
No portion of this publication may be reproduced without written consent. 3

Put your integrated WebSphere environments into production fast

Over the last decade, PDF (Portable Document Format) has established
itself as the de facto tool for creating and exchanging electronic documents,
so much so that it is now a staple of modern business.1 Recognizing the
importance of PDF, SAP enhanced its two document output technologies
— Smart Forms and SAPscript — with conversion routines giving them the
ability to output to PDF. Internally, however, the design tools and under-
lying technologies for both Smart Forms and SAPscript were proprietary,
and conversion was an imperfect process. Therefore, in 2002, SAP initiated
a strategic development partnership with Adobe Systems in the area
of electronic forms — the result of which was SAP Interactive Forms
by Adobe.

SAP Interactive Forms — initially introduced in SAP NetWeaver ’04
and enhanced in SAP NetWeaver 2004s — integrates Adobe PDF tech-
nology right into mySAP ERP. Unlike SAPscript and Smart Forms, both
the design tools and underlying runtime components of SAP Interactive
Forms are native Adobe components generating PDFs with Adobe libraries.
The benefits are:

• You no longer need to convert documents from an internal format to
PDF, yielding an efficient printing process and fewer formatting dis-
crepancies.

• Customers gain Adobe PDF’s sophisticated, best-of-breed printing and
formatting capabilities, such as WYSIWIG form layout design through
drag-and-drop operations.

• Enhancements that Adobe makes to its own platform reach SAP
customers far more quickly.

Using SAP Interactive Forms in the
ABAP Workbench to create and
design PDF-based print forms that
address a wide range of print needs
by Markus Meisl

Markus Meisl
SAP NetWeaver
Product Manager,
Forms Technology,
SAP AG

Since joining SAP’s
implementation methodology
group in 1998, Markus Meisl has
covered all roles in SAP Product
Management, ranging from
technical documentation and
translation, through product
definition and early training,
to rollout and partner relations.
After his move to SAP NetWeaver
in 2002, his responsibilities have
focused on the rollout of SAP
forms technology, particularly
SAP Interactive Forms by Adobe.
You may reach Markus at
markus.meisl@sap.com. 1 Relatively recent enhancements to Adobe Acrobat as well as Adobe Reader and the PDF format (e.g.,

the ability to embed JavaScript field validation logic in PDF forms) have made it a viable option for
data entry in simple scenarios (e.g., time sheets, expense reports).

SAP Professional Journal • March/April 2007

4 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

SAP Interactive Forms is fully integrated into
native SAP tools to create and design forms for
printing, such as purchase orders, invoices, pay
slips, or labels. Since the first shipment of SAP
Interactive Forms with SAP NetWeaver ’04, SAP
has progressively moved toward providing all
application form templates based on the Adobe
PDF technology.

This article explains what you need to know to
get started with SAP Interactive Forms. It discusses
the underlying architecture of SAP Interactive Forms,

which incorporates many of the known principles
of Smart Forms technology. In the main part of
the article, we’ll explore how to create a simple
form using the new Form Builder. The sample
form that we’ll create will include the essential
components required in a print form process,
which are:

• Form interface: The conduit used by the
application in mySAP ERP to pass the current
system data, such as the concrete items of an
order, from your application to the form at run-
time (i.e., when the business process requires
the generation of such a document)

• Form template: The object that provides the
structure of the content and layout (that is, the
look and feel of your output documents)

• Print program: A program used in your applica-
tion to trigger the print form generation

Note that the form template consists of two
parts: the form context and the form layout. As you
learn how to design the form layout, you will also
learn about data binding, creating tables in a form,
and scripting. This article concludes with some tips
and tricks to help make your SAP Interactive Forms
experience easier and more productive.

Let’s begin by looking at the underlying structure
of SAP Interactive Forms.

Note!

This article is for developers who are familiar
with forms development, especially in the
Smart Forms environment.2 This article does
not cover Java-based interactive forms, but
rather focuses on the ABAP development
environment.

Note!

SAP is committed to protecting the investment
customers have made in existing solutions.
Because both Smart Forms and SAPscript are
integral parts of SAP NetWeaver, SAP will
continue to support all your existing Smart
Forms and SAPscript forms in addition to
SAP Interactive Forms. In 2004, SAP began a
comprehensive internal project targeted at con-
verting all existing application form templates
in mySAP ERP to the new Adobe-based solu-
tion to consolidate all forms in one technology
and comply with legal requirements in the
United States. In the future, application form
templates shipped by SAP will be created using
SAP Interactive Forms.

In mySAP ERP 2005, the existing Smart Forms
or SAPscript form template constitutes the
default setting in all mySAP ERP applications,
but you can activate any of the approximately
650 PDF-based print forms delivered through
application customizing. In general, you can
continue to use the delivered Smart Forms and
SAPscript templates if they meet your require-
ments. If you want to use new SAP-delivered
forms or create your own custom forms, it
makes sense to familiarize yourself with the
PDF-based print forms solution. 2 For more on Smart Forms, see the SAP Professional Journal article,

“Create and Maintain Forms Without Programming? It’s a Snap with SAP
Smart Forms!” (May/June 2002).

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 5

SAP Interactive Forms
architecture
You create form objects using the Form Builder.
You can access this tool in the ABAP Workbench
Repository Browser (transaction SE80) or through
the dedicated transaction SFP.

SFP was designed to resemble transaction
SMARTFORMS as much as possible to facilitate
moving to the new form solution (Form Builder is
also the name of the Smart Forms development envi-
ronment). SAP has endeavored to safeguard as many
of the proven principles of Smart Forms as possible,
such as the strict separation of data retrieval and
form layout, despite integrating technology (that is,
the Adobe PDF technology) from outside the ABAP
stack. (For more information on migrating Smart
Forms to the SAP Interactive Forms solution and

translating PDF-based print forms, see the sidebar on
this page.)

