resources that were allocated for the execution of
this statement on the database. Once you close a
prepared statement, you can no longer execute it.

Tip!

Use statement objects for one-time SQL
commands and prepared statement objects for
those being reused with different variable
settings.

Very often, you have defined a data structure in
your program with components that correspond to the
columns of the database table you want to access. In
these cases, though possible, it would be very tedious to
bind each component of the structure to the statement
individually. Alternatively, you can use the method
SET_PARAM_STRUCT to bind a structured data
object to a statement object. Assuming we have the
same PREP_STMT_OBJ that we used in Figure 4 and
a type definition called FLIGHT_T consisting of the

GET REFERENCE OF connid INTO ref.

prep_stmt_obj->set_param(ref).

GET REFERENCE OF flight_date INTO ref.

prep_stmt_obj->set_param(ref).

GET REFERENCE OF price INTO ref.

prep_stmt_obj->set_param(ref).

GET REFERENCE OF currency INTO ref.

prep_stmt_obj->set_param(ref).

prep_stmt_obj->execute_update().

Figure 4 (continued)

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 101

fields CARRID, CONNID, FLIGHT_DATE, PRICE,
and CURRENCY, we can bind the structured data
object FLIGHT by one call of method SET_PARAM_
STRUCT to the statement, as shown in Figure 6.

In this example, you can see that the field values
of the FLIGHT structure were set after a reference to
the structure was bound to the statement by method
SET_PARAM_STRUCT. Because only a reference
is bound, it makes no difference if the field values
are set before or after the call of SET_PARAM_
STRUCT. At the execution time of the statement,
of course, they must be set to the correct values.

Now that you know how to insert data into tables,
let’s look at how to get that data from the database.

DO n TIMES.

* here we can set new values to the program variables bound to PREP_STMT_OBJ

 carrid = ...

 connid = ...

 flight_date = ...

 price = ...

 currency = ...

 prep_stmt_obj->execute_update().

ENDDO.

prep_stmt_obj->close().

Figure 5	 Reusing a prepared statement

DATA: flight TYPE flight_t,

 ref TYPE REF TO DATA.

GET REFERENCE OF flight INTO ref.

prep_stmt_obj->set_param_struct(ref).

flight-carrid = 'AA'.

flight-connid = '400'.

flight-flight_date = '20070719'.

flight-price = '500.00'.

flight-currency = 'USD'.

prep_stmt_obj->execute_update().

prep_stmt_obj->close().

Figure 6	 Binding a structured data object to a prepared statement

Tip!

It is crucial that the sequence of components in
the bound data structure corresponds exactly to
the number and position of the placeholders in
the SQL statement text.

SAP Professional Journal • September/October 2007

102	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Retrieving data from a
database
You use queries to get the data you need from a
database. For the execution of queries, the class
CL_SQL_STATEMENT provides the method
EXECUTE_QUERY, which takes the query’s SQL
text as its argument. As shown in Figure 7, the
successful execution of method EXECUTE_QUERY
implicitly creates a result set object that is an instance
of class CL_SQL_RESULT_SET and returns a
reference to this object to the caller. This result set
object represents the set of rows matching the search
condition of the executed query. The code shows
the execution of a query that retrieves all flights for
connection AA400.

Instead of using literals “AA” and “400,” we
could also have used placeholders and program
variables to specify the flight connections dynamically
— just as we demonstrated earlier (see Figure 3 and
Figure 4). After a query has been executed success-
fully, the created result set object provides access to
the set of qualifying rows. The following methods
are available for retrieving rows of the result set into
ABAP data objects:

Fetching into program variables

Fetching into a structured data object

Fetching into an internal table

Next, we’ll discuss each of these methods
individually.

•

•

•

Fetching into program variables

To retrieve the matching rows of the query, the
method NEXT must be invoked repeatedly on the
result set object. This method has no arguments, and
returns “1” if the next row has been fetched from the
result set and “0” if no rows are remaining (because
all rows of the result set have already been delivered).

