Improve your business
processes with quick and easy

enhancements to PDF documents:
A toolbox for modifying PDF files using ABAP

by Cord Jastram

Cord Jastram
Software Engineer,
Computer Sciences
Corporation, Germany

Cord Jastram works for Computer
Sciences Corporation (CSC) in
Germany as a software developer.
His main focus lies in software
development using Java, ABAP,
and C++. He holds a Ph.D. from
Hamburg University where he did
research in the field of numerical
seismic modeling. Before joining
CSC in 2000, he worked as a
software developer for different
companies. You may reach him at
cjastram@csc.com.

Forms (such as invoices, pay slips, etc.) are the lifeline of modern business.
If you’re like most companies, you generate data-driven forms from your
SAP system using SAPscript or SAP Smart Forms. The more adventurous
among you may have experience converting SAPscript or SAP Smart
Forms into PDF documents (e.g., to send them via email, post them on the
Internet, archive them, or print them offline).

But what if you want to quickly modify a PDF document after it has
been created without having to go through the cumbersome process of
opening Adobe Acrobat and clicking through the various buttons and menu
items? Consider the following scenarios:

* You have a PDF document, and now you want to password protect it
using the encryption mechanisms available in the PDF format, or you
want to add a Microsoft Excel file as an attachment to the PDF file.

* You want to assemble a personalized sales catalog PDF for a customer
by combining a dynamically generated cover letter and price list (based
on SAP data) with an existing, static product catalog PDF containing
product descriptions and photos.

* You need to Web-enable an already existing PDF form in a Business
Server Pages (BSP) application to provide the Web user a form with
enhanced printing capabilities.

Because ABAP does not provide a library for manipulating PDF files,
I knew I had to come up with a solution — a toolset that would offer an
ABAP developer a comfortable way to manipulate PDF files.

This article introduces the PDF Toolbox, an open-source solution I
developed. The purpose of this toolbox is to allow ABAP developers to
programmatically modify existing PDF documents with ease. The toolbox
consists of two components. The first is a remote function call (RFC)

No portion of this publication may be reproduced without written consent. 39

SAP Professional Journal * May/June 2007

server (implemented in Java'), which provides the
functionality that you can use to make the actual
modifications to the PDF files. As of this writing,
the RFC server offers the following functions:

* Encrypting (password protecting) a PDF file
and setting its usage permissions

* Adding an attachment to a PDF file

* Adding a comment to a PDF file

* Adding background text to a PDF file

* Permanently filling in the fields of a PDF form

» Setting the status of a form field to read-only
(that is, a user can’t change it)

» Concatenating two PDF files
* Adding a toolbar to a PDF file

* Creating a ZIP file in which the newly created
PDF file is stored, and adding additional files
to the ZIP file

Note!

I’1l discuss how you can extend the services
offered by the server when I discuss the bar-
code example later in the article.

The second component consists of two ABAP
Objects classes that I wrote to provide an API for
interacting with the RFC server. These classes provide
an easy-to-use interface that allows ABAP developers
to use the server without any knowledge of the Java
programming language. You simply write an ABAP
report using the two ABAP Objects classes, and
you’re on your way. The source code of the RFC
server, a compiled version of the RFC server, and

' The RFC server I’ve written is a simple wrapper for an open source
Java library called iText, which you can use for modifying existing PDF
files from Java. iText offers additional functions (services) beyond those
implemented in the toolbox, such as the ability to add a watermark or
digital signature. Later in the article, I’ll show you how to extend the
RFC server to add such functions.

the source code of the ABAP classes are available for
download at www.SAPpro.com.

The article is divided into three parts. In the first
part, I’ll review the design of the PDF Toolbox solu-
tion — its components, ABAP Objects classes, and
the commands you can send to the RFC server. In
the second part, I’ll step through an example that uses
the PDF Toolbox to modify a PDF. Finally, in
the third part, I’ll review how to enhance the RFC
server, and finally, how to deploy it. As you’ll see,
none of this is complex, and you’ll be able to get the
toolbox up and running quickly.

Programming with the
PDF Toolbox

While ABAP does not provide a library for manipu-
lating PDF files, one is available for Java — the

open source library iText — so I wrote a simple RFC
server wrapper to expose the functionality of the iText
library to ABAP. You can run the Java RFC server

on any computer equipped with a Java 5 Runtime
Environment and an SAP Java Connector (JCo).

Note!

You don’t need a J2EE system; you simply
need a Java 5 Runtime Environment.

Figure 1 shows the three key components of the
solution’s architecture:

* Your ABAP report (1), which leverages the two
classes to interact with the server

* Two ABAP classes, ZCL_FILE (2a) and ZCL
PDF COMMAND LIST (2b), which represent a
file and a list of commands to be sent to the RFC
server for processing, respectively

* The RFC server (3), which calls the iText library
to manipulate the PDF files

40

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

b
ABAP Report

| create ZCL_FILE objects |(2a)

create a
ZCL_PDF_COMMAND_LIST
object

(2b)

3

RFC Server

add commands and

parameters
call

call method PROCESS

Z_PDF_PROCESS_COMMANDS

»
»

create Java objects
from ABAP data

process commands

P
<

save PDF data as a file

return new PDF data

create ABAP data
from Java objects

Figure 1

The RFC server is the component of the solution
that closes the gap between the Java and the ABAP
worlds. It allows an ABAP developer to call code
written in Java just like an ABAP function module.
There are some pitfalls when you work with an
RFC server, but the ABAP classes ZCL_FILE and
ZCL PDF COMMAND_ LIST simplify your work
significantly. When you use these classes, you don’t
even notice that you are using an RFC server.