The basic process of designing a form has not
changed fundamentally. SAP Interactive Forms uses
the runtime architecture known from Smart Forms.
Figure 1 on the next page depicts the runtime archi-
tecture of SAP Interactive Forms in back-end printing
scenarios. As with Smart Forms, an application (that
is, print) program triggers the data retrieval of the
current system data from the application database.
This data is passed to the generated ABAP function
module that represents the form template. (The func-
tion module is generated upon activating the form
object in the ABAP Workbench.) Both the form
template and the application data are then passed to
the runtime component (explained next), which gen-
erates the required output and returns the actual
document, in this case, a PDF form.

Migration and translation
Two of the most frequently asked questions by SAP customers include how you migrate from Smart
Forms to SAP Interactive Forms and how you translate PDF-based print forms.

• Migration: SAP offers a migration wizard to support the tools-based migration of Smart Forms to
SAP Interactive Forms format. You can access the wizard on the entry screen of the Smart Forms
transaction through the menu Utilities → Migration → PDF-based form. After you launch the wizard,
you will see that SAP recommends certain settings for those Smart Forms elements that migrate well
and usually require only minimal subsequent work in the PDF-based form. Due to fundamental archi-
tectural changes between Smart Forms and SAP Interactive Forms, certain elements do not migrate
well, mainly the ones containing ABAP program logic.

SAP internal experience over the last three years has shown that, in most cases, it is less time
consuming and requires less development effort to carefully analyze the Smart Form, determine
which elements you need to keep, and then re-create the form in the Adobe-based solution.

One clear recommendation is to use one form template for each business form you create. This means
that conditions, which were easily integrated into a Smart Form to drive the output of different busi-
ness forms contained in the same Smart Form, need to be moved to your application (print) program
to determine the use of the different templates.

• Translation: Just like all other ABAP-based form templates, you can translate PDF-based print forms
created in the ABAP Workbench in the standard translation transaction SE63. You can find the split-
level editor for doing this in the menu under Translation → Other ABAP objects → Forms and styles
→ PDF/A.

SAP Professional Journal • March/April 2007

6 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

The difference in SAP Interactive Forms is the use
of Adobe LiveCycle Designer (or — for the purposes
of this article — simply Designer) as the tool for
creating the layout of the form and the use of Adobe
document services (ADS) as the runtime component
that generates the output formats, as illustrated in
Figure 2.

The SAP Interactive Forms solution consists of
technology provided by both SAP and Adobe.

SAP contributes:

• SAP NetWeaver Application Server: SAP
NetWeaver Application Server (AS) includes the
development environments for ABAP and Java
(ABAP Workbench and SAP NetWeaver
Developer Studio, respectively), as well as the
necessary runtime environments.

• SAP GUI: The traditional UI technology used to
access an SAP ABAP back end.

Adobe contributes:

• Adobe LiveCycle Designer: Designer is Adobe’s

design-time forms layout tool that is integrated
into the ABAP Workbench and SAP NetWeaver
Developer Studio. It enables the creation of forms
that combine high-fidelity presentation with XML
data handling.3 The easy-to-use graphical interface
of Designer enables users to quickly design forms,
maintain form templates, define a form’s business
logic, make changes, and preview forms before
they are deployed as PDF files.

• Adobe document services (ADS): ADS is a
set of runtime services that is deployed on SAP
NetWeaver AS Java, and provides a range of form
and document creation and manipulation functions
used by applications in business operations.

These services fulfill two basic tasks:

- Merge XML form templates (created using
Designer) with current SAP application data in
XML format, and convert the result to PDF.

Data retrieval

Database

Application
program

Form description

PDF-based
form template

ABAP
function
module

(generated)

activate

PDF
form/

document

Figure 1 Runtime architecture of SAP Interactive Forms in back-end printing scenarios

3 This capability comes from the Adobe XML Forms Architecture (XFA).
For more information on XFA, go to http://partners.adobe.com/public/
developer/en/xml/xfa_spec_2_4.pdf.

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 7

- In an interactive scenario, extract data entered
by an end user from an interactive PDF form,
and transfer the data back into SAP applications
using XML. (This task is not covered in this
article.4)

• Adobe Reader: Adobe Reader is the free viewer
end users need for displaying PDF forms and
editing interactive ones. Although Designer and
ADS are shipped as an integral part of SAP
NetWeaver, Adobe Reader is available for down-
load from the Adobe Web site at www.adobe.com.

ADS acts as a server-side process for generating
PDF forms. ADS was developed using the Enterprise
JavaBeans (EJB) technology and runs only on the
Java stack of SAP NetWeaver. This is important to
remember especially when all you want to do is print

your documents from an ABAP back-end system! It
means that whenever you want to use the SAP
Interactive Forms technology, you always need the
Java stack with ADS.

To make communication with ADS easy for both
ABAP and Java applications, the services are exposed
as a Web service, an open standard communication
protocol that enables applications built from both
ABAP and Java to talk to ADS easily using standard
SOAP messages over HTTP.5 But be aware that the
ADS Web service is currently used only internally in
SAP NetWeaver AS and must not be used directly.6

To further ease the lives of SAP application devel-
opers, SAP has encapsulated all of the features and
functions ADS provides in an SAP development

End-user front end

Adobe Reader

SAP GUI

SAP Interactive Forms by Adobe

Adobe Document
Services

SAP NetWeaver
AS Java

SAP NetWeaver
AS ABAP

SAP NetWeaver Application Server

Database

Java schema ABAP schema

Adobe
LiveCycle Designer

Figure 2 Underlying SAP Interactive Forms technology provided by SAP and Adobe

5 See the article, “Extend the Internal and External Reach of Your
Applications with ABAP-Based Web Services” (SAP Professional
Journal, July/August 2005).

6 For technical prerequisites for enabling SAP Interactive Forms, see the
sidebar on the next page.

4 For more information on interactive scenarios, see the SAP Professional
Journal article, “Streamline business processes and increase user pro-
ductivity with SAP NetWeaver: Build forms-based Web Dynpro
applications using Interactive Forms based on Adobe software”
(January/February 2006), which I co-authored with Marc Chan.

