
No portion of this publication may be reproduced without written consent.	 �

A guided tour of the
SAP NetWeaver Application
Server upgrade tools
by Bert Vanstechelman, Mark Mergaerts, and Dirk Matthys

Dirk Matthys
Senior ABAP Developer,
Bekaert Group

Mark Mergaerts
Principal Technology
Consultant, SAP Belgium

Bert Vanstechelman
Senior SAP Basis Consultant,
Logos Consulting

(full bios appear on page 38)

This article is an excerpt from SAP NetWeaver Application Server
Upgrade Guide, by Bert Vanstechelman, Mark Mergaerts, and Dirk
Matthys, available from SAP PRESS. See the sidebar on page 38 for
additional details and ordering information.

When dealing with a complex process such as an SAP upgrade —
especially when things go awry — knowledge is power. That knowledge
begins with becoming familiar with the upgrade programs and user
interfaces. Being comfortable with these will greatly improve your effec-
tiveness; you will do the right thing at the right moment, and you will be
able to correctly identify and solve problems if and when they arise.

Compared with earlier versions, the current generation of SAP upgrade
tools is either brand-new or at least comes equipped with a new look and
feel. However, the tools are built upon operational concepts and methods
of user interaction that have been around since early versions of SAP R/3
and have had plenty of time to stabilize and mature. The tools have been
thoroughly tested and tweaked, and when the going gets tough, they will
serve you reliably. They won’t tie themselves into knots, spew gibberish
at you (or go incommunicado), or vanish into thin air altogether.

This article introduces you to the SAP upgrade tools. You will learn
how they work, where to find them, how to install them and get them
going, and how to use their management and monitoring features so that
you stay in control of the upgrade and know at all times what is happening.

The information presented here lays a common foundation for every
upgrade. By “common,” we mean those functions, mostly in the area of
monitoring and managing the upgrade, that you can use in any upgrade
scenario regardless of the component and release you are upgrading.
Viewing the upgrade logs, changing the passwords of upgrade users,

SAP Professional Journal • November/December 2007

�	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

or asking the upgrade process to trigger an alert when
it stops are useful functions in every upgrade.

Note!

This article applies to all SAP release upgrades
to SAP NetWeaver 2004s or Application Server
7.00 ABAP and Java.

Introducing the tools
Since Basis release 6.20, SAP delivers and supports
both the SAP NetWeaver Application Server ABAP
and the SAP NetWeaver Application Server Java.

Whichever component you upgrade, if it is based
on the SAP NetWeaver 2004s platform, you will
always use the same upgrade programs:

SAPup for the upgrade of ABAP

SAPJup for the upgrade of Java

SAPup is the successor to the R3up program,
which was used in all previous versions of SAP.
SAPJup is new because SAP NetWeaver 2004s with
AS 7.00 is the first release that provides an upgrade
procedure for the AS Java.

To control the upgrade process and to interface
with the user running the upgrade, the ABAP and Java
components also provide applications of their own:

The Upgrade Assistant Server and Upgrade
Assistant GUI for the ABAP upgrade

The SDT Server and SDT GUI for the Java
upgrade (SDT stands for Software Delivery Tools)

If the system to be upgraded only runs one stack,
then you only use the upgrade tools for that stack. For
a pure ABAP system, you use the ABAP tools SAPup
and the Upgrade Assistant. For a pure Java system,
you use the Java tools SAPJup and the SDT Server

•

•

•

•

and GUI. With double-stack systems (ABAP + Java),
you use the two combined.

Synchronized upgrades

If the system runs both an ABAP and a Java stack,
then you will need both sets of upgrade tools. The
tools are designed in such a way that each knows
of the other’s existence; more than that, at several
points during the upgrade, they will synchronize their
activity, allowing the other upgrade to catch up or
waiting until the other side has completed a critical
task. For example, just before the ABAP upgrade
hits the point where it shuts down the SAP central
instance, marking the beginning of downtime, it will
verify how far the concurrently running Java upgrade
has progressed. If SAPJup has not yet reached its
beginning of downtime, then ABAP will wait. The
inverse is also true.

By running in a synchronized manner, the ABAP
and Java upgrades can be executed simultaneously
without the risk of conflicts (e.g., one side stopping
the SAP system at a time when the other side is
working in it). There is one precondition, however:
you must always start the ABAP upgrade (SAPup)
first. The ABAP side determines that the SAP system
is double-stack and takes the necessary measures to
make sure that the ABAP and Java upgrades will be
able to run together.

The requirement to start the ABAP upgrade first
has little or no effect on the overall time needed to
upgrade the system. Unless it runs into some serious
trouble, the runtime of the Java upgrade is much
shorter than that of the ABAP upgrade. This is true
both for the uptime part of the upgrade (especially if
you artificially slow down the ABAP import phases)
and for the downtime part (where the Java side mostly
does software deployment, whereas the ABAP side
also has to deal with things like table conversions and
data conversion programs).

Upgrade program and control program

The general architecture of the ABAP and Java
upgrade tools is very similar. Both are made up of the

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 �

actual upgrade program (SAPup, SAPJup) and a
control program (Upgrade Assistant, SDT). The
upgrade program drives the actual upgrade activities,
such as data imports, structure conversions of objects
in the database, Java deployment and ABAP trans-
ports, and so on. The control program does not do
any technical upgrade work. Its main responsibility
is to handle communication with the users (who are
connected via their GUI) and to control and monitor
the upgrade processes. Via the control program, you
will instruct the upgrade program to start (and some-
times to stop). If errors occur, you will be notified of
these through the control program; after investigating
and fixing the error, you will, once more via the
control program, order the upgrade process to retry
the failed step.

The upgrade programs: SAPup and
SAPJup

SAPup (for ABAP) and SAPJup (for Java) are respon-
sible for running the entire upgrade process from start
to — hopefully successful — finish. However, they
do not do any of the dirty work themselves; this they
leave to the appropriate utility, such as tp (to import
transport requests into the AS ABAP) or JSPM (Java
Support Package Manager, to deploy software on the
AS Java). The main task of the upgrade programs is
to start these worker utilities when needed, to monitor
them and examine their result, to interrupt or slow
down the upgrade when needed, to obtain input and
instructions (not directly but via the control program)
from the user who administers the upgrade, and to
report the progress of the upgrade and alert the user in
case of problems (again through the control program).

An upgrade is really a serial process made up of
a long series of activity steps or phases. The total
number of phases depends on the SAP release and the
nature of the upgraded component, but in an ABAP
upgrade, there are well over 200 phases and in a Java
upgrade over 150. Each phase in the upgrade deals
with one specific task. What the phase has to do can
range from the simple and almost trivial, such as
checking or modifying a flag in a database table, to
the very complex and elaborate, such as activating
the new dictionary or deploying the new versions of

business applications. With such vast differences
in the amount of work a phase must do, it is easy to
understand that the runtime of the upgrade phases
will also vary widely. Many phases will take just frac-
tions of a second (which does not make them any less
important!), but others may run for several hours. One
group of phases, the ABAP database import, can even
be slowed down artificially to minimize its impact on
the server load (more on this later).

The fact that the upgrade process is serial in nature
does not mean that it is also single-threaded. Some
heavy-duty phases, such as dictionary activation, table
conversion, or the huge data imports and data conver-
sion runs during downtime, use parallel processing to
benefit as much as possible from the capacity of the
server and thus reduce the upgrade time.

PREPARE versus upgrade

Both the ABAP and Java upgrade processes are
divided into two major parts: one is called PREPARE,
and the other is the actual upgrade. Both the
PREPARE and the upgrade are subdivided into
phases, as explained previously.

PREPARE

As you can guess from the name, PREPARE deals
with all the preparatory activities in the system to
be upgraded. The first thing PREPARE will do is
prompt you for the parameters of the upgrade, such
as the location of the upgrade media, host names,
passwords, and so on. These parameters will be used
throughout the upgrade, and you will not have to enter
them again (not that anything you enter is irreversible;
you have the opportunity to change parameters later
on if necessary).

After asking for the upgrade parameters,
PREPARE copies data and programs into the upgrade
directory, imports the upgrade tools into the database,
and installs the shadow instance (for ABAP). Add-
ons, support packages, and languages are integrated
into the upgrade. After the initial configuration of the
upgrade, PREPARE verifies that the source system
meets the requirements of the upgrade process and of

SAP Professional Journal • November/December 2007

�	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

the target release. This produces an action list, which
must be taken care of before the actual upgrade can
start. If the first pass of PREPARE detects errors (i.e.,
preconditions for the upgrade that are not met), then
you must repeat the corresponding parts of PREPARE
until no more problems are reported.

