
No portion of this publication may be reproduced without written consent.	 93

Designing and developing
mobile applications for
SAPConsole using ABAP
Best practices and lessons learned

by W. Patrick Tunney

W. Patrick Tunney
SAP Business Analyst,
WPT Consulting Inc.

W. Patrick Tunney began his
SAP career working for SAP
at its Karlsruhe, Germany
facility in 2000. Since then,
he has become a recognized
expert in the areas of supply
chain logistics and warehouse
management. As founder and
president of WPT Consulting,
Patrick helps clients get the
most out of their investments in
their SAP systems through the
application of best practices that
ensure maximum ROI. Patrick
currently resides in Toms River,
New Jersey. You may reach him at
patrick.tunney@wptconsulting.com.

Now that the use of wireless barcode scanning equipment is common
worldwide, companies are challenged to adapt existing warehouse
management software to fit on the smaller screens of handheld devices.
Furthermore, these mobile applications need to be basic enough that users
on the shop floor — often with little or no technical knowledge — can
work with them. SAPConsole, available with SAP R/3 Release 4.6B and
higher, allows you to access data on mobile devices. It renders the SAPGUI
interface on smaller screens using buttons and plain text.

However, companies often find that the standard set of small-screen
applications provided with SAPConsole is insufficient for their needs. As a
result, these companies develop custom small-screen programs for wireless
data entry to meet business goals and drive process efficiency. Although
custom development is generally discouraged due to maintenance concerns,
a successful custom SAPConsole application can improve your warehouse
processes by allowing users to capture back-end data in real-time easily and
accurately. This extends the reach of back-end data to the shop floor, which
not only leads companies to achieve greater supply chain visibility, but also
provides floor personnel with an explicit, repeatable set of steps to run
SAPConsole transactions from start to finish.

Designing small-screen SAPConsole applications for non-technical shop
floor personnel presents a unique set of challenges. You need a broad range
of design skills that include a strong understanding of business processes
and insight into application usability engineering. I’ll show you some best
practices for creating custom mobile SAPConsole applications for non-
technical users. I’ll explain my philosophy for designing mobile data entry
applications by using an example SAPConsole application that involves a
material inquiry transaction. I’ll then go over some of the constraints you
may encounter when designing mobile data entry screens.

Finally, I’ll provide some design recommendations and show you how
to apply the design patterns. In addition to describing a general mobile data

SAP Professional Journal • November/December 2007

94	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

entry design philosophy, I’ll show you some specific
coding principles and lessons I’ve learned in my seven
years of SAP mobile application development. By the
end of the article, you should have a broad overview
of the design challenges associated with mobile devel-
opment as well as a general understanding of many
of the techniques used in these designs. For more
information on custom SAPConsole development,
see the sidebar on the next page. Let’s begin by
looking at what a simple SAPConsole application
does and how it is structured.

Note!

Although SAP Mobile Infrastructure (SAP
NetWeaver Mobile in SAP NetWeaver 7.0) is
the latest mobile technology offering from SAP,
for SAP teams more comfortable with ABAP,
SAPConsole, in my opinion, is the most viable
way to develop online mobile applications.�

�	 For more on SAP NetWeaver Mobile, see the article “Best practices for
planning, deploying, and maintaining mobile applications with SAP
NetWeaver 7.0” (SAP Professional Journal, September/October 2007).

SAPConsole application
example
Figure 1 shows an example of a simple material
inquiry transaction, standard SAPConsole transaction
LM12. The left screenshot is the first screen that
appears. The middle screenshot shows data that the
user entered, either through manual entry or via
barcode scanning. Clicking on the F7 button in this
screen validates the data. The system then displays
source bin inquiry information in the right screenshot,
which is the second screen the user views.

From a SAPGUI environment in a production
system, the SAPConsole engine renders the screens
into simple text elements at runtime and displays them
on an industrial-grade radio frequency (RF) mobile
computer (Figure 2). Depending on the RF hardware
used, you can access the buttons through dedicated
function keys, touch screen interaction, or both.

Mobile data entry design
philosophy
Given the constraints outlined in the previous section,
a mobile data entry application must be as simple as

Initial screen Initial screen with data
that the operator scanned
or entered

Results screen that displays
the first warehouse bin
record the system returned

Figure 1	 Sample SAPConsole application

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 95

SAPConsole and general custom development guidelines
SAPConsole transactions are often limited
in scope, but they are necessary to drive
business process efficiency. However, it’s
important to keep in mind the basic fundamen-
tals inherent to the development of any custom
code in the SAP landscape. For example, it is a
well-understood principle that SAP installations
should always favor customization over custom
development. SAP offers such a wide range of
business functionality that you can frequently
meet business requirements by following a
simple three-step process: 1) carefully analyze
business process requirements; 2) match the
business requirements with the functionality
SAP offers; and 3) work through configuration
activities to change the way the standard SAP transactions collect and record data functions. Generally
you must perform these steps in multiple iterations with refinements to the business process based upon
new information gathered regarding available SAP functionality.