SAP Professional Journal • March/April 2007

8 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Prerequisites
To create PDF-based print forms, you’ll need the following components on the server and the front-
end system:

On the server:

• SAP NetWeaver 2004s with usage type Application Server (preferably a double-stack installation —
ABAP stack and Java stack installed on the same system)*

• Adobe document services (ADS) deployed and configured on the Java stack

• mySAP ERP 2005 (SAP ECC 6.0) on SAP NetWeaver 2004s

On the front-end system:

• SAP GUI 6.40

• Adobe LiveCycle Designer 7.1 (downloaded from the SAP Service Marketplace at
http://service.sap.com/swdc)

• Adobe Reader 7.0.8 (available for free from www.adobe.com)

* You can also install a standalone Java stack with ADS and configure your ABAP back-end connection to point to this standalone server.

SAP NetWeaver Application Server

Java stack

Application code (Java)

PDF object (Java)

Web services

Web services

ADS core components

SOAP

SOAP
Web services

Document
service EJB

ABAP stack

Application code (ABAP)

PDF object (ABAP)

Web services

Figure 3 PDF Object is available on both the Java and ABAP stacks

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 9

object called the PDF Object. The PDF Object is
available for ABAP and Java (see Figure 3). It
is essentially a wrapper class (in ABAP, class
CL_FP_PDF_OBJECT) that allows access to the
ADS capabilities from both the ABAP and the Java
development environments.

In general, the ABAP environment takes care of
the communication with ADS via the PDF Object.
This allows for data transfer from the back end into
the form (and vice versa in an interactive scenario).
Nevertheless, a developer can also call the PDF
Object directly from the code to execute certain
PDF-related functions on ADS.

By default, the PDF output is only used as the
preview for a print form. The actual printing is done
from one of the other output formats created by ADS,
that is PostScript, PCL, or ZPL (for Zebra label
printers). As with all legacy forms offerings, the

output files are placed in the SAP spool from where
they are further processed in the standard SAP way.

Figure 4 provides a complete overview of the
SAP Interactive Forms architecture.

The sample form template that we are going to
build will include a form interface, form template,
and print program — the essential components
required for creating a PDF-based print form. The
data that is used in the example form is based on the
SAP IDES flight data model. The goal of the form
is to produce a PDF that lists flights booked with a
particular customer sorted by airline companies. To
create this form, we will adhere to the basic process of
designing a form, which includes the following steps:

1. Create a form interface.

2. Create a form template (form context and form
layout).

Business
Communication

Services

Costs

Post
Processing
Framework

Costs

Forms Processing
Design Time

Application

Designer

Trust
Configuration

Font
Manager

XML
Form

ADS
Licensing

P
D

F
 D

oc
um

en
t (

ob
je

ct
)

W
eb

 s
er

vi
ce

Costs

Control
EJB

www

Costs

SAP GUI

Certificate Store

Forms
Processing
Framework

PDF
Manipulation

Adobe Data
Manager

Repository
ABAP stack

Spool

Te
m

pl
at

e

S
ch

em
a

an
d

te
m

pl
at

e
Java stack

Figure 4 Complete overview of the SAP Interactive Forms architecture

SAP Professional Journal • March/April 2007

10 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

3. Create a print program (transaction SE38).

4. Execute the print program and generate the PDF
document.

You can create a form object (interface or form
template) in the ABAP Workbench Repository
Browser (transaction SE80) or the dedicated transac-
tion SFP (a Basis transaction, with FP standing for
Forms Processing), which provides direct access to
the Form Builder, the environment used to build a
print form.

In the ABAP Workbench Repository Browser, the
two form objects have been added to the standard and
context menus, so you can create them in the same
way as any other object in the ABAP Workbench. For
simplicity’s sake, we will build the sample form in
transaction SFP.

Step 1: Create a form interface
You define a form interface to send data from your
application to the form. The form interface is a part
of the interface form object. You define the form
interface in the Form Builder. You insert fields as place-
holders that define the appearance and location of
certain data, such as data from the database tables of
your application, data provided by the SAP system, or
data you have calculated or implemented yourself.
These fields are replaced by the current data at run-
time. The form interface is structured in the same
way as the interface of a function module in the system.

To create an interface form object in the Form
Builder, you select the Interface radio button, and
click on the Create button. The Create Interface

dialog box appears (see Figure 5). You enter a
name (for example, ZFP_EXAMPLE). You can
enter a description of the object you are creating
(for example, Sample interface). Next, you need to
select the appropriate interface type. The one you
choose will depend on what type of form you are
creating.

There are three types of interface from which
to choose:

• ABAP Dictionary-Based Interface: You choose
this type when you create a PDF-based print form.
You define this interface in the next step in the
Form Builder.

• XML Schema-Based Interface: You use this type
when you create interactive PDF forms with Web
Dynpro for ABAP. Instead of using the Form
Builder to define the interface, the Web Dynpro
framework generates the schema in the back-
ground based on the Web Dynpro context.

• Smart Forms-Compatible Interface: You use
this type when you migrate a Smart Form to SAP
Interactive Forms. A Smart Forms-Compatible
Interface contains certain parameters that are
considered obsolete (for example, the ones offered
in the Tables option). You should try to avoid using
this interface type for the new forms you want
to create.

After you specify the name of the interface, enter
a description, and select the type, you click on the
Save button. The Change Interface screen for the
sample form opens, shown in Figure 6. The Pro-
perties tab gives you the opportunity to change
the type of interface you will use for the form.

Figure 5 Create Interface dialog box in the Form Builder

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 11

Next you need to switch to the Interface tab (see
Figure 7). The tab provides the general structure of a

form interface. Here is where you specify the parame-
ters and values needed for your form.