PREPARE is executed with the system up and
running. End users are not affected. You normally
run PREPARE several days before the actual upgrade.
Runtimes vary, but for a “typical” ABAP PREPARE,
you should expect a runtime between four and eight
hours, mostly depending on factors such as the
number of support packages to bind into the upgrade,
the number of languages, and quite a few more.

Java PREPARE also runs during uptime. Like
ABAP PREPARE, its first action is to prompt for the
upgrade parameters. Its other tasks are also similar to
those of ABAP PREPARE, but it normally has less
work to do and therefore has a shorter runtime (typi-
cally between 1.5 and 3 hours, but again this is just
an estimate based on our own upgrade experience).

Upgrade (ABAP)

When PREPARE has done its work and is satisfied
with the condition of the system, you can start the
actual upgrade. Way back yonder, this was the
moment when you asked users of the SAP system to
kindly log off and find some other occupation for the
next few days. Today, that will happen only if you
unwisely decided to run the upgrade in resource-
minimized mode.

If you opted for the downtime-minimized method
— as you ought to do — then the first (and longer)
part of the upgrade happens while the SAP system is
still in normal use. During this time, the upgrade
performs all the necessary actions to build the shadow
repository containing not only the new release but
also a copy of all your own development. Early on in
the process, the upgrade imports the data from the
Upgrade Export media into the database. Because of
the performance impact this data import may have
and because of the number of database logs it will
generate, you have the option of artificially slowing
down the import. In this way, the upgrade takes as

few resources as possible away from the production
system. A slowed-down import also enables the
backup procedures to keep up with the volume
of database logs.

Not very long after the database import finishes,
the upgrade starts up the shadow instance. After some
preparatory work to make this instance fully usable,
the upgrade will stop and ask you to carry out the
dictionary modification adjustment using Transaction
SPDD. When this is finished, the activation of the
new dictionary begins (still in the shadow instance
and shadow repository). After the activation and
some other phases, the upgrade shuts down the
shadow instance, which will not be needed again.
Next, the main upgrade transports and the support
packages that were bound into the upgrade are
imported into the shadow repository. All the while,
the main system remains productive.

Finally, with the shadow repository fully built
up, the upgrade will inform you that all its uptime
processing is done, and that it now waits for your
permission to shut down the system and enter down-
time. With correct planning and without accidents,
this should happen some time before the start of
the planned downtime window. For instance, the
upgrade might reach the downtime point on Thursday
afternoon while planned downtime begins at 7 p.m.
Friday evening. In that case, you simply leave the
upgrade waiting.

After the downtime window begins, you inform
the upgrade via the upgrade GUI that it may stop the
SAP system. Between then and a time quite close to
the end of the upgrade, the upgrade process takes
full control of the system, stopping and starting it
as and when required. During this downtime phase,
the system is placed in “upgrade lock” mode, which
means that you can only log on as SAP* or DDIC.
Except for problem solving, there is normally no
need to log on to the system (and you are bound to
be kicked out without warning anyway when the
upgrade reaches a phase in which it has to stop the
SAP system).

Near the end of its run, the upgrade process
unlocks the system, which by now is fully on the new
version, and restarts it for the last time. The upgrade

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 �

has only a few more phases to run (although some
of these, e.g., the variant restore, can still be quite
lengthy), but during this time, you can already log
on to the system and start on the postprocessing tasks.
After some final interaction, the upgrade kindly
informs you that the upgrade is complete (somewhat
optimistically because there is still a load of post-
upgrade work waiting), produces a timing document
and an evaluation form, and then stops.

Upgrade (Java)
The Java upgrade process (SAPJup) is on the whole a
simpler affair than its ABAP counterpart and is likely
to take less time. By far the most important task for
the Java upgrade is the deployment of the new release
on the AS Java.

After you start SAPJup, the process will soon stop
to announce the beginning of downtime. Once you
confirm this, SAPJup takes control of the AS Java,
stopping and restarting it whenever necessary.

When it reaches the end of downtime, the upgrade
will again stop, prompt you to back up the database
and Java upgrade directory, and restart the AS Java.
After producing an evaluation form, the upgrade
process ends.

The Java upgrade does not use a shadow instance.

Synchronized Upgrade (ABAP and Java)
With a double-stack system, you run two PREPAREs
and also two upgrade programs. The ABAP upgrade
must always be started first, before the Java upgrade.
Each side is aware of the other’s existence. During
much of the time, the two upgrades work indepen-
dently, each on its own stack, but at some critical
points, it is necessary that they synchronize with each
other. For example, the ABAP upgrade will not enter
downtime unless the Java upgrade is ready to do so
as well (and vice versa). The one who reaches the
downtime point first will wait for the other to catch
up. Another example is that in a double-stack upgrade,
the ABAP side is responsible for installing the new
kernel. If the Java upgrade reaches the point where
it needs the new kernel and sees that the ABAP side

still has to carry out the kernel switch, it will wait
for ABAP.

The control programs: Upgrade
Assistant and SDT Server/GUI

Both control programs are designed as two-tier
client-server applications, with a server program
running on the upgrade (SAP central instance) host,
and a GUI running on the user’s workstation.

Despite this similarity in design, the ABAP and
Java upgrade control programs are not completely
identical. Their look-and-feel is not quite the same,
nor are they used in exactly the same manner. In
part, this goes back to their origins. The ancestor of
the current ABAP upgrade tools was a program
called R3up, which back in the old days was used
for upgrades to SAP R/3 releases 2.x and 3.x. The
old R3up was both upgrade and control program.
It had no GUI client; you simply started it from the
OS command line and interacted with it via this
same OS session window. In a less than perfect
world, this had obvious drawbacks: Even the briefest
network failure between server and PC could kill the
active upgrade process, not to mention a hanging PC,
a Windows error, or user mistakes such as a badly
aimed mouse click or Ctrl+C.

With the advent of release 4.0, SAP redesigned
the upgrade program, separating the server activity
(upgrading) from the user interaction (monitoring,
parameter input, starting and stopping). The former
was still handled by R3up�, which had now become
a strictly server-based program running in the back-
ground and thus invulnerable to whatever went
wrong at the frontend. The interaction and communi-
cation part was moved to a new Upgrade Assistant
(UA), which itself consisted of a server process
running on the upgrade host — and like R3up
shielded against frontend trouble — and a GUI,
which could be used to connect to and disconnect
from the upgrade at will.

�	 The program continued to be called R3up until SAP NetWeaver 2004
(Basis release 6.40). With SAP NetWeaver 2004s/Basis 7.00, the
name changed to SAPup.

SAP Professional Journal • November/December 2007

�	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Note!

Even today, it is possible to run SAPup (the
successor to R3up) in the so-called “scroll
mode,” where you run it in an OS session
window like a DOS shell for Windows or a
Telnet session for UNIX and interact with it
directly. This can help if for some reason using
the UA GUI is impossible, but it should only
be used as a last resort.

SDT for Java is a very close relative of the
installation utility SAPINST (the picture of the cable-
stayed bridge on the progress screen will be familiar
to you if you have ever done SAP installations for
Basis 6.40 or higher). Like UA, SDT consists of a
server and a GUI client. However, as you’ll see next,
its features are more limited and it does not provide
the same flexibility as UA for ABAP.

The ABAP Upgrade Assistant (UA)

Chances are that you will be doing far more ABAP
upgrades than Java upgrades. Therefore, let’s look
at the Upgrade Assistant (UA) for ABAP first.

UA is the “driver” program of the entire upgrade
process. UA itself does not do any technical upgrade
work. Its main responsibility is to handle commu
nication with the users (who are connected via their
UA GUI) and to control and monitor the upgrade
processes.

UA is designed as a two-tier client-server applica-
tion with an Upgrade Assistant Server (UA Server)
running on the upgrade host and one or more UA GUI
sessions on users’ workstations.

An important characteristic of the ABAP UA
(which it does not share with its Java counterpart)
is its capability to have multiple users logged on via
GUI to the running upgrade, and the distinction that
it makes between two user roles: the “administrator”
and the “observer.” We’ll discuss these upgrade

roles first before taking a closer look at the
UA Server and GUI.

Users: administrator and observer

When you use the UA GUI for the ABAP
PREPARE and upgrade, you must log on to the
GUI as a valid user; this is one of the main differ-
ences between the ABAP UA and the Java SDT.
UA knows two users: the Upgrade administrator
(user ID: admin) and the Upgrade observer (user
ID: observer).

The administrator has active control over the
upgrade process. This user has the ability to
start and stop upgrade processes and to interact
with the upgrade via input screens in the GUI.

An observer has only a passive role. Observers
can monitor the progress of the upgrade via the
GUI, but they cannot actively influence it.
Their GUI screens are not enabled for input.