SAP implementation teams regularly benefit from using this three-step process. Most importantly, the
SAP functionality analysis helps businesses identify ways in which they can improve their existing busi-
ness processes. SAP has crafted business processes to meet the needs of a wide variety of industries and
constantly improves them. As such, the standard SAP processes reflect successful best practices that
companies use globally. If you’re using SAP’s systems but routinely ignoring SAP Best Practices in
favor of homegrown ones, you’re costing your business money in both lost productivity and unnecessary
development costs.

Figure 2	 A custom SAPConsole application screen shown from both the SAPGUI and from an RF telnet client

Note!

The decision to develop custom SAPConsole
transactions is based on the ability of the
existing transactions to support shop floor
business processes. For new SAP installations,
make sure that SAPConsole requirements roll-in
follows the business process customizing phase.
If customizing isn’t locked in, you’ll spend a lot
of time and money redesigning and recoding
your SAPConsole transactions.

Continues on next page

SAP Professional Journal • November/December 2007

96	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Keep this in mind any time you set out
to design a new SAPConsole transaction.
The table below contains a list of
SAPConsole transactions delivered in the
standard system. (Note that this is a partial
list of the SAP transactions included in the
SAP table TSTC — transaction SE16.)
Usually you’ll find that the return on invest-
ment (ROI) of a custom SAPConsole
program tailored to your specific business
needs far outweighs the risks and associated
costs of customer development. Never‑
theless, sometimes you’ll find that the
standard version is just what you need.

Code Activity Code Activity

LM00 Logon Radio Frequency LM27 Put Away by Delivery – w/o Selection Screen

LM01 Dynamic Menu LM30 Load Control – Load by Shipment

LM02 Select by Storage Unit – Put Away LM31 Load Control – Load by Delivery

LM03 Put Away – by Transfer Order LM32 Load Control – System Guide Load

LM04 Put Away – System Guided LM33 Load Control – Unload by Shipment

LM05 Picking by Transfer Order ID LM34 Load Control – Unload by Delivery

LM06 Picking – by Delivery ID LM35 Load Control – Detail by Shipping Unit

LM07 Picking – System Guided LM36 Load Control – Detail by Delivery

LM09 Put Away by Delivery ID LM37 Load Control – Detail by Shipment

LM11 Posting Change LM45 Pick and Pack

LM12 Material Inquiry LM46 Pick and Pack by Delivery

LM13 Put Away Clustered LM47 Nested Handling Units

LM18 Handling Unit Inquiry LM50 Count Inventory by System Guided

LM19 Handling Unit – Pack LM51 Count Inventory by User Selection

LM22 Handling Unit – Unpack LM55 Print Storage Bin Labels

LM24 Packing Handling Unit by Delivery LM56 Select by Storage Unit – Interleaving

LM25 Unpack Handling Unit by Delivery LM57 System Guided Putaway – Interleaving

LM26 Picking by Delivery – w/o Selection Screen LM58 System Guided Dynamic Inventory Count

Note!
Sometimes you’ll be tempted to modify existing
SAPConsole transactions to add business-
specific functionality. This is advisable only
if the modification is minor. The existing
SAPConsole applications support multiple
screen sizes and customizing configurations,
but modifying these transactions correctly can
be difficult and time consuming. If you do
decide to create a modification, I advise you
to copy the program into your own custom
namespace before making changes.

Continues on next page

Continued from previous page

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 97

possible and designed for a specific task. Operators
should have to enter a minimal amount of data and be
able to do so either through barcode scanning or by
selecting a single function key. The transaction should
guide the operator down an easy-to-follow path of
data entry steps that prompt the operator for data at
each stage. Once completed, the operator should be
able to wash, rinse, and repeat over and over without
any surprises. Any hiccups along the way should be
expressed as simple error messages that are easily
understandable and that help operators resolve the
underlying issue.

Whereas each of the aspects that make up an ideal
transaction seem straightforward enough, combining
them in a single application that meets a specific
business goal is easier said than done. Often you
need to make some tough decisions, such as adding
functionality at the expense of simplicity. Although
each business scenario is different and presents
unique challenges, I’ll share some guidelines that you
can use for reference. I have compiled the following
four high-level design recommendations to help you:

The three screen rule

Directed data entry

Immediate input validation

•

•

•

Post by item, not by document

You’ll find that valuable mobile data entry transac-
tions, including the standard ones that SAP provides,
combine two or more of these elements.