Figure 6 Properties tab in the Form Builder

Figure 7 Interface tab in the Form Builder

SAP Professional Journal • March/April 2007

12 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Several standard parameters are part of any
form interface. For example, you use import and
export parameters to manage the input and output
of the data via the form. Let’s look at some of
these parameters:

• Under Import, you find the standard parameter
/1BCDWB/DOCPARAMS, which provides the
foundation for the interface. You cannot change
this parameter, but you can specify the values
you want for this parameter in your application
program (which in this case is a print program) —
to set, for example, the value for the language
settings of your form. You can display the structure
of this import parameter in the ABAP Dictionary

by double-clicking on SFPDOCPARAMS, which
is the type name (see Figure 8).

• Under Export, you see the standard parameter
/1BCDWB/FORMOUTPUT of the generated func-
tion module. One way to use this parameter in
your application program is to make the generated
form available as a PDF for further processing by
sending a copy of an invoice by email or archiving
the form in PDF format. To see the export parame-
ters, as shown in Figure 9, double-click on
FPFORMOUTPUT.

• Under Exceptions, you find the standard excep-
tions used by the generated function module:
USAGE_ERROR, SYSTEM_ERROR, and

Figure 8 Specifying import parameters

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 13

Figure 9 Specifying export parameters

Note!

The PDF form is generally used as a preview format, but you can send a PDF form via email or choose to
archive it. The actual printing from the spool happens based on the other output formats generated by ADS
— that is, PostScript or PCL. (This means that in most back-end printing scenarios you will not even gener-
ate a PDF file, because normally no one looks at the preview in such scenarios.)

If you want to archive a copy of the generated PDF form for legal or other purposes, you need to enable
your application accordingly. As SAP and customer applications use a wide variety of document or content
management systems, SAP NetWeaver cannot provide a standard persistence or archiving mechanism for
the generated form. If you do not provide a way to store the PDF, it is discarded when you navigate away
from the form.

SAP Professional Journal • March/April 2007

14 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

INTERNAL_ERROR. As with any exception,
you can add or append specific criteria to raise
an exception.

As a developer, you know that you can create your
own import and export parameters (using the Insert
Row or Append Row icons and filling the correspon-
ding fields). In the Form Builder, however, you can
also work with:

• Global Definitions: To define your own fields to
be used anywhere in the form. You can use global
data, types, and field symbols.

• Initialization: To execute ABAP program code
before a form is processed. You can initialize the
global data, for example, to convert selected appli-
cation data. You can also select additional data
without having to make changes in the application
program.

• Currency/Quantity Fields: To specify currency or
quantity references in your interface. In the
example, we want to use the two references
shown in Figure 10.

Figure 7 (on page 14) shows the import parameters
needed for the sample form. (In addition to the stan-
dard import parameter, /1BCDWB/DOCPARAMS, we

need to enter four other database tables, which the
print program needs to access the data from the back
end.) The default export parameter is acceptable in
this case. We don’t need any additional parameters in
the other categories of the form interface.

Now that we’ve created the form interface and
specified the necessary parameters, we can go on
to the next step.

Step 2: Create a form template
To create a form (template) object in the Form
Builder, you select the Form radio button in transac-
tion SFP, and click on the Create button. The Create
Form dialog box appears (see Figure 11). You enter a
name (for example, ZFP_EXAMPLE). You can enter
a description of the object you are creating (for
example, Sample form template). Next, you need to
assign the form to an existing interface. Place the
cursor in the Interface field, press F4, and select the
relevant interface (in the example, the ZFP_
EXAMPLE interface we created in the previous step).
To complete the process of creating the form template,
click on the Save button.

As mentioned earlier, the form template consists
of two parts: the form context and the form layout.
First, we will look at the form context.

Creating the form context

The form context is the link that binds the form inter-
face to the layout. In essence, the form context is the
data model for your form. After you create the form
template and choose Change, you are automatically
sent to the Context tab of the Form Builder.

Figure 10 Specifying export currency/quantity parameters

Note!

The Form Builder editor for creating the param-
eters does not support all features of the ABAP
Workbench; for example, it does not support
forward navigation. This environment is
designed for simple tasks and therefore does
not handle a highly complex one.

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 15

Let’s take a moment to review the different
sections of the Context tab, as shown in Figure 12.

In the top left section of the Context tab, you see
the interface we just created. It is an exact reflection
of what we completed on the Interface tab. This
section is the main foundation for specifying which

data is copied from the interface to the form. You
include this data as a node in the hierarchy structure
on the right. On the Context tab, the Interface infor-
mation is visible in a read-only format — that is, if
you want to make changes to the interface, you need
to do so in the Interface tab of the Form Builder (refer
back to Step 1). After you make your change there and

Figure 12 Creating a form context

Figure 11 Create Form dialog box in the Form Builder

SAP Professional Journal • March/April 2007

16 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

switch back to the Context tab, your changes are
reflected in the Interface section on the left.

When you select a node in the Interface section
by double-clicking on it, its related information, which
comes from the ABAP Dictionary, appears in the
bottom left section of the Context tab (for example,
double-clicking on BOOKINGS under the Import
node displays details on this database table). As with
the interface information, you cannot make any
changes from here.

The more important part of the Context tab is the
context itself in the top right section. As previously
mentioned, the form context constitutes the data
model of your form. While the form interface is
considered the maximum amount of data available for
use in a form, the context is supposed to slim down
that data amount to the data actually needed in the
business form you want to print. Defining more
narrowly which data you need in the form speeds up
the time required for processing the form at runtime
and therefore enhances performance. In the hierarchy
of the Context section, you decide on the form logic
by specifying conditions for processing the nodes. As
in Smart Forms, a node or all subnodes are only
processed if the particular conditions are met. When
you first create a form, the context contains only a
top-level folder representing the context.

In general, you have two options for adding
elements (i.e., data) to the form context: dragging and
dropping existing elements from the Interface section
to the Context section or creating what you need using
a context menu in the Context section.

Our first task is to identify the nodes that will
provide the data for the sample form. We will
need data from the CUSTOMER structure and the
BOOKINGS table, as well as the Date field from the
System Fields structure. (Remember, the goal of the
form is to produce a PDF that lists flights booked with
a particular customer sorted by airline companies.)