The flow chart is simple: Your program (the
ABAP report) creates one or more instances of the
ZCL FILE class to represent PDF files, and creates
an instance of ZCL PDF_ COMMAND _LIST to
send commands to the RFC server. You create a
ZCL _FILE object by reading an existing file from
the client or from the server. Another option is to
create a ZCL_FILE object by converting the Output
Text Format (OTF) of an SAP Smart Form to PDF
and then to load the desired commands (with any
associated parameters) into a ZCL_PDF _
COMMAND_LIST object (we’ll explore which
parameters are required for each command shortly).

Schematic processing flow of the PDF Toolbox

Then you call the PROCESS method of the
command list object that takes on the ZCL_FILE
objects you want to work with as parameters. The
PROCESS method calls the function module Z
PDF PROCESS COMMANDS on the RFC server,
providing the command list and the file data as the
input data. The RFC server in turn performs the
modifications to the file and sends back a modified
file. This part is shown as a gray background in

the figure to indicate that this is done “behind the
scenes.” Your program is then free to serve the PDF
data to the user (e.g., via the Web in a BSP applica-
tion), save it to a file, or further manipulate the data
(e.g., issue another set of commands to combine it
with other PDF data).

Let’s now quickly review the specific methods
of each class, and the available commands you
can specify. We’ll then put all of this to use through
an example. Note that for reasons of clarity and
simplicity, the example is intended only to demon-
strate some of the methods offered by the toolbox;
it is not intended to be a realistic example.

No portion of this publication may be reproduced without written consent.

4

SAP Professional Journal * May/June 2007

Using the ABAP classes

To use the functionality exposed by the RFC server in
your ABAP report, you have to perform the following
tasks, which I break down into more detailed steps later
when we look at a programming example:

» Create an object of type ZCL_FILE for each file
you want to process with the RFC server.

* Create an object of type ZCL_PDF _
COMMAND_LIST for storing the commands
and their parameters.

» Call the appropriate methods of the command list
object that add commands to the command list.

» Call the PROCESS method of the command list
object using the ZCL_FILE objects created earlier
as the parameters.

Class ZCL_PDF_COMMAND_LIST is used to
define the function calls that are executed on the
RFC server. This class has been introduced to ease the
use of the toolbox. By using this approach, the RFC
server does not need to handle any state information
— e.g., all data and all processing information are
sent to the server using a single function call. Then
the processing information works on the data and the
resulting file is sent back to the SAP system.

Let’s take a closer look at the two ABAP classes
that drive the functionality of the toolbox, ZCL FILE
and ZCL_PDF_COMMAND _LIST.

ABAP class ZCL_FILE

Class ZCL_FILE is used to read files from the SAP
server and from the client. The public attributes of
the class are presented in Figure 2.

The size of the file is stored in the SIZE attribute,
and the data is stored in the DATA attribute. The
PATH attribute stores the path of the file, and the
ZIP_ENTRY attribute defines the path and the file-
name of the file inside a ZIP archive. Type ZTXROW
of attribute DATA is the only user-defined type. It is a
table type with the line type ZXROW, which is a user-
defined data element with a length of 8192 bytes and
the data type RAW.

Attribute Description Type
SIZE The size of the file in bytes INT4
DATA The file data ZTXROW
PATH The file path STRING
ZIP_ENTRY | The file path in a ZIP file TEXT255
Figure 2 Public attributes of class ZCL_FILE

Class ZCL_FILE defines three public static
methods, summarized in Figure 3, that create the
ZCL_FILE instances:

 CREATE FROM_CLIENT is used to create a
ZCL FILE instance from a client file.

 CREATE FROM_SERVER is used to create a
ZCL _FILE instance from a server file.

« CREATE PDF FROM OTF is used to create a
ZCL _FILE instance from OTF data from an SAP
Smart Form.

There are also three public instance methods,
summarized in Figure 4, that handle the file data:

* GET _STRING returns the file data as a string. You
use this method for a BSP application to generate
the response data that is sent back to the browser.

* SAVE TO_CLIENT writes the file data to a local
file on the client.

* SAVE TO_SERVER writes the file data to the
server.

ABAP class ZCL_PDF_COMMAND _
LIST

Class ZCL_PDF _COMMAND LIST is used to store
the command names and the parameters associated
with a command. The class has three private attrib-
utes, which are listed in Figure 5.

The attributes ITEMS and CURRENT _ITEM
are used to store the commands and parameters added
toa ZCL_ PDF_ COMMAND LIST object. The

42

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

Method CREATE_FROM_CLIENT
Importing parameter PATH

Type STRING

Returning parameter VALUE (FILE)
Method CREATE_FROM_SERVER
Importing parameter PATH

Type REF to ZCL_FILE

Type STRING

Returning parameter VALUE (FILE)
Method CREATE_PDF_FROM_OTF
Importing parameter OTF_DATA

Type REF to ZCL_FILE

Type TSFOTF

Returning parameter VALUE(PDF_FILE)

Type REF to ZCL_FILE

Figure 3 Public static methods of class ZCL_FILE

Method GET_STRING
Returning parameter VALUE(RESULT)
Method SAVE_TO_CLIENT

Type STRING

Importing parameter PATH

Type STRING

Returning parameter VALUE(RESULT)
Method SAVE_TO_SERVER
Importing parameter PATH

Type SYSUBRC

Type STRING

Returning parameter VALUE(RESULT)

Type SYSUBRC

Figure 4 Public instance methods of class ZCL_FILE
Attribute Description
ITEMS Command item table

Type
ZT_COMMAND_ITEM

CURRENT _ITEM The active command item

ZCOMMAND_ITEM

DESTINATION

The name of the RFC destination of the RFC server

RFCDEST

Figure 5

DESTINATION attribute is used for calling the

RFC server. The default value for this attribute is
PDF_SERVER, which the constructor can set. The
attributes do not appear in the public part of the class,
so you don’t have to worry about them as long as you
use the class as is.