At any time during the upgrade, at most one
administrator session can be logged on, but there
can be any number of observers. While they are
connected to UA, GUI users can dynamically
change roles: administrators can demote themselves
to observers, and an observer can promote himself
to administrator (thereby automatically demoting
the current administrator if one is logged on).

Administrators and observers are roles defined
by the UA GUI. It is not necessary for a UA GUI
to be active at any time; the upgrade can run nicely
even without any user session connected. For
instance, if a lengthy upgrade phase starts late in
the evening and is likely to run through the best
part of the night, the administrator and the present
observers may decide to log off from their UA GUI
and go home. At that moment, there is neither an
administrator nor an observer, but that does not
bother the running upgrade in any way. If the
upgrade stops, for example, because of an error,
then it will simply wait until an administrator
comes online and communicates with the upgrade
via the error screen in the UA GUI. If the alert
service is enabled (discussed later when we look

•

•

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 �

at the UA GUI features), then UA will also invoke the
alert script so that someone is notified of the stop.

Both user roles are protected by a password. You
set the administrator password the first time you start
the UA Server (discussed next). You do not create
named users for UA; to log on with a certain role,
you simply enter the password of that role. The logon
screen of the UA GUI does give you the option to
enter a name, but this is optional and purely informa-
tive; you may choose to enter your real name there
or anything that helps others to identify you. You
can also enter a contact telephone number on the
logon screen.

The UA Server

The server side of UA is the Upgrade Assistant Server
(UA Server). This process runs on the same host as
the actual upgrade, that is, the host where the central
instance of the SAP system resides. You do not
interact directly with the UA Server except once:
when you start the server for the first time, it will
prompt you for the password of the administrator.
After that, the server will never interact directly with
you again, so you may then let it run as a background
process (on OSs supporting this). You’ll see the
commands to run the UA Server later in the article.
All further communication between the administrator
and the UA Server goes via the UA GUI.

The PREPARE and the ABAP upgrade program
(SAPup) run under the control of the UA Server. The
server will start these processes when instructed to
do so from the administrator’s UA GUI session. From
then on, it monitors the processes, forwarding their
console output to all open UA GUI windows. When
an upgrade stops for interaction, either because
it needs parameter input or because an error has
occurred, the server will handle the user interaction
via the administrator’s UA GUI session (if an admin-
istrator is currently logged on), and pass on this input
to the upgrade process.

The server is started from the OS command line.
It is stopped from inside the UA GUI, or you can
also terminate it at the OS level when it is no longer
needed. All this will be covered in detail next.

The UA GUI
The client is the UA GUI. Client and server communi-
cate with each other via a TCP/IP port (port 4241).
On a second port (4239), the UA Server is capable of
receiving HTTP requests, allowing it to interact with a
browser running on a user’s PC. Access via a browser
can be used to launch the UA GUI or to request infor-
mation related to the upgrade, such as the phase list
or the evaluation form. We’ll take a closer look at the
browser interface later when we examine how to start
the UA GUI.

Although the UA GUI runs on the user’s PC, it is
not necessary to perform a separate installation of the
upgrade tools on the PC. The UA GUI (like the UA
Server) is a Java application that is uploaded to the
server during the initial run of the PREPARE script
(described later in the article). Both the UA Server and
UA GUI are Java applications residing in Java Archive
(JAR) files. When the user starts the UA GUI from the
browser, the Java code for the UA GUI is loaded onto
the PC under the control of Java Web Start.

Java Web Start is a Java application used to deploy
and run client-side Java applications. The traditional
method for client-side code is the use of applets, but
applets face two major limitations that make them
very difficult to use in many environments:

Applets work under serious security restrictions;
for example, they normally cannot access local
files or external network addresses.

Applets depend on the Java VM (virtual machine)
built into the browser, which may cause version
problems and incompatibilities.

Java Web Start overcomes these restrictions by
deploying and starting applications on the client. At
the same time it is also capable of uploading and
installing the correct version of the Java Runtime
Environment (JRE).

Figure 1 on the next page shows a simple diagram
of the UA architecture. Here an administrator and
several observers are logged on to the UA GUI; there
are also active browser sessions communicating with
the server via its HTTP interface.

•

•

SAP Professional Journal • November/December 2007

10	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

SDT for Java

Like UA for ABAP, the upgrade tool for Java has a
client-server design, consisting of the SDT Server
and SDT GUI. SDT is the underlying framework that
the Java upgrade tool has in common with the SAP
installation utility SAPINST. Being built on the same
platform, SAPINST and the Java upgrade GUI have
much the same look and feel as we mentioned earlier.

The Java upgrade behaves in a way that is very
similar to its ABAP counterpart. The server runs on
the upgrade host and does not interact directly with
the user. It controls the two major phases of the
upgrade, the Java PREPARE and the Java upgrade
(SAPJup). The server also handles all communication
between the user and the upgrade process. Messages
from the upgrade process, including requests for user
input and error reports, are sent on to the SDT GUI.
User commands and user input are transmitted from
the GUI via the server to the upgrade process.

The SDT GUI is started in the same way as the
UA GUI, namely from a browser. In the browser,

you connect to the SDT Server via port 6239. The
application is loaded from the server and started via
the Java Web Start framework (see the UA GUI
discussion in the previous section). The SDT GUI
communicates with the server via port 6241.

Figure 2 shows the architecture of the Java upgrade.

The similarity with the ABAP upgrade is clear,
but you may be struck by a major difference too. In
Figure 1, several users were connected to the ABAP
upgrade via their UA GUI; only one of them, the
administrator, could be in control, but there could be
any number of observers simultaneously logged on.
In Figure 2 for Java, you only see one SDT GUI
connected. This is because the Java upgrade has no
notion of different users. It does not make a distinc-
tion between active administrators and passive
observers, and only allows one user to be logged
on to the SDT GUI at any one time. Any attempt to
open a second SDT GUI on a running Java upgrade
will simply produce a rather terse error message
(see Figure 3) and leave you no other choice but
to close this GUI.

Figure 1	 Upgrade Assistant (UA)

UA Server

Browser

Port 4241 Port 4239

Upgrade (SAPup)

UA
GUI

Observer

UA
GUI

Observer

UA
GUI

Observer

UA
GUI

Administrator

Upgrade tools (tp, R3load, etc.)

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 11

SDT Server

SDT
GUI

Port 6241

Upgrade (SAPJup)

Upgrade tools (SDM, etc.)

Browser

Port 6239

Figure 3	 Error when starting a second SDT GUI

Figure 2	 Java upgrade

SAP Professional Journal • November/December 2007

12	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Prerequisites for the upgrade tools

The upgrade tools for both ABAP and Java need
a Java installation on the server and on the work-
station where you run the GUI.

Java SDK or JRE for ABAP Upgrade Assistant
The ABAP UA is a Java application, which means
that a JVM must be installed on the upgrade host
(where the UA Server runs) and also on every
workstation where you intend to run the UA GUI.

The Java requirement is strictest on the server
side. The UA Server requires the Java Software
Development Kit (SDK) version 1.4 or higher.
An installation of the JRE is not sufficient.

The UA GUI is less demanding. Here the Java
version must be 1.1 or higher, and both the Java
SDK and JRE will do.

Important!

If the SAP system to be upgraded contains
a Java stack, then the host must also meet
the requirements for AS Java. These will
normally be stricter than those for the UA
Server. With AS 7.0, the Java SDK version
must be 1.4, not lower (1.3), nor higher (1.5).
More precise restrictions, for example, a
specific minimum version of the 1.4 Java
SDK, may apply. Full details are in SAP
Note 723909 and in a set of platform-
dependent notes, which are all listed in
SAP Note 723909. In practice, you should
always use the latest available Java SDK
within the range of supported versions
(which is actually what SAP Note 723909
tells you to do).

To check the currently installed Java version,
both on the server and on the GUI workstations,

open a command shell, log in as the SAP adminis-
trator (user <sid>adm), and type the command:

java –version

Figure 4 shows an example on a Windows PC.

This workstation runs a Java 1.5 version. For UA
(Server or GUI), this is all right. For AS 7.0 Java, this
would not be all right (only 1.4 is supported).

Java SDK or JRE for SDT
SDT is also a Java application. Because SDT is
used to upgrade AS Java systems, a Java SDK must
obviously be installed on the server. As explained
previously, version 1.4 SDK is required. At the time
of writing, 1.5 SDK was not supported. 1.4 SDK also
meets the requirements for the Java upgrade tools on
the server side.

On the client side, the workstation must meet the
requirements of the SAPINST tool, that is, a Java
JRE must be present. We recommend that you use
1.4 JRE or SDK on the workstation like on the server,
although 1.5 should also be okay.