To create the form context for the sample form, we
will use the Context tab to complete the following
steps using both options for adding elements:

1. Drag the CUSTOMER node, the BOOKINGS

node, and the Date field from under the System
Fields node from the Interface section onto the top-
level node in the Context section. In the case of the
table nodes, this action generates a copy of the
node with all the subordinates nodes (representing
the fields of the table), which are flagged with a
lock graphic. This graphic shows that you cannot
delete, copy, or move generated nodes. You can
set any node that you do not need in your form as
inactive, which is recommended from a perfor-
mance point of view because the content of in-
active nodes is not passed to the form at runtime.

2. Next, we need additional data regarding the flights
that have been booked. We need to make sure that
the data from the CONNECTIONS table will pass
through the BOOKINGS table, as each booking is
related to a specific flight. Drag the CONNEC-
TIONS table onto the BOOKINGS node in the
Context section to nest it. This move automatically
creates a generated node CONNECTIONS at a
lower hierarchy level in the structure.

3. Because we want to provide the total cost of all
bookings for a specific customer on the form as
well, we need data from the T_SUMS table. Drag
the T_SUMS node from the Interface section onto
the top-level node in the Context section. Double-
click on this node to display the properties for this
node in the bottom right section of the Context tab.
This works for every node in the context. In this
section, you can change some of the node proper-
ties (e.g., the name). For most nodes, you can also
assign conditions — for tables you can insert
WHERE conditions or control levels.

4. To make it clear what we use in the context, we
want to give this table a different name in the
context. Under General, change the name of the
field to “TOTALS.” This name now also appears in
the context hierarchy.

5. In order to reduce the time it takes to generate a
form at runtime, it makes sense to structure your
context according to the flow of the form (this
again is a known Smart Forms principle). Putting
nodes in the order in which they should be

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 17

processed at runtime facilitates this processing
and has a positive effect on performance. You also
want to disable nodes that are not needed — again
to facilitate processing.

To achieve the best structure for the sample
form, we need the ID, NAME, FORM, STREET,
POSTBOX, POSTCODE, CITY, COUNTRY,
REGION, and TELEPHONE fields from the
CUSTOMER structure. From the CONNECTIONS
table, we need the FLTIME, DEPTIME, and
ARRTIME fields. In the TOTALS table, we need
to disable all nodes, except FORCURAM and
FORCURKEY.

Expand the tables and structures in the context,
and then disable the nodes not needed. As shown
in Figure 13, all the fields in the BOOKINGS
table, except CARRID, CONNID, FLDATE,
FORCURAM, and FORCURKEY, have been
deactivated. (Use the context menu on each node
to deactivate it. To make multiple selections, press
Ctrl+Shift as you click to select the fields.)

Figure 13 Specifying the fields for the form context

Note!

For greater clarity, you can rename all nodes
passed from the interface to the form context
in the context itself. This can facilitate work-
ing on the form layout. When you switch
from defining the context to the Layout tab to
design the look and feel of the form template,
the system replicates the field names you use
in the context to the XML structure of Adobe
LiveCycle Designer. These names are by
default the system field names such as
CARRID. To better identify in Designer the
fields you can use from the back end, you
may prefer to call this field “Airline Code”
(the short text from the system) in the con-
text, which would then be the name shown in
Designer. (In the sample form, we simply use
the system field names.)

SAP Professional Journal • March/April 2007

18 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

6. Next, we need to create two conditions and one
WHERE condition on nodes we have already added
to the context. These conditions drive some of the
processing of the form at runtime. We need to set up
the DATA node of the BOOKINGS node so that the
price of each booking has a value. The same condi-
tion applies for the DATA node of the TOTALS
node, except that in this case it relates to the
T_SUMS table instead of the BOOKINGS table.

- To create this condition for the BOOKINGS
table, double-click on the DATA node under
BOOKINGS. In the Properties section on the
bottom right, click on the Conditions button,
and enter “BOOKINGS-FORCURAM” under

Operand, select the “not equal to” operator
under Relational operator, and enter “INITIAL”
in the second Operand field. Proceed likewise
for the DATA node under TOTALS, except
enter “T_SUMS-FORCURAM” to replace
BOOKINGS-FORCURAM in the first Operand
field. In Figure 14, you can see the condition
attached to the TOTALS node that is based on
the T_SUMS table in the interface.

- The processing of the CONNECTIONS node,
which we nested under the BOOKINGS node
in the Step 2, is subject to a WHERE condition
at runtime. The form should only list flights for
which the airline code and the flight connection

Figure 14 Specifying the condition for the BOOKINGS table

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 19

number of this table corresponds to the airline
code and flight connection number of the
BOOKINGS table. To create the WHERE
condition, double-click on the CONNECTIONS
node, and choose the Where Conditions button
in section below the context. Here you can
change the properties of the context nodes and
specify conditions for processing the nodes.
Depending on the type of node you want to
edit, the options provided in this area vary, as
shown in Figure 15.

7. We also need to provide address information on
the form. In the example, the information we need
is stored in Smart Forms text modules in the
system. As this information is not passed to the
form through the form interface, we need to create
the required nodes in the hierarchy structure by
manually adding the nodes using the context menu.

You can create new nodes from scratch by using
the context menus on any node in the context hier-
archy. The nodes you can create are essentially the
same ones as in Smart Forms. For the example, we
will create an address area and a footer, which will
appear on every page of the printout.

- Create two Text nodes in the context by right-
clicking on the context node under which you
want to insert the text nodes: the top-level node
ZFP_EXAMPLE for the address node, and
TOTALS for the footer node. From the context
menu, choose Create and then choose Text,
which inserts a Text node (see Figure 16).

- In the Properties section for each node, call the
nodes ADDR_INCL and FOOTER_INCL,
respectively. To assign the Smart Forms text
modules SF_ADRS_SENDER and

Figure 15 Specifying the WHERE condition for the CONNECTIONS node at runtime

Figure 16 Creating a Text node

SAP Professional Journal • March/April 2007

20 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

SF_ADRS_FOOTER, respectively, to the
nodes, select “Text Module” for the Text Type,
and then select the appropriate module in the
Text Name field. (You can include Smart Forms
text modules or SAPscript INCLUDE texts in
the context to reuse units of text stored in the
back end. This greatly reduces the maintenance
efforts for your forms.) See the footer example
in Figure 17.