The three screen rule

A best practice for mobile applications is to minimize
screen flow — the logic that controls the user experi-
ence by determining which data output/entry screen
to display based on operator input. In turn, the easiest
way to minimize screen flow is to minimize the total
number of screens. In general, the best applications
are ones that get the job done in three screens or less:

Screen 1 — Enter SAP document

Screen 2 — Review/select document items

Screen 3 — Enter or confirm data

An example of a three screen application is a
transfer order picking transaction. This transaction
might include an initial screen in which the operator
scans or enters a transfer order, a second screen that
displays individual transfer order items for inspection
and selection, and a final transfer order confirmation

•

•

•

•

Code Activity Code Activity

LM59 User Initiated Dynamic Inventory Count LM71 Goods Receipt by Delivery

LM60 User Guided Dynamic Inventory Count LM72 Goods Receipt by Staging area

LM61 Goods Issue by Delivery LM73 Goods Receipt by Shipment

LM62 Goods Issue by Staging Area LM74 Goods Receipt by ALL Criteria

LM63 Goods Issue by Shipment LM76 Goods Receipt by Handling Unit

LM64 Goods Issue by ALL Criteria LM77 Queue Assignment

LM65 Goods Issue by Group LM80 Serial number capture

LM66 Goods Issue by Handling Unit

Continued from previous page

SAP Professional Journal • November/December 2007

98	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

screen in which an operator confirms a selected
transfer order item.

Let’s walk through an example of entering an
SAP document number, reviewing document items
for selection, and entering the confirmation data.
Figure 3 shows the first of three screens from transac-
tion LM05 (Picking by Transfer Order ID) — before
and after data entry. The left screenshot shows the
initial transfer order data entry screen. The screenshot

on the right shows what the screen looks like after the
operator enters the transfer order document number.

Clicking on the F4 button or scanning the transfer
order displays the second screen shown in Figure 4.
The screenshot on the left shows the first transfer
order item that the operator must pick. The operator
reviews the source information to find the storage
bin on the warehouse floor, and then clicks on the
F6 button to confirm the order. If the total required

Initial screen for transfer
order entry

Operator scans or enters a
transfer order number

Figure 3	 Entering transfer order data

First transfer order item Confirmation screen –
complete stock removal

Enter the quantity difference,
if needed

Figure 4	 Process for posting an item

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 99

quantity is found in the bin, the operator removes
the material from the bin and enters the total
quantity in the middle screenshot. If the quantity
available in the bin differs from the required pick
quantity, the operator enters the difference and
selects the difference indicator in the right screen-
shot. In both cases, the operator follows up data
entry by clicking on the F1 button to post the item.

Transaction LM05 demonstrates an uncompli-
cated, repeatable shop floor process that operators
can use to pick materials from a warehouse storage
bin. Each screen has a single purpose and data entry
steps that drive the screen navigation independent
of document data. Shop floor operators without
any SAP knowledge can quickly step in and start
working to ensure that data entry and shop floor
processes are in sync.

Depending on the level of business process auto-
mation and application requirements, you can create
some applications in fewer than three screens. A
material/bin inquiry transaction might consist of a
single screen to scan a bin with a follow-up screen
to display bin stock totals. An optimized transfer
order putaway application might automatically
select transfer order items for putaway based on
transfer order queuing priority. This could reduce
the application to a single transfer order item confir-
mation screen.

If you find yourself in a situation in which your
design contains more than three screens, see if you
can break the transaction down. If you can’t, it may
be worth considering whether the business process
in question is a good candidate for mobile data
entry or whether it is better suited to the SAPGUI
environment.

Directed data entry

When creating a mobile data entry application,
ensure that you have a well-defined path from the
initial screen to the final screen, regardless of the
number of screens in the application. With the
limited amount of input and output available to
the operator, there isn’t a whole lot of room for
flexibility.

Consider the SAP MIGO transaction — the
mother of all Inventory Management (IM) goods
movement transactions. This transaction provides
functionality that allows a user to perform most
IM goods movements against most IM documents.
As result, the interface can be daunting even for
a seasoned SAPGUI specialist. Translating that
functionality to a handheld application is practically
impossible, especially considering that the default
screen display is only 16x20 characters.

What’s more, the realization of the entire
transaction would require at least 10 screens with
complex screen flow logic to manage the applica-
tion state and screen transitioning. The end result
would be an application with a significantly higher
learning curve (especially for operators with little
SAP system experience) containing built-in logic
complexity that would be difficult to test thor-
oughly and maintain.

A more reasonable alternative to this approach is
to select a MIGO sub-task, such as goods receipt
for purchase order, as shown in Figure 5 (on the
next page). The handheld transaction could consist
of a screen flow that drives the operator directly
from document entry, to the purchase order item
review, and then to the individual item goods
receipt. This approach makes the final application
more palatable to your end users and minimizes
software development and maintenance overhead.