Installation of the upgrade
tools: ABAP
Making the upgrade tools ready for use is easy: All
you need to do is run a script and, in the case of
ABAP, replace the extracted version of the SAPup
utility with the latest patch.

Initial run of PREPARE

The script for the initial extraction is located on the
ABAP Upgrade Master DVD. This script is called
PREPARE, which is a little confusing because the
first major phase of the upgrade is also called
PREPARE. Keep in mind that the two are not related.

The following section describes how to use the
PREPARE script on UNIX/Linux and on Windows.

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 13

For IBM iSeries, the procedure is different; refer to the
section, “Starting PREPARE for the First Time,” in
the SAP Upgrade Guide for IBM iSeries for the exact
commands. This guide is available in the Installation
and Upgrade Guides Portal in the SAP Service
Marketplace (http://service.sap.com/instguides).

Initial PREPARE run: UNIX and
Linux

In this example, we assume that you have placed
disk copies of the upgrade media in a server
directory /sapcd. You have placed the ABAP
Upgrade Master DVD in a subdirectory named
/sapcd/UPGMSTR_ABAP.

To run PREPARE initially, proceed as follows:

1.	 Log on as user <sid>adm.

2.	 Switch to the upgrade directory:

cd /usr/sap/put

3.	 Type the command:

/sapcd/UPGMSTR_ABAP/PREPARE

	 If the name of the ABAP upgrade directory is not
/usr/sap/put, then you must specify the path via a
command-line argument, for example:

/sapcd/UPGMSTR_ABAP/PREPARE

 upgdir=/usr/sap/putPRD

	 Keep in mind that to use an upgrade directory with

a name different from the default, you must also
adapt the SAP profile parameter DIR_PUT.

4.	 The PREPARE script creates the required sub‑
directories in the upgrade directory, installs the
initial set of upgrade tools (including the SAPup
executable), and performs some basic tests, for
example, checking the availability of the C++
runtime library.

5.	 Finally, PREPARE prompts you for an action:

Select operation mode:

 - “EXIT”

 - “SERVER”

 - “SCROLL”

Enter one of these options [EXIT] :=

Possible choices at this point are:

EXIT — End the script. This is the default
choice and also the one we recommend you
use.

SERVER — This starts the UA Server. It
is preferable to start the UA Server manually
later.

SCROLL — Starts SAPup in scroll mode
(see the earlier section, “The control programs:
Upgrade Assistant and SDT Server/GUI,” for
details on SAPup). Except in very special
circumstances, you will never use this option.

Initial PREPARE run: Windows

The command file PREPARE.BAT does nothing other
than invoke the JavaScript file PREPARE.JS. For this

-

-

-

Figure 4	 Checking the Java version

SAP Professional Journal • November/December 2007

14	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Figure 5	 Select PREPARE.BAT in Windows Upgrade Master

method to work, Windows Script Host (WSH)
must be available. WSH is a facility that provides
powerful scripting capabilities. WSH is installed
by default, so normally it will always be available.
However, it is possible for system administrators
to disable or uninstall WSH for security reasons
(scripts have been abused as virus carriers). The WSH
version on the SAP server might also be too low. The
SAP upgrade requires at least WSH version 5.6.

You don’t need to check anything related to WSH
before starting the PREPARE script. If WSH is
missing or its version is too low, then PREPARE will
report this. If you do want to check the WSH version
upfront, then do the following:

1.	 Open a DOS shell (CMD).

2.	 Type the command:

Cscript

3.	 The output shows the version banner followed by
the command-line options.

4.	 If necessary, you can download WSH free of
charge from the Microsoft Download Center at
http://www.microsoft.com/downloads.

5.	 To run the PREPARE script, you must log on as
the <sid>adm user.

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 15

6.	 To start the script, open Explorer, and browse to
the directory of the Upgrade Master DVD
(see Figure 5).

7.	 Start PREPARE.BAT.

8.	 A file selection box opens (see Figure 6). Browse
to the ABAP upgrade directory.

9.	 Click on OK. After a few seconds, a DOS
box opens prompting you for an action
(see Figure 7).

The available choices are the same as with UNIX:
EXIT (the default), SERVER, and SCROLL. See the
previous section for a description of the choices.

Replace SAPup

The script has installed the SAPup executable
(SAPUP.EXE in the case of Windows) in the subdi-
rectory bin of your upgrade directory. Before starting
the upgrade, you must now replace this version of
SAPup with the latest patch available from the SAP
Service Marketplace at http://service.sap.com/
PATCHES.Figure 6	 Select upgrade directory

Figure 7	 Action prompt after initial extraction

SAP Professional Journal • November/December 2007

16	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Note!

Before starting an ABAP upgrade, you should
replace the version of the SAPup executable
delivered on the ABAP Upgrade Master DVD
with the latest available patch. For information
regarding the appropriate SAPup version to
download, see SAP Note 821032.

Use the following instructions to install the
SAPup patch after you have run the initial PREPARE
extraction script:

1.	 Open a command shell on the server and log on
as <sid>adm.

2.	 Determine the current version of SAPup.

	 UNIX/Linux:

./SAPup –V

Windows:

.\SAPup –V

This will also show the flavor. Example:

This is SAPup version 7.00/2,

 build 24.067

3.	 Optionally, save a copy of the current SAPup.

UNIX/Linux:

cd /usr/sap/put/bin

mv SAPup SAPup.orig

Windows:

cd \usr\sap\put\bin

rename sapup.exe sapup_orig.exe

4.	 Extract the patch archive. The actual name

changes with the patch level. <...> denotes the
variable part of the name:

SAPCAR –xvf SAPup7002_<...>.SAR

5.	 Repeat the version check. The version will be
higher, but the flavor must be the same.

UNIX/Linux:

./SAPup –V

Windows:

.\SAPup –V

Caution!

Exchange the version of SAPup only before
you start the upgrade. Never change SAPup
during the upgrade unless SAP instructs you
to do so!

Using the ABAP Upgrade
Assistant
In this section you will learn how to start the ABAP
UA and how to use the functions of the UA GUI.

Starting the UA Server

If possible, you should let the UA Server run as a
background process to prevent unwanted terminations,
for example, because you accidentally close the
window it is running in, or because the network
connection server and PC is interrupted. Windows
does not give you this possibility, so you will have
to run the UA Server in a DOS shell that normally
remains open throughout the upgrade. On UNIX/
Linux, you can start the UA Server as a background

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 17

process; there you can also use the nohup� facility to
make sure the server process keeps running even after
the session from where it was started logs off.

The very first time you run the UA Server, it will
prompt you for the administrator password. User
interaction is only possible with a process running
in the foreground, so the first start of the server
should always be in the foreground, even on UNIX
and Linux.

For the first run, follow these steps:

1.	 Open a command shell on the upgrade host (DOS
box, Telnet session), and log in as <sid>adm.

2.	 Type the command:

java -cp /usr/sap/put/ua/ua.jar UaServer

	 For Windows, use the same command with the
slashes reversed.

	 The name of the Java class (UaServer) is case-
sensitive, also on Windows.

3.	 The server prompts for the password of the admin-
istrator user. Enter and confirm the password:

Please enter administrator password

Enter password:*********

Confirm password:*********

4.	 On Windows, you can leave this server process
running. The following steps are for UNIX/Linux
only.

5.	 On UNIX/Linux, wait until you see the message:

UaServer> Ready

6.	 At that point, terminate the running server with
Ctrl+C.

�	 nohup (no-hangup) is a feature of UNIX that allows you to start a back-
ground process inside a command session and keeps this process alive
when your session ends (normal background processes terminate along
with the shell from where they were started). For example, to run a
command “comm” in this way, type “nohup comm &” (the ampersand
specifies that comm must run in the background, and the nohup prefix
ensures the command does not get terminated when the session ends).

7.	 Restart the UA Server as a background and
no-hangup process:

nohup java -

cp /usr/sap/put/ua/ua.jar UaServer &

Starting the UA GUI

To start the UA GUI, you first connect to the UA
Server using an Internet browser. The Java Web
Start framework will then launch the GUI on your
workstation.

Connect to the UA Server via a browser
1.	 To connect to the UA Server, open a browser

on your PC.

2.	 Type the URL http://<server>:4239 where
<server> is the host name (or possibly the full
domain name, depending on how networking is
set up) of the host where the UA Server is
running. Example:

http://sapdev.mycomp.com:4239

	 If you decide to start the browser on the upgrade
host itself rather than on a local PC, you may also
use the URL http://localhost:4239.

3.	 The main page of the ABAP UA now opens
(see Figure 8 on the next page).

4.	 If you do not see this window, check the
following:

Is the host name you specified correct and can
it be resolved to an IP address from your PC?
Use ping to check this.