The ZT COMMAND ITEM type of attribute ITEMS

Private attributes of class ZCL_ PDF_COMMAND _LIST

is a table type with the line type ZCOMMAND _ITEM,
and the RFCDEST type of attribute DESTINATION
is defined by the system. Figure 6 on the next page
shows the structure of the ZCOMMAND _ITEM type
of attribute CURRENT ITEM. Component types
ZCOMMAND NAME, ZPARAM NAME, and
ZPARAM VALUE are of data type CHAR with
lengths of 32, 32, and 255, respectively.

No portion of this publication may be reproduced without written consent.

SAP Professional Journal * May/June 2007

Component Component type Data type Length
ITEM_NO INT4 INT4 4
COMMAND ZCOMMAND_NAME CHAR 32
PARAMETER _NAME ZPARAM_NAME CHAR 32
PARAMETER_VALUE ZPARAM_VALUE CHAR 255

Figure 6 Structure of ZCOMMAND_ITEM

Method ADD_COMMAND
Importing parameter COMMAND
Method ADD_PARAMETER

Type ZCOMMAND_NAME

Importing parameter PARAMETER

Type ZPARAM_NAME

Importing parameter VALUE

Type ZPARAM_VALUE

Importing parameter INDEX

Importing parameter PARAMETER

Method ADD_INT_PARAMETER

Type INT4 (default "0")

Type ZPARAM_NAME

Importing parameter VALUE

Importing parameter PARAMETER

Method ADD_FLOAT_PARAMETER

Type INT4

Type ZPARAM_NAME

Importing parameter VALUE

Type ZFLOAT

Figure 7

While there are no static methods, class ZCL
PDF_COMMAND LIST defines four private
instance methods, summarized in Figure 7, which
are low-level methods used to implement the high-
level public methods of the class:

« ADD COMMAND adds a new command to
the command list. After ADD COMMAND has
been called, the parameters of the command
are added to the command list by calling either
ADD PARAMETER, ADD INT PARAMETER,
or ADD FLOAT PARAMETER.

ADD PARAMETER adds a parameter to the
command list with a character-based value type.
The method ADD PARAMETER offers the
option to specify an index, which allows for
adding several different values for a single

Private instance methods of class ZCL_ PDF_COMMAND _LIST

parameter. When you specify 0 for the INDEX
parameter (which is the default), you add a single
value. When you want to add several values,

you call ADD PARAMETER with a value of
anywhere from 1 to n for INDEX (where 7 is

the number of values you want to add).

« ADD INT PARAMETER adds a parameter to
the command list with an INT4 value type. As
an example, think of a parameter describing the
number of the page where you want to add
some text.

« ADD FLOAT PARAMETER adds a param-
eter to the command list with a ZFLOAT
value type. ZFLOAT is a data element of
type FLTP.

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

Method PROCESS

Importing parameter FILE_1

Type ZCL_FILE

Importing parameter FILE_2

Type ZCL_FILE

Importing parameter FILE_3

Type ZCL_FILE

Importing parameter FILE_4

Type ZCL_FILE

Importing parameter FILE_5

Type ZCL_FILE

Exporting parameter RETURN

Type BAPIRETURN

Exporting parameter RESULT_FILE

Importing parameter DESCRIPTION

Type ZCL_FILE

Method ADD_ATTACHMENT

Type ZPARAM_VALUE

Importing parameter FILENAME

Type ZPARAM_VALUE

Importing parameter FILEINDEX
Method CONCAT

Importing parameter FILEINDEX

Method ENCRYPT
Importing parameter USERPASSWORD

Type INT4

ZPARAM_VALUE

Type INT4

Importing parameter OWNERPASSWORD

ZPARAM_VALUE

Importing parameter PERMISSION

Importing parameter TEXT

Type INT4 (default "0")

Method ADD_BACKGROUND_TEXT

Type ZPARAM_VALUE

Importing parameter FONT

Type ZPARAM_VALUE (default "Helvetica")

Importing parameter FONTSIZE Type ZFLOAT
Importing parameter XPOS Type ZFLOAT
Importing parameter YPOS Type ZFLOAT
Importing parameter GRAY Type ZFLOAT

Importing parameter ROTATION

Type ZFLOAT (default "0.0")

Importing parameter PAGE

Type INT4 (default "1")

Figure 8

Now let’s look at some of the public instance
methods of class ZCL_ PDF_ COMMAND _LIST,
which are summarized in Figure 8:

* PROCESS is used to send the command list
and the file parameters to the RFC server. The
parameters of the PROCESS method are easy to

Public instance methods of class ZCL_PDF_COMMAND_LIST

understand. You can work on up to five

ZCL _FILE objects, and the newly generated
ZCL _FILE object is returned by the exporting
parameter RESULT FILE. The parameter
RETURN is used to return any error that
might have appeared during the processing

of the files.