Our next task is laying out the form, which we
will do in Adobe LiveCycle Designer.

Designing the form layout

Be aware that there is more to laying out a form than

determining where labels and fields physically appear
on the form. You need to create the data binding —
that is, you need to identify which data from which

Figure 17 Creating a footer that uses a text module

Note!

Covering every detail and element of the layout
of the sample form goes beyond the scope of
this article. This article focuses on the general
principles of form design in SAP Interactive
Forms and provides concrete examples to help
illustrate those principles.

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 21

back-end field is connected to which field on the
form. Through this activity, ADS is then able
to determine where to merge the system data passed
from the application (remember the architecture)
into the form.

Because we’ll have to display a long list of flights
on each invoice, we will also create a table that
displays the relevant information for each flight.

To work on the form layout, you switch to the
Layout tab in the Form Builder. This action auto-
matically launches Adobe LiveCycle Designer
inside the SAP GUI, as shown in Figure 18.7

First, let’s look at the environment in which we will
work now.

Designer is completely framed by SAP GUI, so
that you continue to work in your SAP development
environment and can take advantage of the seamless
integration of Designer into the ABAP Workbench.
As you can see, Designer has its own menu,8 a cen-
tral work area where you design the form layout,
and palettes with different features and functions
on either side of the work area.

Before we design the layout, let’s first examine the
four main palettes provided by the Designer.

7 Figure 18 shows the form template that is the goal of this article.
When you create a new form template, the work area is empty.

8 Note that the standard File menu is deactivated in the SAP environment,
because the form template is stored inside the SAP database only.

Figure 18 Specifying the form layout

SAP Professional Journal • March/April 2007

22 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Designer palettes

Figure 19 shows the Data View palette, which
displays the data you compiled in the form context
for use in your form. This display is based on an XML
schema generated automatically by the SAP back end
when you clicked on the Layout tab. The data appears
exactly as in the hierarchy on the Context tab. If you
make changes to your form context, they will be
reflected here because the schema is generated each
time you switch to Designer.

work area. Designer “understands” the type of back-
end fields used and creates a form object (form field)
in the work area that corresponds to the back-end field
type, for example, a Date/Time object for a date field,
or a Text object for the output of a long-text field
from the back end. For the sample form, we use the
drag-and-drop method only to create the Customer ID
field in the Invoice section of the form.

In contrast to the use of the Data View, the
Hierarchy palette displays all of the form elements (or
objects) that you have used in your form layout (see
Figure 20).9 Every object you place in the work area
is automatically integrated into the hierarchical struc-
ture of the Hierarchy palette. Because it provides a
complete overview of your form, the Hierarchy palette
is very useful when you have a complex form with
many form objects and need to select individual
objects on the form.

Figure 19 Data View palette in Adobe LiveCycle
Designer

Figure 20 Hierarchy palette in Adobe LiveCycle
Designer

9 Figure 20 displays the fields in the top part of the sample form, that is,
the SAP logo (StaticImage1), the sender's address section (the group of
elements entitled “Address1”), and the section entitled “Invoice” (the
group of elements entitled “Info”).

Note!

Remember the Note on page 17 that describes
changing the names of the nodes in the context?
Figure 19 shows the system field names we used.

To design the form layout, you can drag and drop
any number of fields from the Data View onto the

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 23

The Library palette groups all available form
objects in different categories. The Standard,
Barcodes, and Custom tabs are part of Adobe’s stand-
alone Designer delivery. In its own delivery, SAP has
added special objects, in particular for the integration
of PDF forms into Web Dynpro applications. (These
objects are not relevant to our exercise.)

On the Standard palette, you find the most
commonly used form objects, including (static) Text,
Text Field, and Date/Time Field to create fields you
need on your form. You use a Text Field object for
fields that can be filled at runtime by, for example,
long texts from the back end. They are basically
placeholders for texts. You use a (static) Text object
for texts that reside only in the form itself (for
example, a label “Invoice”). Static texts have no
connection to a back-end field; the information they
contain is solely available to the form itself. You use a
Date/Time Field object for fields that contain dates
and/or times fed by the back end (for example, the
date of a flight). Tables are another example of form
objects, which we’ll cover in more detail shortly.

In the sample form, we use, among others:

• An Image object for the SAP logo

• A static Text object containing floating fields (i.e.,
variables) for the sender’s address

• Several static Text objects for the labels in the
Invoice section

• Static Text objects for addressing the recipient of
the form (“Dear Sir or Madam…” and “Best
regards…”)

• A Table object containing static Text objects in the
header row and Text and Date/Time Fields in the
body row

The Object palette is the most important one for
the form layout (see Figure 21 on the next page).
With the Object palette (as well as with the Border
and Layout palettes), you configure each of the form
objects you place on the work area. Although you use

the Border and Layout palettes to set the properties for
the object’s look and feel and its location on the form,
you use the Object palette to:

• Determine the data from the back-end system, if
any, that will appear in the form as part of the
particular object using the Binding tab. (This is the
data passed to the form through the interface and
the context.)

• Specify the field type, caption, and other appear-
ance-related properties for the particular object you
are configuring using the Cell tab.

• Determine the character of the object (interactive
or read-only, mandatory or optional, etc.) using the
Value tab.

You can also see that in the Data View we selected
the FLDATE node, which corresponds to the Flight
Date field of the table in the work area. To the right of
the work area, the Binding tab of the Object palette is
displayed. You can see that the FLDATE node of the
Data View structure is bound to the FLDATE field in
the back end (under Default Binding).

Designing the layout of a form is more than just
positioning fields on the work area — it also has to do
with making a “connection” between the fields on the
form and the back-end sources of the data needed for
processing. This connection is called data binding.
Data binding tells the key component of the SAP
Interactive Forms architecture (that is, ADS) where
the data comes from and to where the processed
data needs to be written.