Before invoking method NEXT, you must define
the program variables to where the selected column
values must be written. You can use the method
SET_PARAM of the CL_SQL_RESULT_SET class
to pass a reference to a program variable to the result
set object. SET_PARAM must be called once for
each column in the query’s select list. The call
sequence of the SET_PARAM method corresponds
to the sequence of columns in the select list (i.e., the
first call of SET_PARAM defines the output variable
for the first column in the select list, the second call
for the second column, and so on). Any subsequent
call of the NEXT method fetches the next result row
from the database and puts the column values into the
respective program variables defined by the previous
SET_PARAM calls. The code fragment in Figure 8
continues the example used in Figure 7 and shows
the processing of the query’s result set, which is
producing the price list of all flights matching the
WHERE condition.

The method NEXT is called in a loop until a return
value of “0” indicates that all rows of the result set
have been fetched. After each call of the NEXT
method that returns with a value greater than “0,”
the variables PRICE and CURRENCY contain the

DATA: stmt_obj TYPE REF TO cl_sql_statement,

 rs_obj TYPE REF TO cl_sql_result_set.

stmt_obj = con_obj->create_statement().

rs_obj = stmt_obj->execute_query(select PRICE, CURRENCY from 

 && `SFLIGHT where CARRID = 'AA' and CONNID = '400').

Figure 7	 Executing a query

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 103

corresponding column values of the current row.
The method CLOSE finishes the result set processing.
You should always call the method CLOSE if the
result set processing needs to be stopped prematurely
or if the result set has been processed completely,
such as in the example in Figure 8.

Fetching into a structured data object

In some cases, it is rather cumbersome to retrieve a
table row into a set of program variables. Assume
you want to select all data columns of our table
SFLIGHT. In this case, it is more convenient to
retrieve the result set directly into a predefined
ABAP structure where the components correspond
to the sequence of columns in the query’s select
list. Therefore, the class CL_SQL_RESULT_SET
provides a special method SET_PARAM_STRUCT
that allows you to set a reference to an ABAP
structure as its output area. Thereafter, you can
use the already mentioned method NEXT to read
the rows of the result set into the defined output
structure.

Note!

The number and sequence of the components in
the output structure must completely match the
number and sequence of columns in the query’s
column list (i.e., the first column value will be
retrieved into the structure’s first component,
the second column into the second component,
and so on).

Figure 9 on the next page shows an example
that demonstrates this fetch method. This example
produces the same price list that is shown in Figure 8
plus the flight dates, which demonstrates that in
contrast to the last example every column value is
now accessible.

Fetching into an internal table

In addition to the method NEXT, which retrieves
one row at a time, the class CL_SQL_RESULT_SET

DATA: price TYPE sflight-price,

 currency TYPE sflight-currency,

 ref TYPE REF TO DATA.

...

GET REFERENCE OF price INTO ref.

rs_obj->set_param(ref).

GET REFERENCE OF currency INTO ref.

rs_obj->set_param(ref).

WHILE rs_obj->next() > 0.

* Now variables price and currency contain the corresponding column values

* of the current row

 WRITE: / price, currency.

ENDWHILE.

rs_obj->close().

Figure 8	 Fetching data into program variables

SAP Professional Journal • September/October 2007

104	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

provides an alternative retrieval method that allows
you to fetch the result set either completely or pack-
aged into an ABAP internal table.

Similar to fetching into an ABAP structure, this
method also requires the component structure of
the internal table to match exactly the number and
sequence of the columns in the query’s select list.
Method SET_PARAM_TABLE must be called to
define the internal table into which the result set rows
should be retrieved. This method expects a reference
to the internal table as its argument rather than the
internal table itself. After binding the output table
by a call of SET_PARAM_TABLE, use the method
NEXT_PACKAGE to fetch the result set rows into
this internal table. As its result, the method NEXT_
PACKAGE returns the number of rows actually
retrieved. Figure 10 shows a code example demon-
strating the use of this method, which populates the
internal table, FLIGHT_TAB, with all database rows
matching the specified WHERE condition.