Is the UA Server running and ready to receive
browser requests? Open the command window
where you started the UA Server and make
sure the server has displayed the messages:

UaServer> Starting HTTP server

UaServer> HTTP server started

UaServer> Ready

-

-

SAP Professional Journal • November/December 2007

18	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

If you started the server as a nohup background
process (UNIX and Linux), then you might not
see these messages in the command window.
In that case, look at the standard output file
(typically nohup.out in the directory from
where you started the server).

If the server encounters an error, it writes a Java
stack trace and terminates. This trace can be quite
long, but the first few messages will usually reveal
what the problem was.

In some cases, the port 4239, which is used for
communication between the browser and the UA
Server, may be unusable, for instance, because it is
blocked by a firewall or because it is already in use by
another application (which could even be another SAP
upgrade running on the same host). In that case, ask
the network administrator either to open the ports for
UA (if blocking by the firewall is the problem) or to
determine alternative port numbers you can use. See
the upcoming section “SAPup command options” for
information about the port numbers used by UA.

- Start the UA GUI

1.	 On the main upgrade page, click on Start Upgrade
Assistant.

2.	 The Java Web Start window pops up, and the
loading of the application begins (see Figure 9).

	 Sometimes Java Web Start encounters an error
while it loads the UA GUI to the workstation;
see the next section.

Figure 8	 ABAP UA main page

Figure 9	 Java Web Start loading the UA GUI

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 19

3.	 When the loading is complete, the logon screen
of the UA GUI appears (see Figure 10).

4.	 Log on as an administrator. The user name and
password fields are mandatory. What you enter
for the user name is entirely up to you; anything
that identifies you is acceptable. The UA GUI
only demands that the user name be at least two
characters long.

	 If you expect that several users will access the UA
GUI during the upgrade, then it is convenient that
you also specify your telephone number.

5.	 Click on Login.

6.	 On the next screen, you can choose functions from
the menu. We describe the available functions in
more detail in the section “Features of the UA
GUI.” These functions are common to all ABAP
upgrades (the UA GUI menu is always the same
regardless of the product you are upgrading).

Java Web Start errors while loading the UA GUI
If Java Web Start is unable to upload and start the
UA GUI to your workstation, an error Unable to
launch Upgrade Assistant appears (see Figure 11
on the next page). Click on the Details button to see
more information about the problem. The most useful

information is probably in the upper parts of the Java
stack trace, which you find under the Exceptions tab.

Java stack traces are not gems of readability,
but most of the time you will be able to find at least
one interesting term pointing to the cause of the error.
In this case UnknownHostException followed by a
server name indicates that Java Web Start was unable
to resolve the host name of the server. In our experi-
ence, this is the most common problem you can
encounter with the Java Web Start mechanism. The
usual cause is that the host name of the SAP server
is not known in the network configuration (DNS).
Adding an entry in the local HOSTS file on the PC
often — but not always — helps; otherwise, you must
report the problem to the network administrator.

Features of the UA GUI

Let’s begin with a brief tour of the menu functions,
and then we’ll turn our attention to the different
services UA provides for controlling the upgrade and,
whenever necessary, changing its behavior.

The File menu:

File → Change Role: Switches the UA GUI
session between administrator and observer roles.
If you switch from observer to administrator,
the current administrator (if there is one) is auto-
matically demoted to observer. In Figure 12 on
the next page, user Mark changes his current role
from administrator to observer.

File → List of users: Lists all users currently
logged on to UA. A pop-up window opens
showing the name, telephone number, and current
role of all connected users (see Figure 13 on the
next page).

File → Exit: Ends your UA GUI session. Leaving
the UA GUI has no effect at all on the UA Server
(and thus the upgrade), which simply continues
running.

The Administrator menu:

•

•

•

Figure 10	 Logon screen of the UA GUI

SAP Professional Journal • November/December 2007

20	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Administrator → Start PREPARE: Starts
SAPup in PREPARE mode.

Administrator → Start SAPup: Starts SAPup in
upgrade mode. PREPARE must be complete for this.

Administrator → Start SAPup with options:

•

•

•

Starts SAPup with a command option. You can
run SAPup interactively to perform some special
operations. You can do this directly on the host
(via the command line) or via the function “Start
SAPup with options” inside the UA GUI. The
default command option here is “set stdpar,”

Figure 12	 Change role in the UA GUI

Figure 11	 Java Web Start error

Figure 13	 Users logged on to UA

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 21

which is the option you need if for some reason
you want to change the upgrade parameters. See
the upcoming section “SAPup command options”
for more information.

Administrator → Stop SAPup after current
phase: This instructs a running SAPup process (in
PREPARE or upgrade mode) to halt after it finishes
the current upgrade phase. This option is useful if
for some reason you need to interrupt the upgrade,
for example, to reboot the server, to change data-
base or SAP profile parameters, and so on.

Administrator → Terminate SAPup: Terminates
a running SAPup process immediately. This is the
emergency brake, which you should only use in
exceptional circumstances.

Administrator → Connect UaServer to SAPup:
With this function, which is rarely used, you can
instruct a newly started UA Server to connect to
an already running SAPup process. You could use
this, for instance, when the UA Server stopped
abnormally and had to be restarted. The new UA
Server would then connect to SAPup (which was
not affected by the abnormal stop of the server).

	 This is, to put it mildly, not the most reliable of
UA features; in fact, our experience is that this
rarely — if ever — works. If you lose the UA
Server while SAPup is running, your best bet is
probably to wait until a “natural” stop of SAPup,
for example, to request user input, and then stop
and restart both SAPup and the UA Server. In the
meantime, you can monitor the upgrade via the
logs in the upgrade directory.

Administrator → Disconnect UaServer from
SAPup: This breaks the connection between the
UA Server and SAPup. SAPup will continue until
it needs to interact with the user and will then
stop. We have never used this function and, given
the quirky behavior of its Connect counterpart,
we’re not likely to try.

Administrator → Set Alert: Use this function to
make the UA GUI invoke a script or command of
your choice when it stops for interaction. This is a

•

•

•

•

•

very useful feature if you want to let the upgrade
run unattended, but you want to be informed when
your intervention is needed. The alert function is
described in the next section.

Administrator → Change Passwords: This
function lets you change the administrator and
observer passwords. If you forget the adminis-
trator password, then you need a special procedure
because you cannot log on to the UA GUI; see
the “Tips and tricks” section later in the article for
the solution.

Administrator → Terminate Upgrade Assistant
Server: This function stops the UA Server. It is a
clean alternative to killing the server from the OS.

The Services menu:

Services → File Service: Lets you select and
display files on the upgrade host. This is normally
used to display upgrade logs. See the upcoming
section “The File Service” for details.

Services → Upgrade Monitor: Brings up a
progress window showing the upgrade phases. See
the upcoming section “The Upgrade Monitor.”

Services → Console Window: Displays the main
upgrade log. See the upcoming section “The
Console Service.”

Services → SAP Notes Search: Opens a
browser session in the SAP Service Marketplace
to search notes. See the upcoming section “The
Notes Service.”

The Help menu:

Help → Introduction: Opens a browser session
with information about the upgrade tools.
Interesting reading but unfortunately not always
up to date. At the time of writing, the information
provided here was for the upgrade tools of Basis
6.40 and not of Basis 7.00, which could be
confusing.

Help → About: Shows the UA version and the
copyright notice.

•

•

•

•

•

•

•

•

SAP Professional Journal • November/December 2007

22	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

The Alert Service

Unless you work in a round-the-clock team and an
administrator is constantly watching, chances are that
the upgrade will at certain times run unattended.
Although this may give you a welcome opportunity
to get some sleep or to do some other important task,
you don’t want to come back to the upgrade to find
out that it has stopped for user input or because of an
error and has been in that idle state for many hours.
To prevent these nasty surprises and the resulting
loss of time, you can instruct the UA Server to trigger
an alert whenever it stops. When the alert goes off,
the UA Server invokes a command of your choice.
This could be a shell script to send an email to the
members of the technical upgrade team or a script
that sends an SMS (Short Message Service) message
to your mobile phone, for instance.

To enable alerts, do the following:

1.	 Choose Administrator → Set Alert in the UA
GUI menu.

2.	 In Alert Command, type the full path name of
the command or script you want the UA Server
to call.

3.	 In Alert Text File, you can specify the name of a
file on the host where the UA Server will write the
same information that it sent to the UA GUI when
the upgrade stopped.

4.	 In Alert Delay, enter a delay the UA Server must
observe between the moment the upgrade stops
and the moment the alert is triggered. The default
is 500 seconds. You might want to reduce this
somewhat, for example, to 2 or 3 minutes, but do
not set the delay to 0 because this will cause many
unnecessary alerts.

