Ensure consistency and
synchronization across your master
data: Integrate your classification
changes into customer and vendor
master data ALE scenarios

by Anthony Cecchini

Anthony Cecchini
Independent Consultant

Anthony Cecchini is the president
of Information Technology
Partners (ITP), an SAP consulting
company headquartered in
Bridgeville, Pennsylvania.

I TP offers comprehensive
planning, resource allocation,
implementation, upgrade, and
training assistance to companies.
Anthony has over 15 years of
experience in SAP R/3 business
process analysis and SAP systems
integration. His areas of expertise
include SAP Net\Weaver
integration; ALE development;
RFC, BAPI, IDoc, Dialog, and
Web Dynpro development; and

customized Wor kflow devel opment.

Currently Anthony is working on
a mySAP ERP implementation
(ECC 5.0). You can reach him at
aj cecchini @itp-consulting.com.

| have been an SAP consultant for 15 years, and | consistently find a
similar issue at almost al customer sites | visit. Let me elaborate: The
RICE (reports, interfaces, conversions, and extensions) team creates the
standard ALE customer or vendor master data scenario to distribute master
data changes to either another SAP system or a third-party system. Because
SAP does not provide classification data associated with customer or
vendor master data in these scenarios, the team also needs to create a new
IDoc (Intermediate Document) type from the standard DEBMAS (i.e.,
customer master data) or CREMAS (i.e., vendor master data) type and
then extend that 1Doc type with a new segment to hold the classification
data. The team codes the user exit EXIT_SAPLVVO01 001* to populate the
additional segment when a new IDoc is created by the system, and config-
ures change pointers and the distribution model to manage the changes and
define the data flow, respectively.

The result? When a user changes customer data or vendor data, voilal
An IDoc is produced, the target system gets updated, and everyone is
happy. However, a problem occurs when a user changes only classification
data. No IDoc is produced at al! A typical workaround to this problem is
to instruct users to aways edit some other, unimportant customer or vendor
data at the same time. Although this approach works, it certainly isn’t the
most effective or efficient way to address the problem. What happens if a
user forgets to perform the workaround? So, how do we get the same IDoc
that is triggered when customer or vendor master data is changed to trigger
when only classification data is changed?

This article provides solutions for both of the issues described here —
i.e., including classification data in master data scenarios and triggering an
IDoc when only classification datais changed. The first half of the article
is for developers who have not yet created an extended IDoc to include

* This user exit can be found using the SMOD transaction. It is part of enhancement VSV 00001.

No portion of this publication may be reproduced without written consent. 27

SAP Professional Journal = May/June 2006

classification data. Here you will find the steps neces-
sary to create that extended IDoc. The second half of
the article addresses the second issue. Here we will
change an existing shared master data (SMD) function
module by copying the SAP original SMD and adding
the necessary coding to trigger an IDoc when only
classification datais changed.

This article is for developers who are already
familiar with ALE, ALE configuration, and the
concept of IDocs. | aso assume that you understand
the problems as stated and are looking for atechnical
how-to approach to resolve them. And although
developers will perform the steps outlined here,
administrators and managers can aso benefit from
this article — an understanding of what is at stake
and how these problems can be remedied will help
you manage and maintain master data and classifica
tion data on aregular and ongoing basis.

For the purposes of this article, | use a customer
master data scenario. We will begin “at the beginning”
and travel from configuration through code devel op-
ment to deployment. Each step in the process builds
upon its predecessor and finally converges into a solu-
tion. First let's walk through the steps needed to add

Notel

This article applies to system landscapes prior
to SAP NetWeaver ' 04. SAP NetWeaver ' 04
includes SAP NetWeaver Master Data
Management (MDM) 5.5, which eliminates
the two issues described in this article. SAP
NetWeaver MDM provides scenarios and
tools that help to consolidate, harmonize,

and distribute accurate, up-to-date customer,
vendor, and classification data without
customization. For more information on

SAP NetWeaver MDM 5.5, see the article
“Centralize, harmonize, and distribute your
master data with SAP NetWeaver Master Data
Management (MDM),” which appears on
page 97 in this issue of SAP Professional
Journal.

classification data to an IDoc. These steps must be
completed in order to perform the second set of steps
needed to trigger that same IDoc for classification-
only changes. If you already have modified an IDoc
to include classification data, you can skip the first
section, although reading through the process in
preparation for performing the second set of steps
might be helpful. And what you learn in this article
about updating customer master data applies to
updating vendor master data as well — only the
objects will change.