Data binding

There are essentially two ways to bind form objects
against the database fields. If you use the drag-and-
drop feature in the Data View, the action automatically
creates a connection between the field in the back
end and the field on the form template — therefore
automatically binding the data. You can also use the
Library palette to drag objects onto the work area.
Although this approach provides a real layout of the

SAP Professional Journal • March/April 2007

24 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

form, it does not create the connection needed to bind
the data. If you use the Library palette to lay out form
objects, you need a second step to manually establish
the required connection between the form and the
back end.

To create a manual data binding for a form field in
the sample form, you switch to the Binding tab on the
Object palette, and click on the arrow next to the
Default Binding field (see Figure 22). As the structure
opens, you can navigate through the nodes (which
reflect the structure of the Data View and therefore the
form context) to the node you want to bind this object
against. The binding information is then inserted into
the Default Binding field.

One important element of many business forms,
such as order lists or invoices, is tables. Tables are
useful for displaying data in a structured way so that
the reader of the information can get a good overview
of the data shown on the form. In the sample form, we
want to add a table to our form layout that has six
columns, displaying information such as the airline,
the flight date, and the price of a flight.

Designing tables

In SAP NetWeaver 2004s (and SAP NetWeaver ’04
SPS 18 or higher), you can create tables in Designer
using a table wizard.

Figure 21 Object palette in Adobe LiveCycle Designer

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 25

For the sample form, drag the Table object from
the Standard tab of the Library palette onto the work
area. Enter the values in the Insert Table dialog, as
shown in Figure 23. As you can see, there are other
functions you can use to set up more complex tables,
which do not apply to the sample form.

After you specify the values needed for the table
object, the table wizard creates the table. You can see
the structure of the table in the Hierarchy palette, as
shown in Figure 24 on the next page.

By default, all table fields are created as static
texts. Fields that are static texts are acceptable when
all you want to do is change the header titles for the
different columns. However, for the sample form, we

need to change the field types of the body row of the
table to Text Fields (for regular data fields) and

Figure 22 Manual data binding

Figure 23 Creating a table object on a form

Note!

We have only specified one body row although
presumably a form with dozens of bookings
will require more than that. For the purposes of
this article, this is the key information you
need. Setting up a table to accommodate a large
amount of back-end data at runtime is a simple
configuration step in the form template, which
we’ll not cover here.

Note!

You need to manually rename all nodes in the
Hierarchy View if you use the table wizard to
create your table. There are other ways to create
tables, but this one is the most convenient if
you look at the overall process of working with
tables in Designer.

SAP Professional Journal • March/April 2007

26 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Date/Time Fields for the flight date and departure
time fields (i.e., FLDATE and DEPTIME). To do so,
we need to select the cell (that is, the field) we want
to change in the work area or on the Hierarchy tab,
switch to the Object palette, and change the type using
the drop-down menu (see Figure 25).

For each of the data fields, we also need to create
the data binding by navigating the data structure on
the Binding tab. By way of an example, here’s what
you need to do for the Flight Date column (which you
would have to do for all columns of the table):

1. Select the third field of the header row, and
double-click on the default text inserted by
Designer. Replace this text with “Flight Date.”
(Remember that the header row fields can remain
static texts.)

2. Select the third field of the body row right under
the Flight Date field, switch to the Cell tab of the
Object palette, and change the field type from Text
to Date/Time.

3. Switch to the Binding tab of the field. Click on the
arrow next to the Default Binding field, and navi-
gate through ZFP_EXAMPLE → BOOKINGS
→ DATA → FLDATE. After you select this entry
in the menu, it appears in the Default Binding field.

4. For more clarity in the Hierarchy palette, change
the labels of the two fields (header and body row)
to FLDATE.

Work area tabs

As you may have already noticed, the work area has
several other tabs: Body Pages, Master Pages, XML
Source, and PDF Preview.

Body pages represent the pages of a form. The
back-end data you display in a form is placed on the
body pages. Each body page derives its page size and
orientation from a master page. A master page is
essentially the background of a form. If you have
items you want to place on every page of the gener-
ated form, you need to put them on the master page. A
form can have several master pages, for example, one
for the first page of a document and another for all
subsequent pages.

In the sample form, the logo, the sender’s address,
and the Invoice section are placed on the first master

Figure 25 Changing the field type on the Object
palette

Figure 24 BOOKINGS table hierarchy

transfer data between the SAP system, Designer, and
ADS. Anything you do during form design is automat-
ically converted by Designer to this XML format and
displayed on the XML Source tab. Figure 26 shows
some of the XML code for the completed bookings
table. Although you can edit the code on this tab, SAP
recommends that you do not use this feature in the
SAP integration, because the SAP environment adds
important generated tags to the XML code, which
could corrupt the form template if they are acciden-
tally deleted.

The PDF preview function allows you to check
during form development what your template will
look like when generated as a PDF document.
Obviously, at design time the form contains no data
(so a table would not appear at all), but it allows you
to check the general look and feel of your form. To
display a PDF, Designer loads the Adobe Reader plug-
in used in Microsoft Internet Explorer.

page (i.e., these elements appear only on the first
page of the generated form). As it is quite likely that
the kind of form we want to generate contains dozens
if not hundreds of flight bookings covering many
pages, and we do not want to see the sender’s address
on each (but instead, for example, a page counter such
as “Page X of Y” on every subsequent page), we have
created a second master page, which ADS uses
as the template for every page after the first page of
the generated form is completed. This second master
page contains the logo, the page counter, and the footer
we inserted in the context. The footer will appear on
every page, because it is also part of the first master
page. The body page of our example contains the
salutation and introductory text, the table, and the
final greeting.

As mentioned at the beginning of this article, SAP
Interactive Forms is based on Adobe’s XML Forms
Architecure (XFA) — that is, the XML format used to

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 27

Figure 26 Displaying the XML code of the BOOKINGS table

SAP Professional Journal • March/April 2007

28 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

Script editor

The script editor does not apply to our example form,
but given the significance of certain business logic in
a form, it is important for you to know about.