5.	 With the Set active flag, you can enable and
disable the alert configuration at will.

If alerts are active, then the following happens
when the upgrade stops for user interaction (this may
be normal interaction, i.e., prompting for user input,
or an error stop):

1.	 The UA Server waits for the amount of time set in
the Alert Delay.

2.	 If the user does not restart the upgrade before this
delay expires, the UA Server writes the text of the
upgrade message to the alert text file.

3.	 The UA Server then invokes the alert command.

In the example given in Figure 14, the UA Server
is instructed to call a script upgrade_sms whenever
the upgrade stops for more than 2 minutes. Judging
by the name, the script creates an SMS message,
which it sends to some administrator’s mobile phone.
More sophisticated scripts are, of course, possible;
you could, for instance, design a shell script that
“noisily” alerts the administrator by sending a brief

Figure 14	 Defining an alert

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 23

SMS and at the same time also sends an email with
the contents of the alert text file.

Figure 15 shows an example of an alert text file.
Here the upgrade stopped not because of an error but
to notify the user that action is needed, which, in this
case, is upgrading the liveCache during an APO
(Advanced Planning and Optimization) upgrade.

The File Service

The File Service in the UA GUI lets you select and
display files on the upgrade host. A file selection
window opens, showing the directory structure of the
host. You can use this window to navigate through
the directory tree. Alternatively, if you know the
full path name of the file you want to display, you
can type this into the File input field at the bottom (on
the left of Figure 16, on the next page). The file is
displayed directly. Unfortunately, you can only enter
file names and not directory names into this field.

If the directory contains files, the file chooser
window lists them (right, Figure 16).

Double-clicking on a file opens a new window with
the contents of that file (see Figure 17 on the next
page). With long files, use the More and End of File
buttons to navigate.

The Upgrade Monitor

Via Services → Upgrade Monitor, you can see how far
the upgrade has progressed. Click on Close to leave the
monitor screen and return to the main UA GUI window.

Figure 18 (on page 25) shows the Upgrade
Monitor during the actual upgrade. Here the progress
screen shows all the upgrade phases.

During PREPARE, which is subdivided into
modules, you only see the phases of the currently
executing module. You see an example of this in
Figure 19, on page 25.

Figure 15	 Alert text file

SAP Professional Journal • November/December 2007

24	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Figure 17	 UA File Service — Display File

Figure 16	 UA File Service — File Chooser

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 25

Figure 18	 Upgrade Monitor in the UA GUI

Figure 19	 Upgrade Monitor during PREPARE

SAP Professional Journal • November/December 2007

26	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Note!

Older versions of UA also showed an estimate
for the remaining runtime, both for the current
phase and for the entire upgrade. In practice, so
many factors affect the runtime that a sensible
prediction is very difficult to make. Because the
time estimates were often wide off the mark,
this feature was removed.

The Console Service

While the upgrade is running, the UA GUI window
displays a progress screen (see Figure 20) that

contains messages for the beginning and end of each
phase, other messages shown to the user (e.g., to
signal errors), and all interaction with the upgrade
administrator (prompts and replies). You can scroll
back inside this window to see all the messages and
user input since the beginning of the upgrade.

When the upgrade stops to interact with the user,
this progress screen is temporarily replaced with an
input window. If you want to look at the progress
screen at this point, for example, because you want to
check some input you entered in an earlier phase, then
choose Services → Console window. The progress
screen will then reappear.

Another advantage of the console window is that
copying text is enabled here. This is useful if you
want to copy/paste parts of the upgrade dialog into
your documentation.

Figure 20	 Console Service

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 27

Click on the Close button to return to the
input screen.

Note!

The complete upgrade dialog is also saved
in the logfile /usr/sap/put/log/UpgDialog.log.
Always keep this file after an upgrade because
it contains information that will be very useful
for your next upgrades.

The Notes Service
The Notes Service function starts a browser
on your PC and brings up a page for searching
SAP Notes in the SAP Service Marketplace (see

Figure 21). As you can see, this is not the usual page
for searching notes (http://service.sap.com/NOTES).

Providing the ability to search SAP Notes directly
from the GUI is a nice idea, but, in practice, there is
just one tiny problem: It doesn’t work. No matter
what you enter in the search fields, the search result
is always “no notes found.” This is a bit silly but can
hardly be called a major irritant. Just open a separate
browser and go to the normal notes search page.

SAPup command options

The principal function of SAPup is to run in the
background and to control the ABAP PREPARE and
the ABAP upgrade. In addition, SAPup also offers a
command interface, which you can use to perform
certain special operations.

You can invoke the command mode of SAPup in
two ways:

Figure 21	 Notes Service

SAP Professional Journal • November/December 2007

28	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

On the upgrade host via the command line

From inside the UA GUI

To see the available functions and command
options, type the following command:

/usr/sap/put/bin/SAPup –h

SAPup will prompt you for the path to the upgrade
directory (press Enter if the default path shown is
correct).

Most of the functions are not intended for your
direct use. They are either called internally during
the upgrade process or needed only in exceptional
circumstances. The functions that you will need most
often are the ones that allow you to change parameters
of the upgrade and those that control the shadow
instance. These and some other useful functions of
SAPup are described next.

Specifying the upgrade directory
If you run SAPup from the command line, SAPup
will prompt you for the path to the upgrade directory.
To avoid this extra prompt, use the upgdir option.
Example:

SAPup -h upgdir=/usr/sap/put

Show the SAPup version
This command displays the version. Example:

> ./SAPup -V upgdir=/usr/sap/put

This is SAPup version 7.00/2,

build 24.081

Start and stop the shadow instance
Use the startshd and stopshd functions to start and
stop the shadow instance. This is normally not
necessary because SAPup takes care of starting and
stopping the shadow instance at the right moment.
However, it is sometimes necessary to do a manual

•

•

stop/start, for instance, if you have to change profile
parameters of the shadow instance.

Commands:

SAPup [upgdir=<upgrade_dir>] startshd

SAPup [upgdir=<upgrade_dir>] stopshd

Unlock and lock the shadow instance
Like the main instance during downtime, the shadow
instance normally runs in upgrade lock mode, meaning
that logging on to the instance is only possible for the
users SAP* and DDIC, and that ABAP Workbench
objects cannot be changed. At the beginning of the
modification adjustment (Transaction SPDD), SAPup
will unlock the shadow instance automatically. When
activation begins after you have finished SPDD,
SAPup also locks the shadow instance again.

If, however, as is often the case, the activation
phase reports errors for some dictionary objects, then
you must manually unlock the shadow instance to be
able to log on as a user with development authority
and to modify objects in the ABAP Workbench. When
you are finished with correcting the activation errors,
lock the shadow instance manually before resuming
the upgrade.

Commands:

SAPup [upgdir=<upgrade_dir>] unlockshd

SAPup [upgdir=<upgrade_dir>] lockshd

Change parameters of the upgrade
Early on in the PREPARE process, you will be
prompted for all the parameters that the upgrade
process needs, such as host names, locations of the
upgrade media, and so on. These parameters are then
used throughout the entire upgrade, and normally you
will not change them again. If you do need to change
a parameter later in the upgrade (for example, because
you had to move the upgrade DVDs to a different disk
or file system), then use the following function:

SAPup [upgdir=<upgrade_dir>] set stdpar

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 29

As always, you can execute this command from
inside the UA GUI or directly via the command
line of the OS. In this case, calling the command
in the UA GUI is more convenient because you are
presented with the same graphical input windows
as during PREPARE.

Change parameters of the shadow instance

PREPARE also prompts you for the shadow instance
parameters (instance number, port numbers, etc.).
Again, you can change these parameters later if
necessary by using the function:

SAPup [upgdir=<upgrade_dir>] set shdpar

Change parameters for the upgrade strategy and
parallel processing

SAPup (not PREPARE) prompts you for the upgrade
strategy you want to use (downtime-minimized or
resource-minimized) as well as for some other param-
eters that affect the resource usage by the upgrade:

Allotted time for the database import

Upgrade phase from where database archiving
is to be disabled

Number of parallel batch processes

If you need to change these parameters, you can
do so with the function:

./SAPup upgdir=/usr/sap/put set rswpar

Change the DDIC password

During the initial parameter input, PREPARE prompts
for the password of user DDIC in client 000. DDIC
in 000 is used throughout the entire upgrade for all
phases that need a connection to the SAP system. It is
good practice to set the DDIC password at the begin-
ning of the upgrade and leave it unchanged until the
end, but this is not always possible. The password

•

•

•

might expire during the upgrade, or you might need
to change it for any other unexpected reason.

If you alter the DDIC password, then you must
inform the upgrade process of this with the following
SAPup function:

./SAPup upgdir=/usr/sap/put set ddicpwd

Note that this command by itself does not change
the password (you need Transaction SU01 for that);
it simply informs SAPup of the password change.