The method NEXT_PACKAGE has an additional
optional input parameter UPTO that you can specify

to limit the number of rows that should be retrieved
by this call. If the UPTO value is greater than zero,
the number of rows to be fetched will be no more than
the value specified in UPTO, even if the result set is
greater. You can split the complete result set into
several batches, reducing the amount of memory
required at once.

Regarding performance, fetching into an internal
table has the advantage that the call stack of the data-
base interface is traversed less often compared to the
row-by-row processing using the NEXT method.
However, there is no difference between both methods
concerning the number of network roundtrips needed
to fetch the data from the database server into the
client. Even if the caller uses the NEXT method and
processes row-by-row, a pre-fetch mechanism� within
SAP NetWeaver AS ensures that the number of
roundtrips to the database server is minimized.

�	 Usually a certain memory area of the application server is used for the
result sets of queries. Instead of transferring the result set row-by-row
from the database to the application server, as many rows as fit into the
memory area are transferred in one step.

DATA: stmt_obj TYPE REF TO cl_sql_statement,

 rs_obj TYPE REF TO cl_sql_result_set,

 sflight_wa TYPE sflight,

 struc_ref TYPE REF TO DATA.

...

rs_obj = stmt_obj->execute_query(select * from SFLIGHT 

 && where CARRID = 'AA' and CONNID = '400').

GET REFERENCE OF sflight_wa INTO struc_ref.

rs_obj->set_param_struct(struc_ ref).

WHILE rs_obj->next() > 0.

 WRITE: / sflight_wa-price, sflight_wa-currency, sflight_wa-fldate.

ENDWHILE.

rs_obj->close().

Figure 9	 Fetching into a structured data object

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 105

Tip!

Don’t forget to close your prepared statement
and result set objects to save resources.

Before we turn our attention to some more
specific features of the ADBC API, let’s summarize
the sequence of steps that you must perform to
execute a SQL statement with ADBC methods:

1.	 Establish a database connection to the target
data source by calling factory method GET_
CONNECTION of class CL_SQL_
CONNECTION. Upon a successful connection,
this method returns an object of this class, which
can further be used to create and execute SQL
statements on this connection.

2.	 On the connection object, call method CREATE_
STATEMENT to get a statement object of class
CL_SQL_STATEMENT.

3.	 Build up a data object of type STRING that
contains the SQL statement text. You can use

placeholders represented by question marks (?) in
the SQL text to specify input values to the state-
ment that are evaluated at runtime.

4.	 For each of the placeholders occurring in the SQL
statement text, call method SET_PARAM on the
statement object to bind a program variable to that
placeholder.

5.	 Execute the SQL statement by calling either
method EXECUTE_QUERY or method
EXECUTE_UPDATE on the statement object,
thereby passing the SQL string as a method argu-
ment. Use EXECUTE_QUERY for SELECT
statements, and use EXECUTE_UPDATE
for modification operations, such as INSERT,
UPDATE, or DELETE statements. Upon a
successful execution, EXECUTE_QUERY will
return an object of class CL_SQL_RESULT_SET,
which can then be used to retrieve the rows of the
result set (see steps 6 – 8). EXECUTE_UPDATE
returns the number of rows being modified by the
statement.

6.	 In the case of a query, bind each of the output
columns of the statement’s select list to an
appropriate program variable by calling method

DATA: stmt_obj TYPE REF TO cl_sql_statement,

 rs_obj TYPE REF TO cl_sql_result_set,

 itab_ref TYPE REF TO DATA,

 flight_tab TYPE TABLE OF sflight,

 nbr_of_rows TYPE I.

...

rs_obj = stmt_obj->execute_query(select * from SFLIGHT 

 && where CARRID = 'AA' and CONNID = '400').

GET REFERENCE OF flight_tab INTO itab_ref.

rs_obj->set_param_table(itab_ref).

* Fetch the complete result set into the internal table

nbr_of_rows = rs_obj->next_package().

rs_obj->close().

Figure 10	 Fetching into an internal table

SAP Professional Journal • September/October 2007

106	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

SET_PARAM on the CL_SQL_RESULT_SET
object returned by EXECUTE_QUERY.