Adding classification data to
an IDoc

Let’s begin our first task by reviewing a diagram

of our example customer data ALE scenario (see
Figure 1). We'll use a generic master data flow that
can represent customers or vendors. The important
point is that we are using the change pointer technique
to pass master data changes to the target system.

As shown in the figure, when a change to the
master data is made, the application in which the
SAP transaction occurred creates a change document,
which tracks the change. The application analyzes the
change document and creates change pointers in the
database tables. The change pointers store the changes
in the BDCP and BDCPS database tables. Then a
user or a batch job runs the RBDMIDOC program to
generate an IDoc to transfer the change to the target
system viathe ALE layer. At this point, the IDoc is
run against the distribution model? so the change
pointers can implement any conversion or filtering
specified in the distribution model before passing the
changes to the target system via the asynchronous
remote function call ARFCDATA.

In our example, al customers are included (vs. indi-
vidual records). Our intent is to pass the changes for al
customer data to the destination, or target system (in this
example, a Siebel system), and in particular to make
sure that any associated classification data (which, in
this case, has not been changed) is also passed to the

2 Thedistribution model controls the data flow between the sending and
receiving target systems.

28

www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

Change
Document

Create/Change Master Data

\

Create Change
Document

N

Analyze
Changes

-
——
N ———

Change
Pointers

Y

I

Master Data

Classification
Data

Run RBDMIDOC

'

Master IDocs

ARFCDATA

ALE -
e ———
. L \ersion < > .
Conversion Filtering Changes Distribution
Model
e ————
- Destination

Figure 1 Generic master data flow for the example customer scenario

destination, or target system. Passing both the customer
master data with changes and the classification data
without changes to the target system ensures that all
systems (databases) are in synch.

To create the extended |Doc type to trigger the

IDoc, follow these steps:

1. Create a new segment that holds all the classifica-

tion fields.

Create an IDoc type extension for an existing
IDoc.

Add the new segment to the IDoc type extension.
Create a message type.
Link the message type to the IDoc type extension.

Turn on change pointers globally and specifically
for the message types.

No portion of this publication may be reproduced without written consent.

29

SAP Professional Journal = May/June 2006

lem Help

TH e

CBDhon HE @F

Development segments: Create segment definition
2 WG B =L el Mewfields |3

Seoment type
Short text

{BAY2/UCLVSIEBELCUST [] Qualified segment

iTh:s is how to create a new segment

Reieased

Segm. definition
Lastchanged by

Fo... [Field name |Dala element

1 ILEGACY_NO [CHAR13

RS v o

3

S

5

e =
Figure 2 Creating a new segment

7. ldentify the fields and tables for which change
pointers need to be written.

8. Set up the distribution model.
9. Set up the partner profile.

10. Configure the user exit to capture the classification
data and to append the data to the segment.

Step 1: Create a new segment that
holds all the classification fields

The segment that we need to create will hold all the
classification fields that we want to pass to the target
system (Siebel, in this case). To create a new segment,
use transaction WE31 (IDoc Segment). In the Create
segment definition screen, enter the name of the
segment type (/BAY 2/UCLVSIEBELCUST in the
example). The segment type is the name of the
segment and is independent of the SAP release; in
other words, the segment will be compatible with
future releases. Next, enter a short description of the
segment (e.g., Thisis how to create a new segment),
and then enter the names of the fields (in the example,
field LEGACY _NO with data element CHAR13) that
will be passed aong through the IDoc (see Figure 2).
Save the segment.

Note!

For the examplesin this article, | use /BAY 2/
instead of Z or Y as the prefix for the custom
objects (e.g., message types, function mod-
ules, etc.).

The new segment needs to be linked to the existing
IDoc that we want to use. But to do that, we first need
to create an IDoc type extension.

Step 2: Create an IDoc type extension
for an existing IDoc

The existing IDoc that we are going to use already has
IDoc types associated with it, but none that do what
we need them to do, which is pass the classification
data. We will create a new I1Doc type by adding our
new segment to the existing “basic type” 1Doc and
giving it a new name (customer namespace).