No portion of this publication may be reproduced without written consent.

45

SAP Professional Journal * May/June 2007

Note!

By default, the PROCESS method works on the
file associated with FILE 1; the additional
ZCL_FILE parameters FILE 2 to FILE 5 are
optional parameters used for files that might,
for example, be attached to FILE 1.

» ADD ATTACHMENT adds a file as an attach-
ment to the FILE 1 object specified in PROCESS.
You can supply a description and a filename,
which are later displayed in Acrobat Reader when
you open the PDF returned in RESULT FILE.
The FILEINDEX parameter informs the ADD
ATTACHMENT method which file should be
used as an attachment. FILEINDEX must be set
to “2” to attach FILE 2, “3” to attach FILE 3,
and so forth.

» CONCAT is used to concatenate two PDF files.
It has just one importing parameter with the name
FILEINDEX and type INT4. When you want to
concatenate FILE 1 and FILE 3, for example,
simply call CONCAT with “3” for the variable
FILEINDEX, and FILE 3 will be appended to
FILE 1 during the call of the PROCESS method.
That’s all.

» ENCRYPT is used for the encryption of a PDF
file. You have to supply two different passwords
— a user password and an owner password — and
an INT4 value describing the permissions. The
details of the encryption will be discussed later in
this article. The default O for the PERMISSION
means that no permissions are given to the file
and therefore the strongest restrictions are applied.

« ADD BACKGROUND TEXT adds a text to an
already existing PDF file. This method allows you
to specify text that is actually added, as well as its
font and its font size. You have to specify the X and
Y coordinates of the insertion point, the rotation of
the text, and the page on which the text is added.
The parameter GRAY defines the shade of gray to
be used for the text. It can vary from 0 (black) to 1

(white), with anything in between (e.g., “0.5”) indi-
cating a shade of gray. When the text should be
inserted on the last page, set PAGE to “0.”

Now that you have a solid understanding of the
key components of the toolbox, including the ZCL
FILE and ZCL PDF COMMAND LIST ABAP
classes that execute its functionality, let’s take a look
at how the toolbox works in practice by walking
through an example.

Programming example:
Password-protecting a PDF
document

To show you the toolbox in action, I have written an
example ABAP report called Z PDF_ENCRYPT. In
this report, we’ll modify an existing PDF document
that resides locally on a client PC by combining it
with a PDF generated from an SAP Smart Form (the
name of the SAP Smart Form is hard coded into the
example ABAP report) and attaching a simple TXT
file to the resulting combined PDF. As mentioned
earlier, this isn’t intended to be a very realistic
example; rather, it is a simplified example intended to
clearly show some of the toolbox’s methods in action.

Note!

To follow along with this example, and the bar-
code example later, you must have downloaded
and installed the PDF Toolbox RFC server, as
well as the set of ABAP classes in your SAP
system. The code and instructions on how to
do this are provided at www.SAPpro.com. The
example ABAP report, PDF document, SAP
Smart Form, and TXT file are also included

in the download.

Figure 9 shows the dialog that appears when you
run the ABAP report Z PDF_ENCRYPT.

46

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

Eragram

Edit Goto S

Encrypt PDF file
B [

Clientfile options
FPOF file 1
Attachment file
Qutput file

Cofilet.pdf
Cotest b
Cihdemao.zip

J[4][»]

FDF encryption aptions
User Password
Owyner password
[Allow printing

AEAAAEEEE AR AAAAR AR AR AR AR R KRR A AR

AEAAAEEEE AR AAAAR AR AR AR AR R KRR A AR

COther aptions
ZTEST_FORM

cancat_doc. pdf

Smart Form name
Zip entry name

s
N

Figure 9

ABAP dialog for concatenating and encrypting PDF files

@WinZip - demo.zip =]
File Actions Options Help

Y ¥ A3 =y . LA e I~

= - B OB S L

Sy ¥ v e 8 @

Mew Qpen Favorites Add Extract Wiew Checkout ‘Wizard

{path | size -~ | Type | Madified | Ratia | Packed |
cat_doc,pdf 30,498 Adobe Acrobat 7.0 Docu,.. 15,12,2006 23:59 [28,771

Selected 0 files, 0 bytes Tatal 1 file, 30KE 00 .,

Figure 10 Opening a ZIP archive with WinZip

In the Client file options section, you can enter
the path and name of the PDF file that will be read
from the client computer, the path and name for the
attachment, and the path and name for the output
file. In the PDF encryption options section, you enter
the user password and the owner password that will
be used to encrypt the resulting PDF file. If you
select the Allow printing checkbox, you will be able
to print the resulting PDF file from Adobe Reader. In

the Other options section, you enter the name of

the ZIP archive file (including the correct path of
the file) and the name of the Smart Form. For this
example, I have created a simple Smart Form named
ZTEST FORM, which consists of a single page.

After you run the report with the input data shown
in Figure 9, you open the resulting ZIP archive with
WinZip, as shown in Figure 10.

No portion of this publication may be reproduced without written consent.