To create limited business logic inside the form,
which can only be executed at runtime when the back-
end data has been merged with the template (for
example, calculations such as additions of values in
certain fields), you can use the script editor in
Designer, which is located right above the work area.
The Adobe PDF technology supports scripting in
JavaScript and FormCalc, an Adobe proprietary
language that allows you to execute spreadsheet-type
functions.

Although scripts can be quite extensive, it is
recommended that you keep them short because
scripting increases the size of the PDF and the time
required to generate the output formats.

After we have finished the form template (form
context and form layout), we can activate it. Similar to
those in Smart Forms, system checks run on the
different parts of the form (i.e., the interface and the
context). Other checks are possible by executing a
print program that calls the form and then provides a
preview of the form with data.

Step 3: Create a print program
As with Smart Forms and SAPscript, an application
needs to provide a print program that calls the gener-
ated function module representing the form.

A typical print program contains five parts:

• A SELECT statement to retrieve the correct data
from the database

• A function call FP_FUNCTION_MODULE_
NAME to retrieve the name of the generated
function module

• A function call FP_JOB_OPEN, which opens a
spool job and starts the form processing

• A function call of the generated function module
as well as a loop over the selected data

• A function call FP_JOB_CLOSE to close the
spool job

Although the details of the development of the
print program needed for the sample form are beyond
the scope of this article, you can find the required
code for our print program for download at
www.SAPpro.com.

With the form and print program complete, we
are ready to execute the program and see the form
in action.

Step 4: Execute the print
program and generate the
PDF document
After you have completed your application (or print)
program, you should run it to test the data retrieval
and form generation capabilitities. In transaction
SE38, you execute the corresponding report. Testing
the sample form takes you to the screen shown in
Figure 27. Here, enter the name of the form (i.e.,
ZFP_EXAMPLE), and click on Execute ().

Next, on the Text Function Module screen and
then on the Print Preview screen, click on Execute
and Print Preview, respectively. See Figure 28 for a
preview of the generated form in PDF format in the
SAP GUI.

As you can see, using SAP Interactive Forms
provides a flexible alternative to and complements the
proven functionality of Smart Forms and SAPscript.

Tips & Tricks
Here are some tips and tricks that will help to make
your SAP Interactive Forms experience easier:

• If you work with a team of form developers and
want to reuse certain form objects in Adobe
LiveCycle Designer, you can create, save, and
share such elements. For example, you may need
to use the same header layout (which consists of

Using SAP Interactive Forms in the ABAP Workbench to create and design PDF-based print forms that address a wide range of print needs

No portion of this publication may be reproduced without written consent. 29

Figure 27 Sample program for forms generation

Figure 28 Previewing the sample form

SAP Professional Journal • March/April 2007

30 www.SAPpro.com ©2007 SAP Professional Journal. All rights reserved.

graphic elements such as lines, specific colors, the
title of the form, and the company logo) for all
your forms. To make such a header reusable,
arrange these elements in the work area, group
them (press and hold the Ctrl key while you click
on each element), and then drag the group onto the
Library palette. In the dialog that appears, enter a
name and a description for your custom object, and
then assign it to a Library group tab. You can also
create your own tab for your custom objects.
Because this only saves the object locally on your
computer, you need to place it on a shared server
to make it available to other form developers, who
simply point their corresponding Library tab to the
server by editing the Library group properties.

• To meet its enterprise readiness and supportability
goals, SAP provides extensive logging and tracing
capabilities for SAP Interactive Forms, especially its
runtime. If you go to the Settings menu on the SFP
entry screen, you can select a Very Detailed Trace
and save all relevant runtime information (including
the form template and the runtime data file) in a PDF
generated by ADS (see Figure 29).

• Using XML as the basis of communication (in our
case for all processes between the SAP environ-
ment and ADS) requires, by definition, a certain
administrative overhead compared to mere ABAP
processing, which may result in slower perform-
ance for certain forms. In mySAP ERP 2005, SAP
recommends that you use a double-stack installa-
tion of SAP NetWeaver (that is, the ABAP and the
Java stack on the same physical system) to be able
to take advantage of all performance-related
enhancements shipped with this release.10

• SAP Interactive Forms is currently subject to some
release restrictions in both SAP NetWeaver ’04 and
2004s. Before starting a project with PDF-based
print forms, familiarize yourself with these restric-
tions, which are documented in SAP Notes 863893
and 894389 for ’04 and 2004s, respectively.

You can get more tips and tricks and contact other
developers through a dedicated SAP Interactive Forms
site at http://sdn.sap.com/irj/sdn/interactiveforms.

Conclusion
If you are familiar with Smart Forms, you’ve seen
throughout this article that SAP and Adobe have
upheld many of the Smart Forms principles in transac-
tion SFP. This should make it easy to transition your
forms processes to SAP’s strategic forms technology.
Be assured that existing Smart Forms and SAPscript
forms will continue to work as before, which should
help you choose the right time for switching to the
new forms technology.

Although all the necessary foundations were
available with mySAP ERP 2004 (based on SAP
NetWeaver ’04), mySAP ERP 2005 is the release that
offers hundreds of form templates based on the PDF
technology in practically all applications.11

Although SAP ships extensive SAP Library docu-
mentation for the Form Builder, and the integrated
Adobe LiveCycle Designer also comes with detailed
documentation, you may want to first attend a training
course to familiarize yourself with the new technology.
SAP Education offers the BC480 course on a regular
basis in many training centers around the world.

Figure 29 Specifying runtime settings for your print
form

10 SAP is aware that in certain situations a double stack is not feasible and
is currently working to provide another high-performance alternative,
the so-called Remote ADS. See SAP Note 993612.

11 For a list of all PDF-based forms shipped and three documents on SAP
Interactive Forms, go to http://service.sap.com/erp and then follow the
menu path Media Library → mySAP ERP Overview.