To create anew IDoc type extension, use transac-
tion WE30 (IDoc Type). Enter a name for the new

30

www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

Goto Utilities Environment

Development object Edit

Develop IDoc Types: Initial Screen
D 3’ S ﬁ & g'ﬁl Change requests (Organizer)
Ohj name /BAY2/UCLVDEBHASOS
Customer Master Extension for Siebel Interfaces
nsion: /BAY2/UCLVDEBMASOS
Development object .~ -
T Mew extension
& ;he ‘; >1 @) Create new I inked hasirfype DEBMASO05
_ICreate as copy Copy from extension
Linked with basic type
| Lreate successor SUccessor of extension
Administration -
Responsiole person ESLIP
Processing person ESLIP
Description
Show how to create an extended IDod
o B
Figure 3 Creating an extended IDoc type for the basic DEBMASO5 type

extended IDoc (/BAY 2/UCLVDEBMASO5 in the
example), select the Extension option as the develop-
ment object, and then click on the Create button.
Because thisis an extension of an existing IDoc, you
need to link the new IDoc type to the basic type,

which in this case is DEBMAS05, as shown in

Figure 3. Enter a description (e.g., Show how to create
an extended IDaoc), and then click on the Enter button.

Next we will add the new segment to the new
IDoc extension.

Step 3: Add the new segment to the
IDoc type extension

When you add a segment that you have created (or
modified) to the extended IDoc type, you must add
it at the correct level of the segment hierarchy in the

IDoc type. Because classification data is header-level
data, we will add our new segment after EIKNA1M.
Place your cursor on the ELIKNA1M segment and
click on the Create button. The Maintain Attributes
dialog opens, as shown in Figure 4 on the next page.

Here you enter the name of the new segment
(/BAY 2/UCLVSIEBELCUST in the example). You
a so have to indicate whether the segment is manda-
tory by checking the Mandatory seg. checkbox
(which you want to do because this segment should
always be implemented). Then click on the Enter
button to insert the new segment after EIKNA 1M,
with the fields that you specified in Step 1 (in the
example, the LEAGACY _NO field). Save the
segment. We now have a new, extended IDoc type
with a new custom segment that will be populated
with classification data via a user exit when the IDoc
is created.

No portion of this publication may be reproduced without written consent.

31

SAP Professional Journal = May/June 2006

ment object Edit Goto nvironment U

o | 2y d i Br' b1 N = (3
Create extension: /BAY2/UCLVDEBMASO05
10 [[I
Show how to extend Idoc
=1 E1KNATH MHaster customer master basic data (KNA1)
—E1KNAT1 Customer Master: Additional General Fields (KNA1)
—3E ETKNATH Master customer master basic data: Texts, header
—E ETKNVWH [T —
—r= EIKNBIH vidiniain Aunouies
——E1KNBKH master
——E1KNVAH)
——EINREL2
———E1WRF4HM Segm.type /BAY2/UCLVSIEBELCUST
—EE ETKNVKH =
L EKNEXH __| Mandatory seg.
E1KNASH Minirnurm nuimber 1 e
———ETKNKAN ; tral data (KNKA)
M b 93999999
= 1k AU e | rea data (KNKK)
L E{VCKUN Parent segment
Hier.level 2]
o | Segment editor | 3
Segment editor (F5)
Figure 4 Adding the new segment to the extended IDoc at the header level

Step 4: Create a message type

Message types ensure that the changes made to
customer, vendor, or classification data are recognized
by the target system. The message types for changes
to customer and vendor master data already exist as
part of the SAP-supplied IDocs DEBMAS and
CREMAS, respectively, so we need to create a
message type that will identify changes made to
classification data.

Tip!

You can go to http://ifr.sap.com/index.html
(the SAP Interface Repository) to find
message types and IDocs for specific objects,
such as customer or vendor objects.

To create a message type, use transaction WE81
(Logical Message Types). Enter the message type
(/BAY 2/UCLVSBCUSTRED in the example) and a
description (e.g., AH Outbound Customers), as shown
in Figure 5, and then save the message type.

The next step isto link the message type to the
IDoc type extension.