47

SAP Professional Journal * May/June 2007

ﬁ]Adohe Reader - [concat_doc.pdf] H=1E3
","_. File Edit %iew Document Tool: ‘Window Help - |2 Ll
T H S @@ D a® -] @ - ® D@ 7
o »
» -
H =
=]
i
o
o This is a PDF file from the client!
This is a PDF from a Smart Form
o Open ' Save -"!';,-‘. Search Cptions - x
<
E Mame | Description | Modified | Size |
£ =] test bt a simple attachment Unknawn 255 KB
-
g
S iz | p bl O O H H

Figure 11

Next, double-click on the concat doc.pdf file to
open it. When you open it with Acrobat Reader 7.0
(or higher), you are prompted for a password. Enter
one of the passwords you specified in Figure 9. After
Adobe Reader opens the document, you see a docu-
ment consisting of two pages and an attachment, as
shown in Figure 11.

The first page is a PDF form generated from an
SAP Smart Form; the second page is the PDF file
uploaded from the client. The attachment is the simple
TXT file we specified in Figure 9.

Just to show you that the document permissions

The two-page PDF form with its attachment opened in Acrobat Reader

setting works as you might expect, open the Document
Properties dialog by pressing Ctrl+D and clicking on
the Security tab. As you can see in Figure 12, the
only permission allowed is printing, as specified in
the PDF encryption options in Figure 9.

A look inside the example program

Let’s take a look inside the example ABAP report

Z PDF_ENCRYPT to provide you with a founda-
tional understanding of how to create your own ABAP
report for leveraging the toolbox. In the next sections,
I walk you through the following steps:

48

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

Description Fonts] Advanced]

Document Security

Security Method: Password Security

Can be Opened by: Acrobat 5.0 and later

Document Restrickions Summary
Printing: Allowed
Documnent Assermbly: Mot Allowed
Content Copying or Extraction: Mot Allowed
Content Extraction for Accessibility: Mot Allowed
Commenting: Mot Allowed
Filling of Form figlds: Mot Allowed
Signing: Mot Alloweed
Creation of Template Pages: Mot Allowed

Submitting Forms: Mot Allowed

Document Properties

The document's Security Method restricks what can be done ko the document,

All contents of the document are encrypted and search engines cannot access the document's metadata,

Show Details., ..

Help

Cancel

Figure 12 Security tab in the Document Properties dialog

1. Create a PDF file from an SAP Smart Form.
2. Create a PDF file from the client computer.

3. Concatenate the files from step 1 and step 2 into
a single PDF file.

4. Add an attachment to the single PDF file created
in step 3.

5. Password-protect the single PDF file and set the
access permissions to it.

Note!

I do not cover all details of the source code; this
discussion is intended to simply give you an
overview of how to use the toolbox.

6. Add the ZIP option and perform the actual
processing.

7. Save the newly created file on the client computer.

Step 1: Create a PDF file from an SAP
Smart Form

First, I created a PDF file from an SAP Smart Form.
As an example, | have created the SAP Smart Form
ZTEST FORM, which consists of a single page with
the text This is a PDF from a Smart Form.? Using
the function module SSF FUNCTION_MODULE
NAME, I retrieved the name of the function module
to print the Smart Form. After retrieving the name of
the function module, I set up the printing options to

2 For more on creating SAP Smart Forms, see the SAP Professional
Journal articles “Create and Maintain Forms Without Programming?
It’s a Snap with SAP Smart Forms!” (March/April 2001) and “Render
Online, Interactive ‘Web Forms” in Your Next Web Application —
1t’s Easy with SAP Smart Forms!” (May/June 2002).

No portion of this publication may be reproduced without written consent.

49

SAP Professional Journal * May/June 2007

DATA : fm_name TYPE rs381_fnam,
params TYPE ssfctrlop,
data TYPE ssfcrescl,
options TYPE ssfcompop, .

CALL FUNCTION 'SSF_FUNCTION_MODULE_NAME'
EXPORTING
formname = "ZTEST_FORM'
IMPORTING
fm_name
EXCEPTIONS
no_form = 1
no_function_module = 2
OTHERS = 3,

fm_name

params-no_dialog = 'X'.
params-preview = ' '
params-getotf = 'X'.

options-tddest = 'LPO1'.
options-tdnoprev = 'X'.

CALL FUNCTION fm_name

EXPORTING

control_parameters = params
output_options = options
user_settings = "
IMPORTING

job_output_info = data
EXCEPTIONS

formatting_error =1
internal_error =2
send_error = 3
user_canceled =4
OTHERS = 5,

Figure 13 Code for creating a PDF from an SAP Smart Form

DATA txt_file3 TYPE REF TO zcl_file.
txt_file3 = zcl_file=>create_from_client(file_name3).
command_Tlist->add_attachment(fileindex = 3
filename = 'test.txt'
description = 'a simple attachment').

Figure 14 Code for adding an attachment

50 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

print without a dialog and to create OTF data. After
calling the function module for printing the Smart
Form, I have the OTF data as a result. The code for
this task is shown in Figure 13.

Next, I transform the OTF output into a PDF file
and load the second PDF file and the attachment file
from the client. This is done using two static methods
of the class ZCL_FILE, which is part of the ABAP
portion of the solution, as shown here:

DATA pdf_f‘i]el TYPE REF TO
zcl_file.

pdf_filel = zcl_file=>create_
pdf_from_otf(data-otfdata).

Step 2: Create a PDF file from the client computer

Creating a ZCL_FILE object from the client computer
is done with just two lines of code:

DATA pdf_file2 TYPE REF TO
zcl_file.

pdf_file2 = zcl_file=>create_
from_client(file_namel).