Also, in a mobile data entry application, avoid
creating a search function. Directed data entry
relies on guiding an operator down a specific path.
Searching indicates that the application entry point
is unknown. It can introduce transaction ambiguity
and make it difficult to design a concise user
experience.

From a practical perspective, searching means
that you need to add two screens, one for entering
search criteria and one for selecting from a list of
results, in addition to whatever screens you need
to accomplish your business task. Chances are that
adding these two screens will cause you to violate
the three screen rule. Obviously, at times searching
is justified, but as a general rule you should avoid
including a search option.

SAP Professional Journal • November/December 2007

100	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Immediate input validation

The directed data entry approach relies on guiding a
user down a path based on data entry. As you guide
your operators down that path, it is important to
verify the validity of data as soon as the operator
enters it. This differs from the way many SAP ABAP
applications operate. Although SAP provides
programming mechanisms that validate individual
fields upon entry in response to a Process After Input
(PAI) event, most PAI events capture multiple field
data changes. As a result, the system validates data en
masse when you transition from one screen to the
next. In a mobile data entry environment, the system
should validate data as it receives it, capturing each
field entry as a PAI event.

Figure 6 shows a series of handling unit (HU)
screens that collect a source bin, source HU, and a
destination bin. The system validates each element

upon entry to guide the operator down a predefined
data entry path.

To illustrate this point, consider a warehouse
bin-to-bin movement transaction that creates and
confirms a transfer order to move a pallet of material
from a source bin to a destination bin. This transaction
requires the operator to scan a source bin and an HU
number (pallet license plate). The operator then
confirms the movement by scanning the destination
bin, which triggers the transfer order posting.

In this example, the mobile data entry version of
the application must account for space concerns that
SAPGUI does not consider. An operator physically
removes the pallet from a source bin and moves it
to a destination bin. To save time, when the operator
scans the source bin and HU number, the system
should detect any impediments to creating the transfer
order. Such validations include sanity checks, such as

Figure 5	 MIGO transaction in which the operator entered a purchase order for goods receipt reversal
(movement type 102)

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 101

verifying the existence of the HU number or ensuring
that the source bin is not blocked for inventory.

The decision to check these fields individually or
together doesn’t matter in a SAPGUI environment,
but it can have serious cost implications for a shop
floor with mobile devices. If one of the primary
purposes of mobile data entry is to drive business
process efficiency, then it is important to validate data
as soon as possible to ensure that you are not inadver-
tently introducing inefficiency into your shop floor
business process (e.g., the operator physically moves
the HU and finds out when he attempts to post that the
HU is blocked for movements within the warehouse).

Post by item, not by document

Many SAP interfaces allow you to perform data post-
ings against individual document items. For example,
in the goods issue to process order application, a
SAPGUI operator enters a process order, enters the
issue quantity for one or more process order items,
and then executes the posting function. The end result
of a successful posting is a single material document
with multiple items — one for each process order
item issued.

Even though this approach is technically possible
in a mobile data entry transaction, I recommend that
your transaction post each item as soon as the item
data is entered. The reason for this is twofold. First,

by enforcing data posting immediately upon data
entry, you provide your operators with an interface
that clearly identifies the transaction state — you
either posted the data successfully or the system
returned an error message. If you encounter an error
for one item, you can address it immediately. This is
important when operators can only review one item at
a time, as opposed to a SAPGUI environment in which
an operator has an overview of all process order items.

Second, implementing multiple item document
posting is more complex in a mobile data entry envi-
ronment with limited input and output. You spend
more time deciding how to respond to partial item
data entry. Also, often errors returned from SAP
posting interfaces do not clearly indicate the item to
which they belong. In these cases, it’s difficult to
direct your operator to the source of the error.

Mobile data entry design
constraints
When developing transactions for mobile devices, such
as warehouse barcode scanning equipment or fork-lift
mounted mobile computers, you must consider three
unique design constraints. The most obvious constraint
is output display size. A handheld barcode scanning
device has a significantly smaller screen size when
compared to a standard 17-inch display. The same is
true for forklift-mounted computers. The limited

Figure 6	 Data entry screens for moving a handling unit within the warehouse with source bin verification

SAP Professional Journal • November/December 2007

102	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

screen size means that you only have room for the
most important information required to complete a
transaction. What’s more, the character length of a data
field is often wider than the width of the device screen.
Not only do you have to choose which data to display,
you also need to consider how to display it.