7.	 To process the result set row-by-row, call method
NEXT on the CL_SQL_RESULT_SET object in a
loop until the result set is exhausted. Each NEXT
call retrieves the column values of the current row
into the bound program variables.

8.	 Finally, close the result set with method CLOSE.

So far we have shown how to retrieve and to
change the contents of database tables. Let’s now
explore how to create new database objects such as
tables and procedures using ADBC. In SQL termi-
nology this kind of operation is referred to as Data
Definition Language (DDL) commands. Remember
that the Open SQL language set does not support
DDL commands because the syntax and semantics
of these commands are highly database dependent.

Creating and changing
database objects

DDL commands, such as CREATE, DROP, ALTER,
etc., should be executed by invoking the instance
method EXECUTE_DDL for a given CL_SQL_
STATEMENT object. This method takes only one
argument of type STRING where the caller has to
pass the SQL text of the DDL command to be
executed on the database. Figure 11 shows an
example that creates an Oracle database procedure
called GET_BEST_FLIGHT.

This database procedure has two input parameters,
CITY_FROM and CITY_TO, one INOUT parameter,
PRICE (assuming the caller enters the highest afford-
able price and receives the price that is closest to it),
and one output parameter, FLIGHT_DATE. You can
use this procedure to determine the cheapest flight
between two cities.

In the next section we demonstrate how to execute
such a database procedure with ADBC.

Executing database
procedures
For the execution of database procedures, the class
CL_SQL_STATEMENT provides the method
EXECUTE_PROCEDURE. As you would for
the binding of input variables of a QUERY or
UPDATE statement, you need to specify the actual
parameters of the procedure call with appropriate
calls of method SET_PARAM before the proce-
dure is executed.

In contrast to queries and Data Manipulation
Language (DML) operations, a database procedure
can have not only IN parameters, but also OUT
or INOUT parameters. To distinguish between
the different kinds of procedure parameters, the
method SET_PARAM has an optional parameter
INOUT that you use to specify whether a proce-
dure parameter is an IN, OUT, or INOUT
parameter. For setting this parameter accordingly,
you can use the public constants C_PARAM_IN,
C_PARAM_OUT, and C_PARAM_INOUT,
which are defined in the class CL_SQL_
STATEMENT. The default for the INOUT
parameter is C_PARAM_IN. The sequence of
SET_PARAM calls defines the sequence in which
the actual parameters are bound to the formal
procedure parameters. The variable referred to in
the first SET_PARAM call is passed as the first
actual parameter, the second variable as the second
parameter, and so on.

Because all the actual procedure parameters
must have been specified by appropriate calls of
the SET_PARAM method before the invocation
of EXECUTE_PROCEDURE, this method itself
requires only the procedure name as its argument.
Figure 12 shows an example of the execution of
the database procedure GET_BEST_FLIGHT as
defined in the previous section. This procedure
lists the cheapest flight from New York to
Washington.

Now that you understand the main operational
features of ADBC, let’s take a look at the transac-
tion support it provides.

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 107

DATA: create_proc_stmt TYPE STRING,

 proc_spec TYPE STRING,

 proc_impl TYPE STRING,

 stmt_obj TYPE REF TO cl_sql_statement.

proc_spec = create procedure GET_BEST_FLIGHT 

 && (CITY_FROM in CHAR(30), CITY_TO in CHAR(30), 

 && PRICE inout NUMBER, FLIGHT_DATE out CHAR(8)) IS.

proc_impl = ... "Some appropriate implementation

create_proc_stmt = proc_spec && proc_impl.

stmt_obj = con_obj->create_statement().

stmt_obj->execute_ddl(create_proc_stmt).

Figure 11	 Creating an Oracle database procedure

DATA: price TYPE sflight-price VALUE '0.00',

 city_from TYPE spfli-cityfrom VALUE 'New York',

 city_to TYPE spfli-cityto VALUE 'Washington',

 flight_date TYPE sflight-fldate,

 stmt_obj TYPE REF TO cl_sql_statement,

 ref TYPE REF TO DATA.

stmt_obj = con_obj->create_statement().