Step 3: Concatenate the files from step 1 and step
2 into a single PDF file

Now, I set up the commands that describe the
processing steps for the files. First, [create an

CONSTANTS :
c_allowprinting TYPE i VALUE 2052,
c_allowmodifycontents TYPE i VALUE 8,
c_allowcopy TYPE i VALUE 16,

instance of the ABAP class ZCL_PDF_ COMMAND _
LIST, and then I call the method CONCAT, as
shown here:

DATA command_Tlist TYPE REF TO
zcl_pdf_command_Tlist.
CREATE OBJECT command_list.

command_1list->concat(fileindex
=2).

Step 4: Add an attachment to the single PDF file
created in step 3

To add an attachment, I load the file that should be
attached from the client, as shown in Figure 14.

Step 5: Password-protect the single PDF file and
set the access permissions to it

To encrypt the PDF file, I simply call ENCRYPT
supplying two passwords and the permissions.

command_Tist->encrypt(
userpassword = upwd
ownerpassword = opwd
permissions permissions).

The permissions are defined as integer constants,
as shown in Figure 15.

To set more than one permission, I simply set
the permission to the sum of their integer constants.

c_allowmodifyannotations TYPE i VALUE 32,

c_allowfillin TYPE i VALUE 256,

c_allowscreenreaders TYPE i VALUE 512,

c_allowassembly TYPE i VALUE 1025,

c_allowdegradedprinting TYPE i VALUE 4.

Figure 15 Code for defining integer constants

No portion of this publication may be reproduced without written consent.

51

SAP Professional Journal * May/June 2007

Password-protecting a PDF file

Adobe Acrobat’s default security handler for PDFs allows access permissions and up to two passwords
to be specified for a document — an owner password and a user password:

* Opening the document with the owner password allows full access to the document, including the
ability to change the document’s passwords and access permissions.

* Opening the document with the user password (or opening a document that does not have a user
password) gives a more restricted access because the passwords can’t be changed. Furthermore,
the access permissions of the document might disallow some operations like printing or changing

the document.

However, the access permissions are only enforced by the viewer application (Adobe Reader), and there-

fore the protection offered by the permissions is weak.

For example, if you want to allow printing and fill-in,
set the permission to 2052 + 256 = 2308. Using

this approach, you can describe all combinations

of the permissions in one INT4 variable. For more
information on password protection, see the sidebar
above.

Step 6: Add the ZIP option and perform the
actual processing

Because I want the PDF file to be returned inside a
ZIP archive, I need to set the ZIP_ ENTRY attribute

of the file to the corresponding value of the input

file in the report Z PDF_ENCRYPT. Then I call the
PROCESS method for the command list object.
Figure 16 shows the code required for these two tasks.

Step 7: Save the newly created file on the
client computer

In the last step, I check whether the call to the
PROCESS method was successful, and then I save the
generated file to a local path, as shown in Figure 17.
As a result, I have a PDF file with an attachment
inside a ZIP archive.

You’ve now seen the toolbox in action, and had
a peek under the hood to see how the ABAP report

uses the ABAP classes to leverage the functionality
provided by the RFC server. While the RFC server
comes with several commonly used modification
capabilities, you can also add additional capabilities.
I’ll show you how to do this next.

Adding a new command to the
RFC server

The RFC server provides only some common func-
tionality for working with PDF files. You can also
take advantage of some of the more advanced func-
tionality offered by the iText library by extending
the functionality of the RFC server.’ Using the
previous example, I’ll show you how you might
extend the RFC server by placing a two-dimensional
(2D) barcode on the generated PDF file (see the
sidebar at right for an overview of the 2D barcode
format). First, [will extend the RFC server and the
ABAP class ZCL_PDF_ COMMAND _LIST to
provide the additional functionality. Then, I will

> For an overview of the additional options offered by the iText
library, take a look at the exhaustive tutorial available at
www.lowagie.com/iText. Bruno Lowagie, one of the authors
of the iText library, has also written an excellent book on iText
(iText in Action: Creating and Manipulating PDF. Manning
Publications Co., 2006).

52

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

DATA : Treturn TYPE bapireturn.
result_file->zip_entry = p_zipent.

CALL METHOD command_Tlist->process

exporting
file_1l = pdf_filel
file_2 = pdf_file2
file_3 = txt_file3
IMPORTING

return = lreturn
result_file = result_file.

Figure 16 Code for adding a ZIP option and processing the command list object

CASE lreturn-type.
WHEN 'S'.
WRITE 'Success'.
file_namel = p_filout.
IF result_file->save_to_client(file_namel) <> 0.

WRITE : 'Cannot save file ', file_namel.
ENDIF.
WHEN 'E'.
WRITE : 'Error:', Treturn-message.
ENDCASE.

Figure 17 Code for saving the file to the client computer

The 2D barcode format

PDF417 (Portable Data Format, not to be confused with Portable Document Format) is a two-dimensional
(2D) barcode format that was developed by Ynjium Wang at Symbol Technologies in 1991. 2D barcodes
have much higher data capacity than one-dimensional barcodes. PDF417 uses Reed Solomon error correc-
tion and allows for nine different levels of error detection and correction. At level 0, you can encode up to
1850 characters, and errors can be detected but not corrected. At level 8, you can encode only 850 charac-
ters, because a lot of redundant information must be encoded in the barcode at this level; however, you
have a much better error-correcting functionality.