Another important consideration is the limited ability
to perform data input. Most mobile devices have either
a small, built-in keyboard or a touch-screen interface.
The smaller the device, the more painful and error prone
character-based data entry becomes. You can’t reason-
ably expect a user to engage in any significant free-text
entry; otherwise the user spends more time in front of a
desktop SAPGUI, defeating the purpose of the mobile
application. Furthermore, some user input mechanisms,
such as drop-down menus and value helps, don’t func-
tion the same on all mobile devices. Then again, other
mechanisms, such as check boxes and radio buttons,
only work when you use a mouse or touch-sensitive
display. Fortunately, barcode scanning equipment helps
automate the data entry process when barcode labels are
readily available for scanning.

Finally, the third constraint is the users’ lack of
familiarity with the warehouse management system.
Applications must validate data immediately to
prevent data-entry errors. In my experience, if an
application provides a chance for an operator to
introduce bad data inadvertently, operators will find
a way to do so.

The ability to recognize and code for mobile device
constraints in an application is the defining character-
istic between a good ABAP developer and a good
SAPConsole developer. In the next section, I’ll show
you how these constraints affect design decisions.

Development recommendations
and applied design patterns
Now that we have examined the mobile data entry
problem set and reviewed some of the high-level
design concepts, let’s take a look at the development
phase. In the following sections I’ll discuss some of
the applied design patterns and coding tips that you

can use to keep your code clean and manageable
while enforcing some of the high-level concepts intro-
duced in the previous section. These tips include:

Minimize top include sharing.

Define screen structures.

Validate fields and screens.

Avoid flag variables.

Use standard function key mappings.

Use standard function module interfaces exclusively.

Minimize top include sharing

When used correctly, top includes that contain
common code and form routines can simplify devel-
opment and maintenance in complex development
projects. They save time by reducing the amount of
necessary development and debugging because
programs developed in the same package can share
resources. However, unless you are developing a
significant number of transactions to introduce into
the production landscape as a group, you should keep
include sharing to a minimum. Think of each mobile
data entry transaction as a single self-sufficient unit.
Ideally, it’s made up of the following:

One to three data entry screens

Validation routines for individual screens

Control logic for screen mapping

Posting logic for SAP interfaces and table data

That’s all there is to it — four simple bullet points.
The SAPConsole menu model does an excellent job
of handling menu dependencies that are external to
the individual transactions, so you don’t have any
overhead. If you follow the suggestions laid out in the
previous section, each of these bullet points, with the
exception of possibly posting logic, should be as lean
as possible. If that’s the case, there isn’t much room
for code sharing between programs.

What’s more, as with most custom programs,
SAPConsole transactions evolve over time. By
keeping the use of top includes to a minimum, you’re
writing yourself an insurance policy that ensures that

•

•

•

•

•

•

•

•

•

•

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 103

changes to one transaction do not adversely affect
others in your production environment. The stability
benefits outweigh any reduced development effort
obtained from code sharing.

Define screen structures

Recall that your custom mobile data entry transactions
are self-sufficient units. You can take that model a
step further and apply it to individual screens. An
SAPConsole screen may contain the following elements:

Display-only output fields

Data entry fields or verification fields

Function key and button mappings

These are the only elements your transaction
should have. No radio buttons. No check boxes. No
ActiveX controls. Nada. Your transaction has to
survive not only a SAPGUI to text conversion, but
also various hardware-specific renderings post-text
conversion. (SAPConsole works by converting ABAP
programs to text at runtime and sending them to a

•

•

•

handheld device via a third-party transport mechanism
— usually Telnet.) With that in mind, I recommend
grouping your input and output fields together in a
single screen-specific structure.

Note!

If it sounds like I’m belaboring the point of
keeping your transactions simple, it’s because I
am. As hard as it is to believe, one of the biggest
challenges I’ve faced over the years is getting
my clients to understand that in the mobile data
entry space simpler is not only better — it’s
paramount. Don’t learn this lesson the hard way.

Figure 7 contains a code snippet taken from a
single-screen transaction that moves an HU stored in
warehouse inventory to an operator-entered destination
bin. You can add this code to the program’s top include
file that declares the variables used throughout the

REPORT ZMDE_MOVE_HU.

TABLES: LAGP, VEKP, LEIN.

DATA: BEGIN OF screen_1000,

 hu TYPE LENUM,

 src_bin TYPE LGPLA,

 src_bin_type TYPE LGTYP,

 hu_type LIKE LTAP-LETYP,

 dest_bin TYPE LGPLA,

 dest_bin_type TYPE LGTYP,

 END OF screen_1000.

* User warehouse

DATA LGNUM LIKE LQUA-LGNUM.

* Current cursor position used for screen 1000

DATA cursor_1000(20) TYPE C VALUE 'SCREEN_1000-HU'.

Figure 7	 Top include file from a single-screen SAPConsole transaction

SAP Professional Journal • November/December 2007

104	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

program. Notice the declaration of the data structure
screen_1000. I like to group input and output fields
together in one, screen-specific package. This helps
me keep a handle on all of my data, which is especially
helpful when multiple screens contain similar fields.