* Bind the program variables to the statement object according to the

* sequence of formal parameters of the GET_BEST_FLIGHT procedure

GET REFERENCE OF city_from INTO ref.

stmt_obj->set_param(ref). "IN parameter by default

GET REFERENCE OF city_to INTO ref.

stmt_obj->set_param(ref). "IN parameter by default

GET REFERENCE OF price INTO ref.

stmt_obj->set_param(data_ref = ref

 inout = cl_sql_statement=>c_param_inout).

GET REFERENCE OF flight_date INTO ref.

stmt_obj->set_param(data_ref = ref

 inout = cl_sql_statement=>c_param_out).

stmt_obj->execute_procedure(proc_name ='GET_BEST_FLIGHT').

WRITE: / price, flight_date.

Figure 12	 Executing a database procedure

SAP Professional Journal • September/October 2007

108	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Committing and rolling back
transactions
Transactions are one of the most important concepts
when working with a persistency layer like ADBC.
Their correct use guarantees the consistency of the
underlying data. On every open database connection
only one transaction is active at a time. The first
transaction is started implicitly after the database
connection has been opened. A transaction is finished
by calling one of the instance methods COMMIT or
ROLLBACK of the class CL_SQL_CONNECTION
on a connection object. As usual the COMMIT
method persists all the data changes triggered within
the transaction, whereas the ROLLBACK method
discards them.

The code snippets in Figure 13 and Figure 14
demonstrate how to commit and rollback a transaction
running in the default connection. The call of the

COMMIT method persists the effect of the DELETE
statement on the database (i.e., the SFLIGHT table
is empty afterwards), whereas the ROLLBACK
method discards the effect of the deletion (i.e., the
contents of the SFLIGHT table remain unchanged on
the database).

In the examples shown so far, all SQL statements
were executed on the default connection. Now we’ll
explore how you can establish additional connections
to the SAP database or even to external databases. We
refer to all of these types of connections as “secondary
connections” to distinguish them from the default
connection.

Accessing secondary
connections
When starting, each work process of an application

DATA: con_obj TYPE REF TO cl_sql_connection,

 stmt_obj TYPE REF TO cl_sql_statement.

con_obj = cl_sql_connection=>get_connection().

stmt_obj = con_obj->create_statement().

stmt_obj->execute_update(delete from SFLIGHT).

con_obj->commit()."This statement persists the deletion

Figure 13	 Committing a transaction

DATA: con_obj TYPE REF TO cl_sql_connection,

 stmt_obj TYPE REF TO cl_sql_statement.

con_obj = cl_sql_connection=>get_connection().

stmt_obj = con_obj->create_statement().

stmt_obj->execute_update(delete from SFLIGHT).

con_obj->rollback(). "This statement discards the deletion

Figure 14	 Rolling back a transaction

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 109

server establishes a connection to the database (the
database schema, to be more precise) installed for
the SAP system. This connection is called the default
connection, as explained earlier. The ADBC API
also offers the possibility to open other database
connections in addition to the default connection.
The two most common scenarios where you might
want to open one or more secondary connections are
as follows:

An application needs to access an external data
source (i.e., a database or schema different from
the SAP system database). The SAP liveCache
and the DB Connect architecture of SAP
NetWeaver Business Intelligence (BI) Connector
are examples of SAP application components used
in this scenario. This possibility is also useful for
customers who need to connect an SAP system
with a customer-specific database.

An application needs to access the SAP system
database, but in the context of an independent
transaction that can be committed or rolled back
independently of the transaction currently running
on the default connection. A typical case for this
scenario is protocol data that can be written and
committed without being affected by the outcome
of the default transaction. That is, protocol data
committed on a secondary connection remains
persisted even if the default transaction has been
rolled back for some reason.

To open a secondary connection, we again use the
factory method GET_CONNECTION of class CL_
SQL_CONNECTION, but this time with an argument

•

•

CON_NAME that specifies the logical name of the
data source we want to access, as shown in Figure 15.