No portion of this publication may be reproduced without written consent. 53

SAP Professional Journal * May/June 2007

pubTlic void addPDF417Barcode(CommandParameterMap map)

throws DocumentException {

int page = getPageNumber(map) ;
String text =
float xPos
float yPos

map.getString(Parameter.TEXT) ;
map.getFloat(Parameter.XPOS) ;
map.getFloat(Parameter.YPOS) ;

float scale = map.getFloat(Parameter.SCALE);

BarcodePDF417 pdf41l7 = new BarcodePDF417();

pdf4l7.setText(text);

Image image = pdf4l7.getImage();
image.scalePercent(scale);

image.setAbsolutePosition(xPos, yPos);
stamper.getOvercontent(page) .addImage(image);

Figure 18 Adding a PDF417 barcode to a PDF file

modify the report Z PDF_ENCRYPT so that an
additional barcode is added to the first page of the
resulting PDF file.

The manipulation of the PDF files on the Java
side is done by the class PdfHandler, which is located
in the package com.cjastram.pdf.handler. As a first
step, | add an empty method to this class that takes
a CommandParameterMap object as its argument.
The class CommandParameterMap is located in the
package com.cjastram.pdf.command, and it is used as
a container for the parameters of the new command.
The empty method looks like the following:

public void addPDF417Barcode
(CommandParameterMap map)

{

¥

Next, I add a new public instance method with
the name ADD_PDF417 BARCODE to the class
ZCL PDF COMMAND LIST using the ABAP
Class Builder. In this method, I add the command
addPDF417Barcode to the command list:

METHOD add_pdf417_barcode .
me->add_command
('addpDF417Barcode').
ENDMETHOD .

It is important that the name of the command in
the ABAP method (the parameter of the method
ADD COMMAND) and the name of the new method
in the class PdfHandler on the Java side are identical.
The first part of adding the new functionality is now
accomplished. When I first call the add _pdf417
barcode method for a ZCL_ PDF COMMAND_LIST
and later on the PROCESS method for the list, the
command addPDF417Barcode will be executed on the
RFC server. The matching of the command name and
the method name on the Java side is done at runtime
using the Java Reflection API. The Java Reflection
API is used to fetch information about the names
and parameters of methods in the class PdfHandler.

Next, I implement the new functionality by adding
a PDF417 barcode. Figure 18 shows the Java coding
for adding a PDF417 barcode.

First, I retrieve the parameters of the command
from the CommandParametermap. The parameters

54

www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

Method Edit Goto

Litilities Enwironment System Help

I B @ SDEE

Class Builder: Class ZCL_PDF_COMMAND_LIST Change

= | 2 93 |:|'_3|“| salp |:C—)| aullE | @@ Pattern Pretty Printer | Signature
Ty. |Parameter Type spec. Cescription
TEXT TYPE ZPARAM_WALLIE Parameter value for command
E KPOS TYPE ZFLOAT Parameter value for command
ke [yPOS TYPE ZFLOAT Parameter value for command
(s |SCALE TYPE ZFLOAT Parameter value for command
[k [PacE TVPE INT4 DEFALILT 1 Matural number
Mettiod 80D _PDF417_BARCODE Active (revised)

EE

METHOD add_pdf417_harcode .

me-=add_command (' addPDF417Barcode ') .

me-=add_int_parameter { parameter = ‘page’ intvalue = page).
me-=gdd_float_parameter(floatparameter = 'xpos' walue = xpos).
me-=gdd_float_parameter(floatparameter = 'ypos' walue = ypos).
me-=gdd_float_parameter(floatparameter = 'scale’ walue = scale).
me-=add_parameter{ parameter = 'text' walue = text).

ENDHMETHOD .

Li 7, Co 33 Ln1-Ln10of10lines

Figure 19 Parameters and coding for method ADD_PDF417 BARCODE of class ZCL_PDF_COMMAND _LIST

used are the number of the page where the barcode
should be placed, the text that is encoded in the
barcode, the X and Y coordinates of the insertion
point of the barcode, and an overall scaling factor

for the barcode image.

With the Java coding now complete, I next need
to adapt the ABAP coding. For each of the five
parameters used in the Java coding, I have to add a
parameter to the signature of my ABAP method and

coding. As a last step, I add a call of the method
ADD PDF417 BARCODE to the report Z PDF
ENCRYPT just before the PROCESS method is
called. See Figure 20 on the next page.

Finally, I run the report using the same input
parameter as in the previous example. When I open
the generated PDF in Acrobat Reader, a big PDF417
barcode is placed on the first page of the document,
as shown in Figure 21 (on the next page).

a call to ADD_INT PARAMETER, ADD FLOAT

PARAMETER, and ADD_PARAMETER.

Now I only have to add these parameters to the
method ADD_PDF417 BARCODE on the ABAP
side. Figure 19 shows the parameters and the new

You now have all of the tools you need to create
the ABAP report that will leverage the functionality in
the RFC server, and to add any additional capabilities
you need to the RFC server. Once your ABAP report
is ready and you’ve made any necessary modifications

No portion of this publication may be reproduced without written consent. 55

SAP Professional Journal * May/June 2007

command_Tl1ist->add_pdf417_barcode(page

1

text 'Hello this is a test'
YpOs '210.0'

xpos = '110.0'

scale = '500.0"').