Validate fields and screens

As discussed in the previous sections, the system
should validate data as soon as the operator enters
it to maximize efficiency and minimize lost time. I
recommend that you validate individual fields as
soon as the system receives the data.

Figure 8 shows the PAI module for my single-
screen transaction that moves an HU within the
warehouse. The system calls this module after input
on the data entry screen and handles all possible input
events — in this particular application this includes
BACK (exiting the transaction), OK (ENTER or
barcode scan the event), and SAVE (posting of data
back to SAP). As in all standard ABAP applications,
these values are populated in the standard system field
sy-ucomm in response to a user interaction. In this

particular module, I used sy-ucomm to drive a CASE
control flow statement.

Let’s take a look at the specific data validations
that take place in response to the OK event. The
cursor position that is available in the global variable
cursor_1000 drives my data validations. This is
important in SAPConsole applications because
companies usually configure barcode scanning to
append an ENTER event to the data that is scanned
into the field with cursor focus.

Note!

All industrial-grade wireless barcode handhelds
support the option to append an ENTER event
to a barcode scan, triggering data validation.
This feature automates your data entry in
SAPConsole. If you are buying new equipment
that doesn’t support this feature, this is a red
flag that the equipment is not industrial grade.

MODULE USER_COMMAND_1000 INPUT.

 GET CURSOR FIELD cursor_1000.

 CASE sy-ucomm.

 WHEN 'BACK'.

 ...

 WHEN 'OK'.

 CASE cursor_1000.

 WHEN 'SCREEN_1000-SRC_BIN'.

 PERFORM CHECK_BIN USING screen_1000-src_bin

 CHANGING screen_1000-src_bin_type.

 PERFORM CHECK_BIN_REMOVAL USING screen_1000-src_bin

 screen_1000-src_bin_type.

 cursor_1000 = 'SCREEN_1000-HU'.

Figure 8	 PAI field-level validation and cursor control

Continues on next page

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 105

It’s important to notice that each field has a
specific set of validations that the program performs
on data entry, as indicated by the second CASE state-
ment used for variable cursor_1000 in Figure 8.
The validations are specific to the field in which the
system captured the data. Also, I set the cursor field
destination to SCREEN_1000-DEST_BIN after
successful validation. This allows me to maintain
control of the data entry process and drive data entry
down a single path to completion.

For example, in the code in Figure 8, whenever
a user enters in the HU number and presses Enter,
the system executes the validations under the CASE
statement for SCREEN_1000-HU. In this situation,
the system then executes the form routines CHECK_
HU_NUMBER, CHECK_HU_REMOVAL, and
GET_HU_DATA. Assuming each of these routines

executes successfully, the system sets the cursor vari-
able cursor_1000 to SCREEN_1000-DEST_BIN,
which returns control to the operator, who then enters
or scans the data for the next field.

Note!

I didn’t use the standard PAI module approach
to control how the operator enters data and to
avoid dealing with error messages and field
locking that don’t render well on mobile
devices. The process I outlined reduces testing
overhead and ensures that the program executes
consistently across Telnet clients and RF
devices.

 WHEN 'SCREEN_1000-HU'.

 PERFORM CHECK_HU_NUMBER CHANGING screen_1000-hu.

 PERFORM CHECK_HU_REMOVAL CHANGING screen_1000-hu.

 PERFORM GET_HU_DATA USING screen_1000-hu

 CHANGING screen_1000-src_bin

 screen_1000-src_bin_type

 screen_1000-hu_type.

 cursor_1000 = 'SCREEN_1000-DEST_BIN'.

 ...

 WHEN 'SCREEN_1000-DEST_BIN'.

 PERFORM CHECK_BIN USING screen_1000-dest_bin

 CHANGING screen_1000-dest_bin_type.

 PERFORM CHECK_BIN_PLACEMENT USING screen_1000-dest_bin

 screen_1000-dest_bin_type.

 cursor_1000 = 'SCREEN_1000-DEST_BIN'.

 ENDCASE.

 WHEN 'SAVE'.

 ...

Figure 8 (continued)

SAP Professional Journal • November/December 2007

106	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

In addition to validating individual fields, you
should also consider validating the entire screen
after the system collects all the data. This typically
happens prior to transitioning to a new screen or
before posting. The code in Figure 9, a continuation
of the code from Figure 8, shows the PAI module
processing block that the system executes when the
operator selects the posting function key.

As you can see, the first form routine called
in the SAVE processing block is titled CHECK_
SCREEN_1000. Figure 10 displays the code for
FORM CHECK_SCREEN_1000. In this particular
example, you don’t need to perform an exhaustive
screen data validation because the subsequent BAPI
posting picks up any process-specific data issues.