The association between the logical connection
name, ABC in the example, and the database-specific
parameters needed to establish the connection to the
data source (ABC) must be defined externally (outside
the program) in the table DBCON. For each external
data source to be accessed, this table must contain
an entry with all connection data required to identify
the target database and for authentication against
this database. We refrain from going into more detail
on configuring a secondary connection in table
DBCON because that would go beyond the scope of
this article.�

Regarding the second use case mentioned in this
section — opening a secondary connection to the SAP
system database — it would be unnecessary to create
an entry in DBCON because the required connection
data is already known to the system. Therefore, the
SAP system follows a naming convention where all
logical connection names starting with the prefix
“R/3*” are assumed to refer to the system database.

After the successful execution of the GET_
CONNECTION method, the caller gets a CL_SQL_
CONNECTION object that identifies an open
connection to the specified database. You can then
use this object to create and execute SQL statements

�	 To learn more about secondary connections and the concept of multiple
database connections in general, look for an article by Juergen Kissner
about multiple database connections, which will appear in an upcoming
issue of SAP Professional Journal.

DATA: con_obj TYPE REF TO cl_sql_connection,

 con_name TYPE dbcon_name.

con_name = 'ABC'.

con_obj = cl_sql_connection=>get_connection(con_name).

Figure 15	 Opening a secondary connection

SAP Professional Journal • September/October 2007

110	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

on the referenced database connection in the same
manner shown in all previous examples in this article,
until it is explicitly closed by a call of the CLOSE
method. Thereafter, all statement objects created in
the context of this connection object become invalid.

The code in Figure 16 demonstrates the imple-
mentation of an independent transaction running
against the SAP system database. Calling the GET_
CONNECTION method with a connection name
prefixed by “R/3*” opens a new connection to the
database and returns a connection object that refers to
this connection. Subsequent executions of SQL state-
ments that are created through this connection object
belong to the same database transaction that can be
committed independently of the transaction running
on the default connection. Finally, calling method

CLOSE on the connection object closes the database
connection. A good programming practice is to close
a connection as soon as it is no longer used because
database connections allocate valuable resources on
the client side (e.g., the application server) but even
more on the database server.

Tip!

Calling method CLOSE on a CL_SQL_
CONNECTION object that refers to the default
connection has no effect because the lifecycle
of the default connection is coupled to the
lifecycle of the work process and therefore
cannot be closed programmatically.

Note that the ADBC interface does not support
distributed transactions. This means that changes
performed on different database connections cannot
be subsumed under a global transaction that guaran-
tees atomicity. Transactions on different database
connections run completely independently of each
other and must be committed separately.

We have now walked through the main features of
the ADBC API, but there is one remaining topic that

Tip!

A programming best practice is to use different
names for different tasks when using “R/3*”
connections. This practice is helpful in error
situations to identify the application that opened
the connection or when monitoring database
connections.

DATA: con_obj TYPE REF TO cl_sql_connection,

 con_name TYPE dbcon_name.

con_name ='R/3*-SFLIGHT'.

con_obj = cl_sql_connection=>get_connection(con_name).

stmt_obj = con_obj->create_statement().

stmt_obj->execute_update('...').

...

con_obj->commit().

con_obj->close().

Figure 16	 Implementing an independent transaction against the system database

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 111

is too often disregarded by programmers — error
handling. Especially when you are dealing with
complex software systems like databases, you should
always take error situations into account.

Handling errors
Some of the ADBC methods presented in the previous
sections can run into errors that need to be handled
by the caller. If such an error situation occurs (e.g.,
because the execution of a SQL command gets a
SQL error from the underlying DBMS) the ADBC
method throws an exception object of class CX_SQL_
EXCEPTION.

Within a “TRY … ENDTRY” block, the caller can
catch the exception and get some error information
from the exception object thrown. This technique is
illustrated in the code shown in Figure 17, which is
identical to that in Figure 3, except now with proper
error handling.

DATA: stmt_obj TYPE REF TO cl_sql_statement,

 sql_ex TYPE REF TO cx_sql_exception,

 rows_processed TYPE I.

stmt_obj = con_obj->create_statement().