Change the DDIC password in the shadow
instance
In the shadow instance, which has its own user
configuration, user DDIC in client 000 is created with
the same password as in the source system. If you
change the DDIC password in the shadow instance
for whatever reason, then you must again make
SAPup aware of this:

./SAPup upgdir=/usr/sap/put set shdddicpwd

(Be careful: It’s three d’s in a row!)

Resetting PREPARE
Situations may arise — hopefully not too often —
in which you decide that you want to abandon the
active PREPARE altogether and start over. What
could also happen is that you run PREPARE in a
system but then decide not to upgrade that system
after all. Leaving traces of this unfinished business
in the system is not a good idea because it would
prevent upgrading the system in the future. To reset
PREPARE and thus erase any trace of the attempted
upgrade, use the command:

./SAPup upgdir=/usr/sap/put reset prepare

Other functions
SAPup -h will list numerous other functions than
the ones described in the previous paragraphs. You

SAP Professional Journal • November/December 2007

30	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

normally do not need these functions and unless SAP
instructs you to use one of them, it is best to keep to
the straight and narrow. Don’t start experimenting
with them in a live upgrade!

Tips and tricks

We end this section with two useful tips:

How to make UA use different network ports

How to change the administrator password

Change the port numbers for the Upgrade
Assistant

UA uses a total of four ports for all its communica-
tion. By default, these ports are 4238, 4239, 4240, and
4241. These numbers are defined in the configuration
file /usr/sap/put/ua/UaServer.properties:

UA_R3UP_PORT = 4240

UA_GUI_PORT = 4241

UA_MONITOR_PORT = 4238

(...)

UA_HTTP_PORT = 4239

The first three entries are grouped together near the
beginning of the file. The UA_HTTP_PORT entry can
be found farther down in the section for the HTTP
server settings.

Normally there is no reason to change the port
numbers, but there are situations where this becomes
necessary. One or more of the ports might be in use
by another application or access to these ports might
be blocked by a firewall. If you run several ABAP
upgrades simultaneously on the same host, then you
will have to change the port numbers for all but one of
these upgrades; otherwise, the respective UA Servers
will attempt to open the same ports, which results in
an error stop.

Before you assign new port numbers, make sure
that these new numbers will be usable:

The ports must not be blocked by the firewall.

•

•

•

The ports must not be used by other applications.
To check whether it is currently in use, type the
following command.

UNIX/Linux:

netstat -an | grep <portnr>

Windows:

netstat -an | findstr <portnr>

	 In the following example, you want to use the
port 4339, but this port turns out to be in use. The
entry *.4339 indicates that some local program is
listening on the port (see Figure 22). The other
entries show the IP address and port of the host in
the first column, and the IP address and connected
port of all the clients currently using this port.

You must also check whether the ports have not
been assigned for use by other applications, even if
those applications are not active at present. You do
this by looking for an entry with this port number in
the services file on the host. The name of this file is
 /etc/services (UNIX/Linux) or C:\WINDOWS\
SYSTEM32\DRIVERS\ETC\SERVICES (Windows).

Note!

Depending on the version of Windows, the
top directory might be called WINDOWS
or WINNT.

The entry in the services file in Figure 23 indi-
cates that port 4339 is destined for use by another
(in this case non-SAP) application.

After choosing a new set of port numbers and
ascertaining that these ports can be used for UA, you
can configure the new ports:

1.	 Stop the UA Server if it is still running.

•

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 31

2.	 Make a backup of the current properties file,
for example:

cd /usr/sap/put/ua

mv UaServer.properties

 UaServer.properties.default

3.	 Use a text editor to change the four port entries
in the UaServer.properties file. Let’s suppose
that you chose to use ports 8238 to 8241:

UA_R3UP_PORT = 8240

UA_GUI_PORT = 8241

UA_MONITOR_PORT = 8238

(...)

UA_HTTP_PORT = 8239

4.	 Restart the UA Server, and wait for the
“Ready” message.

5.	 Call the main upgrade page, using the new
port number 8239:

http://hostname:8239

6.	 Start the UA GUI, and specify the new port
number on the logon screen.

Set a new administrator password

As explained earlier, you specify the password for the
administrator role in UA when you first start the UA
Server. If you intend to use the observer role, then you
set its password in the UA GUI.

To change the administrator and observer pass-
words, you also use the UA GUI, and you must
obviously be logged on as the administrator.

But what if you forgot the administrator password,
and you do not have an open UA GUI administrator
session? Stopping and restarting the UA Server won’t
help you; the UA Server will not prompt for the pass-
word again. Looking up the answer in the SAP
Upgrade Guides or in the SAP Notes won’t do
you any good either; both are silent on the subject.
Fortunately, the solution is not difficult:

1.	 If the UA Server is currently running, then termi-
nate it with OS means, such as the kill command
in UNIX or the End Process function in the
Windows Task Manager, at the first convenient
moment (preferably not in the middle of a critical
or long-running upgrade phase).

2.	 Remove the file /usr/sap/put/UaState.

Figure 22		 Network port in use

Figure 23	 Port reserved in services file

SAP Professional Journal • November/December 2007

32	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

3.	 Remove the file /usr/sap/put/ua/ks (the
“keystore”).

4.	 Start the UA Server, which will now prompt for
the administrator password like it did the first
time you ran it.

Note!

Depending on the UA release, you might also
need to delete the following files in the UA
subdirectory:

•	 .sdt_storage

•	 .sdt_keystore

The UA Server prompts for the password if it does
not find the file ua/UaState. If you only remove
this file but leave the keystore untouched, then the
next start of the UA Server will prompt for the
password but will then abort with an exception
stack trace that includes the message:

java.io.IOException

Keystore was tampered with, or password

was incorrect

Installation of the upgrade
tools: Java
Compared with the ABAP side, installing and oper-
ating the upgrade tools for Java is a pretty simple
affair. This is not necessarily an advantage because
the interface for Java also offers fewer facilities than
its ABAP counterpart, UA. As we mentioned earlier,
the Java SDT has no notion of different user roles
(administrator/observer) and does not allow more than
one GUI to be connected at any one time. These are
characteristics the upgrade GUI for Java shares with its
very close relative, the SAPINST installation utility.

Before you start, you must have downloaded
the Java fix buffer and extracted the fix to the Java
upgrade directory. The next step is to extract the
tools to the upgrade directory. Like on the ABAP
side, this is done with a script located on the Java
Upgrade Master DVD (for UNIX/Linux and
Windows; for IBM iSeries, see the instructions
in the SAP Upgrade Guide for that platform).

Note!

SAP will continuously correct problems in
the upgrade programs and control files that
were discovered after the initial release of
the upgrade media. These corrections are
made available in the form of fix buffers
available from http://service.sap.com/
PATCHES. For information regarding the
appropriate fix buffer to download, see SAP
Note 813658.

Initial PREPARE run: UNIX and
Linux

In this example, we assume that you have placed
disk copies of the upgrade media in a server
directory /sapmedia. You have placed the Java
Upgrade Master DVD in a subdirectory named
/sapmedia/UPGMSTR_JAVA. The Java Upgrade
Master contains the installation script for the Java
upgrade tools.

For the Java upgrade directory, we assume that
you use the default path name /usr/sap/jupgrade.

Follow these steps:

1.	 Log on as user <sid>adm.

2.	 Switch to the upgrade directory:

cd /usr/sap/jupgrade

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 33

3.	 Type the command:

/sapmedia/UPGMSTR_JAVA/JPREPARE

	 If the name of the Java upgrade directory is not
/usr/sap/jupgrade, then you must specify the path
via a command-line argument, for example:

/sapmedia/UPGMSTR_JAVA/JPREPARE

 /usr/sap/jupgPRD

	 Note that here you simply specify the directory
path as the command argument; you do not add
the upgdir= keyword as with ABAP.

	 If the upgrade directory does not exist, then
JPREPARE will create it.

4.	 If the fix buffer was already placed in the upgrade
directory, then JPREPARE will also unpack the
UPG file. This is a minor difference with ABAP,
where the buffer is extracted during PREPARE
and not by the initial script. If JPREPARE creates
the upgrade directory, or the fix buffer is not yet
present, then the PREPARE process will take care
of the fix buffer later; appropriate screens will
appear in the SDT GUI.

5.	 JPREPARE then unpacks the upgrade files to
/usr/sap/jupgrade and finally displays the message:

Waiting for SDTServer to connect on host

name <host>/<address> socket 6240 ...

6.	 At this point, you can start the GUI, but it is a
good idea not to let the process run in the fore-
ground. To free up the terminal window and start
a background process, break with Ctrl+C and then
restart as follows (as <sid>adm):

cd /usr/sap/jupgrade/exe

nohup ./PREPARE &

Note that now the name is just PREPARE, not
JPREPARE.