I’ve found that field- and screen-level validations
are good mechanisms for defining my SAPConsole
applications. Although in some cases it can lead to
duplicate data checks — for example, above when the
operator scans the destination bin immediately before
posting — I find the stability and clarity it brings to
my code is worth the additional overhead.

Avoid flag variables

There is nothing more frustrating than attempting to
reverse-engineer code written by someone else that is

littered with what appears to be control flow decisions
based on ambiguous flag variables. What’s more, even
with good variable documentation, you’re likely to
forget what each flag variable represents and how it
affects subsequent processing decisions.

Consider the bin-to-bin example discussed in
the “Immediate input validation” section. After
performing the bin blocking check on picking, a
novice programmer might be tempted to set a flag
variable that the system references before posting
data back to the underlying subsystem through a
function module call. Instead, a better approach is to
immediately reject invalid source bins by clearing the
user-entered input and displaying an error message.
As a result, a source bin is valid if it exists in the input
field and you don’t need any flags to know a bin's
validity. By checking the source bin value every time
it changes and clearing out invalid values, you no
longer need to collect state data using flags.

Look at the form routine code from the form include
file in Figure 11. This system calls this code from a
PAI module in response to an HU entry. This form
routine checks if the HU entry exists in the standard
table LEIN. If it does, then the system does not invoke
any error processing and control flow continues back to
the calling PAI module. If it does not, the system clears
the entry, displays an information message, and aborts
all subsequent processing.

 ...

 WHEN 'SAVE'.

 DATA l_tanum LIKE LTAK-TANUM.

 PERFORM CHECK_SCREEN_1000.

 PERFORM POST_HU_MOVEMENT CHANGING l_tanum.

 MESSAGE IO12(ZMDE) WITH l_tanum.

 LEAVE TO TRANSACTION sy-tcode.

 ...

Figure 9	 PAI module snippet executed upon posting request

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 107

FORM CHECK_SCREEN_1000.

* Basic sanity checks, BAPI will cover any conditions

* not checked here.

 PERFORM CHECK_HU_NUMBER USING screen_1000-hu.

 PERFORM CHECK_BIN USING screen_1000-src_bin

 CHANGING screen_1000-src_bin_type.

 PERFORM CHECK_BIN_REMOVAL USING screen_1000-src_bin

 screen_1000-src_bin_type.

 PERFORM CHECK_BIN USING screen_1000-dest_bin

 CHANGING screen_1000-dest_bin_type.

 PERFORM CHECK_BIN_PLACEMENT USING screen_1000-dest_bin

 screen_1000-dest_bin_type.

ENDFORM.

Figure 10	 Form routine that performs screen-specific validation on SCREEN_1000 data

FORM CHECK_HU_NUMBER CHANGING P_HU.

 SELECT SINGLE * FROM LEIN

 WHERE LGNUM = LGNUM

 AND LENUM = P_HU.

 IF sy-subrc NE 0.

 CLEAR P_HU.

 MESSAGE I003(ZMDE).

 LEAVE TO SCREEN sy-dynnr.

 ENDIF.

ENDFORM. " CHECK_HU_NUMBER

Figure 11	 Simple form to validate an HU input value

SAP Professional Journal • November/December 2007

108	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

With this technique, the input field passes
validation if it is populated. If it is empty, the
operator either neglected to enter a value or must
correct the entry. This reduces the need to rely on
flag variables and allows you to minimize the
amount of code needed to get the job done.

Use standard function key
mappings

You’d think that this suggestion would go with-
out saying. After all, sticking to SAP standards
is a fundamental rule for any application. New
SAPConsole developers, however, are often
unfamiliar with the standard set of SAPConsole
applications, which lay down the de facto guide-
lines concerning how you should use function
keys in small-screen transactions. Furthermore,
new SAPConsole developers frequently overlook
the significance of function key mappings. After
all, in a standard SAP application, typically only
power users apply function keys as shortcuts to
mouse navigation.

In a mobile data entry transaction, function
keys are the fundamental glue that allows opera-
tors to navigate screens, enter and clear data, and
scroll through list results. Function key mappings
are important because they allow for easy data
entry and navigation on RF devices. I’ve seen
operators carry out their day-to-day workload
by memorizing function key sequences — even
though they have little understanding of the under-
lying SAP business processes. You should use
the function keys listed in Figure 12 for the tasks
described.

Note!

The target audience for your SAPConsole
applications differs from the usual end user (or
consumer) of your custom ABAP applications.
Many companies use temporary employees for
shop floor activities (particularly if business
demand is seasonal), so using easy-to-remember
function keys becomes especially important.