TRY.

 rows_processed = stmt_obj->execute_update(insert into SFLIGHT 

 && (CARRID, CONNID, FLDATE, PRICE, CURRENCY) 

 && values ('LH', '400', '20070719', '666.00', 'EUR') ).

CATCH cx_sql_exception into sql_ex.

 IF sql_ex->duplicate_key = 'X'.

 WRITE: / 'Duplicate key error occurred'.

 ELSEIF sql_ex->db_error = 'X'.

 WRITE: / 'SQL error', sql_ex->sql_code, 'occurred:',

 / sql_ex->sql_message.

 ELSE.

 WRITE: / 'Unexpected ADBC error:', sql_ex->internal_error.

 ENDIF.

ENDTRY.

Figure 17	 Catching an exception and retrieving error information

Warning!

Working with different database connections on
the same set of database tables in parallel can
lead to deadlock situations where only one
work process is involved that can be neither
detected nor resolved by the DBMS.

Imagine a program that changes a certain
database row on connection one and then tries
to modify the same row on connection two
without having completed the transaction on
connection one. This situation results in the
program waiting forever for the lock of the first
transaction, because this first transaction will
never be able to continue. Such a deadlock
situation is difficult to analyze and can be
resolved only by terminating the work process.
Therefore, be very careful when working with
different connections on the same set of
database tables!

SAP Professional Journal • September/October 2007

112	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

A CX_SQL_EXCEPTION object provides several
attributes that you can evaluate within the CATCH
block and use to handle error situations. SQL errors
raised by the underlying DBMS are indicated by the
flag attribute DB_ERROR, which is set to X. The
programmer may also get detailed information about
the root cause of the SQL error through attributes
SQL_CODE and SQL_MESSAGE, which contain
the original SQL code and SQL message as returned
by the DBMS. This information not only helps to
write proper error messages, as shown in Figure 17,
but you can also use it as part of the program logic.
For example, your program might react differently if
the SQL code indicates that a certain database table
does not exist or if there is a database corruption.

Tip!

The attributes SQL_CODE and SQL_
MESSAGE should only be evaluated if
db_error = 'X'; otherwise, their values are
undefined.

If errors occur that cannot be classified by one of
the flag attributes, the INTERNAL_ERROR attribute
is set to an internal error code that may help SAP
support to identify the problem. The log and trace
files usually contain more information for error diag-
nostics in such cases.

Now that you have a general understanding of the
main features and capabilities of the ADBC API, let’s
compare the different SQL programming models
available in ABAP and provide some recommenda-
tions on use cases for the different models.

Comparing the ABAP SQL
programming models
The table in Figure 18 lists the most important
characteristics of the three SQL programming models

offered by SAP NetWeaver AS ABAP, including the
advantages and disadvantages of each. However, the
intention of this comparison is not to derive a ranking
between these models — all have their use cases. The
purpose rather is to determine in which case each
model fits best.

In view of this comparison, we recommend the
following guidelines to ABAP programmers regarding
the use of the different programming models:

Open SQL is the undisputable choice for ABAP
developers who want to write portable applications
against database tables residing in the standard
database schema of SAP NetWeaver AS. In addi-
tion to portability, they can benefit from many
performance optimizations and other useful func-
tions of the ABAP database interface for free. A
prerequisite, of course, is that all accessed data-
base tables and views are defined by means of the
ABAP Dictionary.

Typical use cases for EXEC SQL commands are
static SQL statements against database objects that
are not defined in the ABAP Dictionary or SQL
statements exploiting database-specific function-
ality that cannot be expressed by Open SQL. The
implementation of the ABAP Dictionary, for
example, makes heavy use of EXEC SQL
commands to query the database catalog and
execute DDL statements that cannot be done in
Open SQL.

ADBC is preferable in scenarios where
applications need access to external databases or
require SQL functionality not provided by Open
SQL. For example, ADBC is the only option for
executing dynamic Native SQL statements.
Furthermore, it is preferable over EXEC SQL
when programmers have to deal with multiple
database connections or need complete program
control in case of exceptions.