Initial PREPARE run: Windows

For the Windows example, we assume that the
upgrade media are in the folder D:\SAPMEDIA,
with the Upgrade Master in the subfolder
UPGMSTR_JAVA.

1.	 Go to the Upgrade Master folder, and start the
script PREPARE.BAT:

cd /D D:\SAPMEDIA\UPGMSTR_JAVA

jprepare

	 This assumes that you use the default path for
the Java upgrade directory. This default path is
\usr\sap\jupgrade on the drive pointed at by the
SAPLOC share. If you want to use a different
path name and/or a different drive for the upgrade
directory, then you must specify the path on the
command line, for example:

jprepare F:\sapadmin\jupgrade

Caution!

You cannot specify a path in UNC format
(\\host\share\path).

2.	 If the upgrade directory does not exist,
JPREPARE creates it. It then creates the
subfolders (see Figure 24 on the next page) and
unpacks the upgrade tools.

3.	 Finally, JPREPARE launches the PREPARE
process. At this point, you will see the following
message:

call exe\jump -

cddir=D:\sapmedia\UPGMSTR_JAVA\\JUP -

 run prepare

Waiting for SDTServer to connect on host

name <server>/<ip> socket 6240

SAP Professional Journal • November/December 2007

34	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

4.	 If you already placed the fix buffer into the
upgrade directory, then PREPARE will
immediately unpack the UPG file:

Unpacking fix archive

 ‘FIX_J_NW04SSR2.UPG’...

5.	 If JPREPARE creates the upgrade directory, or the
fix buffer is not yet present, then the PREPARE
process will take care of the fix buffer later;
appropriate screens will appear in the SDT GUI.

6.	 Minimize but do not close the command window
where PREPARE is waiting. You are now ready
to start the GUI.

7.	 If you have to restart the PREPARE process later,
then proceed as follows:

cd \usr\sap\jupgrade\exe

prepare

	 There is no need to specify a path here even if you
are not using the default path name for the
upgrade directory.

Using the Java SDT GUI
Starting the Java upgrade involves an Internet
browser and Java Web Start, but that is where
the similarity with the ABAP UA ends. Let’s see
how it works.

Starting the SDT Server

You do not start the SDT Server explicitly. When
you start the SDT GUI as described next, the server
process also starts and connects to the waiting
PREPARE process. At this point, the command
window of PREPARE displays a “connected”
message:

Waiting for SDTServer to connect on host

name <server>/<ip> socket 6240

 ... connected.

Starting the SDT GUI

To start the SDT GUI, follow these steps:

1.	 Open a browser on your PC.

Figure 24	 Java upgrade directory after initial JPREPARE run

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 35

2.	 Type the URL http://<server>:6239 where
<server> is the host name (or possibly the full
domain name, depending on how networking is set
up) of the host where the UA Server is running.
Example:

http://sapdev.mycomp.com:6239

3.	 If you decide to start the browser on the upgrade
host itself rather than on a local PC, you may also
use the URL:

http://localhost:6239

4.	 The main Java Upgrade page now opens
(see Figure 25).

5.	 The Java Web Start window pops up, and the
application begins to load (see Figure 26).

6.	 See the earlier section “Java Web Start errors

while loading the UA GUI” if Java Web Start fails
to load and start the application.

7.	 The Welcome screen of the SDT GUI appears (see
Figure 27 on the next page). Remember that the
Java upgrade does not have the concept of adminis-
trator and observer users, so there is no logon screen.

Figure 25	 Java upgrade — main page

Figure 26	 Java Web Start loading the SDT GUI

SAP Professional Journal • November/December 2007

36	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

Figure 27	 SDT GUI Welcome screen

for a normal text log, which is displayed in free-
format fashion.

Many of the upgrade logs, including the main
SAPJup.LOG, are displayed in a more structured,
tabular form showing the severity, date and time,
message text, and call location. You can use the
arrows in the toolbar at the top of the screen to
move through the file. You can also filter
messages by choosing the minimum severity
level, as shown in Figure 29.

The Help menu:

Help → About: Shows the version of the Java
Upgrade GUI and the copyright notice.

Tips and tricks

Like on the ABAP side, you can change the network
ports used for the Java upgrade if necessary. The
default ports used by the Java upgrade are 6239 (for
HTTP connections from the browser) and 6241 (for
the SDT GUI). You find these port numbers in the file:

/usr/sap/jupgrade/server/sdtserver.xml

•

Features of the SDT GUI

As we did for the ABAP UA GUI, let’s again take
a brief tour of the menu functions, of which there
are only a few.

The JUpgrade menu:

JUpgrade → Exit: Ends the SDT GUI session.
Leaving the SDT GUI does not end the active
PREPARE or upgrade process, so you can
safely do this.

The Services menu:

Services → File Service: Lets you select
and display files on the upgrade host. This is
normally used to display upgrade logs. This
function is identical to the File Service in the
UA GUI. See the earlier section “The File
Service” for a description.

Services → Log Service: This service provides
immediate access to the Java upgrade logs.
The left pane lists the existing log and error
files in /usr/sap/jupgrade/log. By clicking on
a file, its contents are displayed in the right-
hand pane. Figure 28 shows the log service

•

•

•

A guided tour of the SAP NetWeaver Application Server upgrade tools

No portion of this publication may be reproduced without written consent.	 37

Figure 28	 SDT GUI Log Service (free-format display)

Figure 29	 SDT GUI Log Service (structured display)

SAP Professional Journal • November/December 2007

38	 www.SAPpro.com 	 ©2007 SAP Professional Journal. All rights reserved.	

SAP NetWeaver Application Server Upgrade Guide
SAP NetWeaver Application Server Upgrade Guide, by Bert Vanstechelman, Mark
Mergaerts, and Dirk Matthys (ISBN: 978-1-59229-144-1 / WIS product ID: H2903),
is now available from SAP PRESS. To order this book, visit www.sap-press.com, or
call our customer service team at 1-301-287-2540 today. SAP PRESS ships world-
wide, and offers free UPS shipping to all customers in the US and Canada.

Note that here we are not dealing with a simple
text file but with an XML file. To edit the file, you
could use a specialized XML editor, but a standard
text editor such as Notepad or vi will do just as well.
Simply search for the strings “6239” and “6241”; each
appears only once in the file, with the respective tags
<HTTPPort> and <GuiPort>.

The same warnings and restrictions apply as for
the ABAP UA:	

Don’t change the port numbers unless you
have to.

•	 Make sure the new port numbers are not already
used by another application.

•	 Also make sure the server ports are accessible
(not blocked by a firewall) from the workstation
you intend to use during the upgrade.

See the earlier section “Change the port numbers
for the Upgrade Assistant” for instructions on how to
check these requirements.

Ready to go
Our hope is that you now have a solid foundational
knowledge of the SAP upgrade tools that are available
to you — what they are; how to start, stop, and
control them; and how to monitor their activities.
With this knowledge, you are now ready to attack
the upgrade at hand.

•

Bert Vanstechelman works as an independent SAP Basis
Consultant and has approximately 12 years of SAP
experience. His most recent long-term assignments have
been in SAP Basis consulting roles running all kinds of SAP
versions in combination with all possible databases and
operating systems supported by SAP. Bert specializes in
SAP administration, upgrades, installations, operating
system and database migrations, and Unicode conversions.
Bert is the author of the SAP Essentials the SAP OS/DB
Migration Project Guide and the mySAP ERP Upgrade
Project Guide, both published by SAP PRESS. He is a
frequent contributor to SAP Professional Journal and panel
expert for SAP Release Upgrades and OS/DB migrations on
SearchSAP.com’s Ask the Expert feature. Bert can be
reached at bert@logosconsulting.be.

Mark Mergaerts is Principal Technology Consultant at
SAP Belgium and has more than 12 years experience with
SAP Basis. His consulting activities, mainly with large
SAP accounts, concentrate on the key areas of system
administration, database management, upgrades and
installations, performance and workload analysis, and OS/
DB and Unicode migrations. He also teaches advanced
database administration, upgrade, and SAP performance
classes to an international audience. Mark can be reached
at mark.mergaerts@sap.com.

After seven years of R/2, Dirk Matthys started with R/3 back
in 1997. Dirk is a Senior ABAP developer working for one
of the biggest Belgian Metal Transformation companies. In
the past few years, his main activities have diverted to the
twilight zone between the SAP technical and application
world. He is responsible for the coordination of SAP Basis
application change projects, such as upgrades, migrations,
mergers, splits, and the installation of support packages.
Dirk can be reached at dirk.matthys@bekaert.com.