Figure 20 Coding for calling the method ADD_PDF417_BARCODE in the report Z_ PDF_ENCRYP

Figure 21

¥ Adobe Reader - [concat_doc.pdf] SI=] E3
L) Rile Edt Miew Document Tools indow Help =7 x|
i - I A RN SRS M NN BTN
¥ | @ Help - !
4
8 =
2
&
I This is a PDF from a Smart Form
i
=
(e}
£
=
[X)
s
£
]
T
[
£
€
(=]
(3
=
D =D tefz b Pl | @ W= m

A PDF417 2D barcode placed on the first page of a PDF

56

www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Improve your business processes with quick and easy enhancements to PDF documents

Destination 5 m information Tes

RFC Destination PDF_SERVER

Testconnection Unicode Test

RFC destination
Connection type T

FOF_SERVER
TCR{IP connection

I[4]»]

Description
Server for madifying PDOF files

Technical zettings i LogoniSecurity i Special Options

Activation Type
(! Btart on Application Server
(' Start an Explicit Host
(' Start on Frant End YWaork Station

@ Registered Senver Frogram

Registered Server Program
PDF_SERVER|

Program 1D

Gateway Options
Gateway host
Gateway senvice

Ay
D

Figure 22 Creating an RFC destination using transaction SM59

to the RFC server, you are ready to deploy the
RFC server and start taking advantage of the
PDF Toolbox.

Deploying the RFC server

To deploy the solution, you need the following
components:

e Java 5 Runtime Environment. I use the Java
Runtime Environment delivered with SAP
NetWeaver Developer Studio EE 5 Edition
(Build 1.5.0 _08-b03).

* SAP (JCo), which is available from the SAP
Service Marketplace (www.sap.com/services/

index.epx). | have used version 2.0.12;
however, all versions from 2.x and higher
should work.

* A compiled version of the iText Java library
(version 2.0.1) and a compiled version of the RFC
server, both of which are available for download
from www.SAPpro.com.

For the installation, you have to complete the
following three steps:

1. Create an RFC destination in your SAP system.
The RFC destination is created using transaction
SM59. For this purpose, create a new RFC des-
tination PDF_SERVER with the connection type
TCP/IP using transaction SM59. As shown in
Figure 22, select Registered Server Program as

No portion of this publication may be reproduced without written consent.

57

SAP Professional Journal * May/June 2007

& D:\PDFServer S [=]
File Edit “iew Favorites Tools Help .-;"
G Back - J ? Search Folders »
Address [) DAPDFServer | EdGe

() bemailjdk 15135 jar
= beprov-jdk15-135 jar
=) itest-2.0.1 jar

%] bbrfe32.di

Q pdfzerver. jar

1] pdfserverconfig. xml
Q zapjco.jar

ﬂ zapjcorfe. dil

1] startserver.cmd

9 objects 10.2 MB lj Iy Carnputer

Figure 23 Installation directory of the RFC server

the activation type and use PDF_SERVER as
the program ID.

2. Assemble the server files. First, create a new
empty directory, and then copy the files librfc32.dll,
sapjcorfc.dll, and sapjco.jar, which are shipped with
SAP JCo, into the new directory. You should
always use an empty directory to avoid any prob-
lems with already existing files. Then, extract the
files iText-2.0.1.jar, bcmail-jdk15-135.jar, beprov-
jdk15-135 jar, startserver.cmd, pdfserver.jar, and
pdfserverconfig.xml from the downloaded ZIP file.*
Your directory should now look like the one shown
in Figure 23.

3. Edit the configuration file. The configuration
data of the RFC server is stored in an XML file
with the name pdfserverconfig.xml. There are just
three configuration parameters: gwhost and gwserv

* Since version 2.0, iText uses the Bouncy Castle Crypto API for Java
(available from www.bouncycastle.org). for this version you must
extract the files bemail-jdk15-135 jar and beprov-jdk15-135 jar.

are the parameters for connecting to the SAP
system,’ and the third parameter is loglevel. For a
production server, set loglevel to error; if you are
interested in detailed information (e.g., the name
of the methods that are executed by the RFC server
and the names and values of the parameters that
are passed to these methods), set it to info.

Now you can start the server by double-clicking
on the file startserver.cmd. A command shell similar
to the one shown in Figure 24 should appear. (If the
command shell doesn’t appear, go back and check
your settings.)

Conclusion

As you have learned in this article, the PDF Toolbox
enables an ABAP developer to use some of the more
advanced features of the PDF technology, such as
encrypting a PDF file, concatenating two PDF files,
and adding attachments to a PDF file, without having
to go through the tedious process of making the modifi-
cations in Adobe Acrobat itself — instead, the changes
can be made programmatically, on the fly. PDF files
are actually manipulated by an RFC server that has
been implemented in Java, which uses the open source
library iText to perform the modification operations
on the PDF files. To ease the use of the RFC server,

I have written two ABAP classes that provide a simple
interface to the methods exposed by the RFC server.
Furthermore, it is easy to extend the RFC server to
include some of the more advanced functionalities of
the iText library, but for this you have to have some
Java skills and some knowledge of the iText library,
which is used to actually modify the PDF files.

* Tdon’t go into the details of these parameters. Ask you SAP administra-
tor for the correct values for your SAP system.

o] C:AWINDOWSAspstem32icmd. exe

:~PDFServer>java com.cjastram.pdf .sap.PdfServer pdfserverconfig.xml
?.83.2887 11:19:81 com.cjastram.pdf.zap.PdfServer startServer

INFO: Configuration from file: pdfserverconfig.xml

guwhost=sapguwdB,. loglevel=error. guserv=localhost}

Figure 24 The RFC server after startup

58

www.SAPpro.com

©2007 SAP Professional Journal. All rights reserved.