As a final note, even if you do not use the F1 and
F4 function keys in your application, be sure to over-
ride their default behavior. SAPConsole is notorious
for short-dumping when an operator inadvertently
calls up an F1 help dialog or an F4 search help that
it can’t handle. Override their default behavior either
by handling the ON HELP-REQUEST and ON
VALUE-REQUEST events in the PAI and Process
Before Output (PBO) definition section of each screen
or by defining a custom dummy processing code for
the F1 and F4 function keys in the SAPGUI status.
You don’t need to define any processing when you
override the default behavior — by overriding them,
you prevent the system from calling the default data
dictionary-defined search helps and dialogs.

Note!

If you’re buying new RF hardware for
your warehouse or distribution center, make
sure units come with a row of prominently
displayed, easily accessible function keys.

Figure 12	 Typical function keys and tasks

Function key Button label Description

F2 F2 Clr Clears all input fields on the screen

F3 F3 Back Return to the previous data entry screen or menu

F4 F4 Nxt Initiate processing of current on–screen data

F6 F6 Prt Execute printing

Designing and developing mobile applications for SAPConsole using ABAP: Best practices and lessons learned

No portion of this publication may be reproduced without written consent.	 109

Use standard function module
interfaces exclusively

Anyone can post data to SAP R/3 by running a
CALL TRANSACTION to populate expected data
entry fields and invoke application processing by
sending processing codes to step through screens.
Although this approach appears to work well at
design time, it is prone to numerous unexpected
problems during production execution. Dialogs
are famous for this. Here’s a short list of what
could cause your well-crafted transaction to fail
to post when using a dialog:

The operator enters a material whose master
data is configured differently than the master
data used during design. As a result, the CALL
TRANSACTION fails when this material
causes an unexpected screen to pop up.

The operator changes master data in produc-
tion after you have deployed the transaction.
Now applications that worked fine before are
failing. What’s more, the error messages that
end users receive are unintelligible because the
underlying cause is technical, not functional.

An SAP patch or SAP Note changes the screen
layout or function key mapping, resulting in
unexpected processing.

A better approach is to use standard SAP func-
tion modules. If possible, use BAPIs because their
locked interfaces ensure backwards compatibility
across releases. Even if SAP changes the under-
lying processing logic, the locked interface
guarantees you still receive concise functional
information regarding why the posting failed.

The downsides to this approach are that not
all function modules are well documented, the
available documentation can sometimes be
limited or cryptic, and most standard interfaces
have enough optional input fields to make your
head spin. A former colleague once quantified the
extreme number of input fields with what he called
the 80-20 rule. Using just 20% of the input fields,
you can achieve 80% of all processing scenarios.

•

•

•

From another perspective, 80% of the input fields
are needed only for a small set of specialized
posting scenarios or are unnecessary — they exist
only for interfaces’ backwards compatibility.

Note!

Always check the BAPI documentation
to ensure it is released for use and verify
that it requires an external COMMIT
WORK after execution. Most BAPIs
need an external COMMIT WORK. If
you don’t execute one, the system does
not post the data back to the relevant
database tables.

The challenge with standard interfaces is
knowing which fields to populate, with what
data, and under which circumstances. A logistics
expert can usually get to the heart of the interface
quickly, mostly due to the countless hours spent
on past projects tinkering with input values and
reverse-engineering business logic. Unfortunately,
no quick fix is possible here. However, the
following two transaction codes can help ease
your pain:

BAPI lists all released BAPIs by function
module and business object, which lets you
quickly isolate potential interfaces.

SE37 provides the “Test Tool” feature, which
allows you to execute test processing with
different sets of test data after you select the
candidate interface.

If you manage to track down the correct inter-
face parameters, you can rest assured that your
code remains stable. Even if posting fails, you’ll
always receive a failure message that pertains to
the root functional cause and is not the result of a
random technical error.

•

•

SAP Professional Journal • November/December 2007

110	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Conclusion
Armed with this knowledge and a “can do” attitude,
you too can master the subtle but substantial design
challenges inherent to SAPConsole development. In
this article, I’ve covered topics from general develop-
ment philosophy, to high-level design constraints, to
the practical application coding constructs in real-
world logistics solutions. In summary, here are some
of the key design and development concepts described
in this article:

Keep your SAPConsole transactions to three
screens or less.

Direct users down a well-defined path to
completion — field by field.

Perform data validation as soon as data is scanned
or entered.

•

•

•

Minimize or avoid searching.

Post data by individual document item as opposed
to collecting item data and attempting to send all
data back to SAP together in a single posting.

Minimize the use of flag variables and top include
sharing.

Validate data at both the field and screen level.

Mimic the standard SAPConsole function key
mappings where possible.

Favor standard function module interfaces for data
posting.

This will help you design SAPConsole applications
that are as simple to use as they are to maintain. If you
stick to the guidelines, you’ll be well on your way to
becoming an SAPConsole guru.

•

•

•

•

•

•