Conclusion
ADBC amends ABAP Native SQL functionality
provided by the EXEC SQL command. This powerful

•

•

•

Take full advantage of the SQL functionality of your database with ABAP Database Connectivity (ADBC)

No portion of this publication may be reproduced without written consent.	 113

Furthermore, it gives the programmer the ability to
react to SQL errors in an appropriate manner. Each
API method that potentially can run into an error
situation throws an exception that can be caught and
handled by caller. Last but not least, and because of

API is suitable for using most of the SQL function-
ality provided by relational database systems. Going
beyond the functionality of EXEC SQL commands,
ADBC enables the execution of dynamic SQL
statements that are completely created at runtime.

Open SQL EXEC SQL ADBC

SQL commands are fully integrated
into the ABAP language

SQL statements are embedded in
EXEC SQL … ENDEXEC brackets

Object-based call-level interface

Comprises a subset of standard SQL
with some very useful enhancements
in conjunction with other ABAP
language constructs

Provides access to the entire SQL
functionality of the respective
database system, including the
execution of stored procedures

Provides access to the entire SQL
functionality of the respective
database system, including the
execution of stored procedures

Guarantees portability across all
database platforms supported by SAP
NetWeaver AS

Does not guarantee portability of SQL
statements

Does not guarantee portability of SQL
statements

Accessed database tables/views
must be defined in the ABAP
Dictionary

Accessed database tables/views
need not be defined in the ABAP
Dictionary

Accessed database tables/views
need not be defined in the ABAP
Dictionary

Automatic client handling No automatic client handling No automatic client handling

Compile-time checking of static SQL
statements

No compile-time checking of SQL
statements

No compile-time checking of SQL
statements

As of ABAP 6.10 nearly all parts of a
SQL statement can be dynamic

Allows only the execution of static
SQL statements

All SQL statements are dynamic by
nature of the ADBC API

Built-in performance optimizations by
the ABAP database interface through
client-side table buffering, pre-
fetching of result sets, batched DML
operations, etc.

No specific performance
optimizations by the ABAP database
interface

No specific performance
optimizations by the ABAP database
interface

Access to tables residing in data
sources other than the standard
schema of SAP NetWeaver AS is
possible as of ABAP release 6.10,
but this feature requires the ABAP
Dictionary to contain a corresponding
table definition

Access to external data is supported,
but the handling of several database
connections is rather error-prone

Access to external data sources is
supported; the connection handling
is straightforward because SQL
statements can only be executed
in the context of a connection
object that can be controlled by the
programmer

Limited program control in case of
exceptions

Limited program control in case of
exceptions

Full program control in case of
exceptions

Figure 18	 Comparison of SQL programming models in ABAP

SAP Professional Journal • September/October 2007

114	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

the object-oriented nature of the API, ADBC provides
a clean concept to deal with multiple database connec-
tions and external databases that help to avoid the
traps and pitfalls of the EXEC SQL approach.

Thomas Raupp studied computer sciences at the University
of Karslruhe, Germany. After receiving his degree in 1985,
he worked for the Research Centre of Computer Sciences
(FZI) in Karlsruhe focusing on object-oriented databases.
He joined the R/3 technology department at SAP in 1990,
where he became Development Manager of the Database
Interface Group in 1996 and was responsible for the SAP
R/3 database interface and the Oracle port of SAP R/3.

Recently, Thomas moved from SAP NetWeaver development
to the Global Service and Support organization and is now
the Development Manager for the IMS (Installed Base
Maintenance & Support) ABAP Group. You may reach him
at thomas.raupp@sap.com.

Tobias Wenner has a degree in Computer Science from the
University of Karlsruhe, Germany. He joined SAP in 1994,
lending his skills to data dictionary and database interface
development, both in the ABAP and Java stack of SAP
NetWeaver. Tobias is responsible for the design and
implementation of Open SQL as well as Native SQL in the
ABAP compiler and interpreter. You may reach him at
tobias.wenner@sap.com.