Step 5: Link the message type to the
IDoc type extension

Now we heed to link the message type and IDoc so
that when the change request is received by the target
system, the sending system will know which IDoc

to create. To create the link, use transaction WES82
(Assignment Messages for IDoc Type). Enter the

basic type (in the example, DEBMASD5), its extension
(/BAY 2/UCLVDEBMAS05), and the message type

32

www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

DL nnaa

2/ dHE . B @
Dispiay View "EDI: Logical Message Types”: Overview
PEREBE
| |Message type |short text m
| [7Bavarmatias 'bay2 test [+]
| |/BAY2/UB/DEBMASE3 81 EH&S Reduced Customer Master i
| |rBav2/uB/maTiASE3 61 Reduced EH&S Material Master L

/BAY2/UBLV_867 EDI-867 - Inbound for Pharma

/BAYZ2 [UBHFRTBILL Tranzact Freight Bills (EDI 810 Inbound)

/BAY2 [UCHINUPDATE EDI 816 - INBOUND

/BAY2 [UCLL_INVRECON

/BAYZ2/UBHGRDETAIL Goods Received Details to Tranzact - (EDI 858 GR Qutboul
{BAY2 [UBSHPMNTSTAT Shipment Status (EDI 214)
[BAY2 [UBVBIDAWARD Coniracts:Bidaward
| /BAY2 [UBVCHARGERECON Contracts:Chargebackrecon
| /BAY?2 /UBVCHGBCK Contract: Chargeback
| JBAYZ2 [UBVGIDETAIL Goods Issued Details To Tranzact - (EDI 858 Gl Outbound]
| /BAY2 /UBVPROACT Product achivity data for PH-DIS (852-1)
|
|

Message Type for Inventory Reconciliation Process to AS/4

/BAY2 [UCLVRESALE Detail 867

BAY2 /UCLVSBCUSTRED AH Outbound Customers

_IFBAYEJ UCLV_CUSTFLG Sales Rep Assignment Message

(][]

oio|

D]

Figure 5

(/BAY 2/UCLVSBCUSTRED). You must aso specify the
current release, which is SAPR/3 4.6C in the example.

This step enables the partner profile (which we'll
discuss in Step 9) to check the triggered I1Doc for the
message type that describes the data being passed.

Next, we need to turn on the change pointers. First,
we need to turn on the change pointers globally so that
when the sending system has been natified of a change,
it can accept the data. We also need to turn on the
change pointers for the specific message type so that
the changes to the fields and data elements specified in
the message type can be passed when a change occurs.

Step 6: Turn on change pointers
globally and specifically for the
message types

We first need to turn on change pointers globally so

Creating a message type for the extended IDoc

all changes are tracked. The changes will be recorded
in table BDCP. Use transaction BD61 (Activate
Change Pointers). Specify the activation status by
selecting the Change pointers activated - generally
checkbox, as shown in Figure 6 on the next page.

Next we need to turn on the change pointers for
our message type. Use transaction BD50 (Activate
Change Pointers for Message Type). In the display
screen, make sure there's a checkmark in the Activity
column next to the message type (in this example,
/BAY 2/UCLV SBCUSTRED), as shown in Figure 7
on the next page.

Step 7: Identify the fields and tables
for which change pointers need to
be written

Next we need to tell the SAP system which fields and
tables (i.e., newly created or modified) should have a

No portion of this publication may be reproduced without written consent.

33

SAP Professional Journal = May/June 2006

AH e DHE

o BE @B

Activate Change Pointers Generally

Artivafion sfats |

IZ Chianye puinlers dadivaled - yenerally

Figure 6

Turning on change pointers globally

B anan @mE
Display View "Activate Change pointers for Message Type": Overview
E
 |message ype Activ E‘
[BAY2/UB/DEBMASE3_B1 s
[BAY2/UB/HATHASO3_61 =R~
| [fEAvZrucLveEcostRED, 00 (@) @ |
' |/BAYZ/UCLV_CUSTFLG I3
ADR2MAS O
ADR3MAS O
| [aprmas =
IARTMAS |
|assmop i
IASSORTHENT i
Figure 7 Turning on change pointers for the message type

change pointer written for them. Use transaction
BD52 (Activate Change Pointer Per Change
Document Item), and enter the message type for each
field that should trigger a change pointer, or (as|
usually do) cut and paste the information from the
standard message type. Figure 8 shows the fields

in the /BAY 2/UCLV SBCUSTRED message type.

Step 8: Set up the distribution model

The distribution model provides different views of the
logical flow between systems. In this case, we need
to specify the Siebel system as the target system. To
set up the distribution model, use transaction BD64

(Maintenance of Distribution Model). Setting up the
distribution model is part of the ALE layer, which
uses the distribution model to control the flow of data.
Figure 9 shows the configured distribution model.

Next we're going to set up the partner profile,
which identifies who can exchange messages with the
back-end system and which port will be used for the
exchange (setting up a port is beyond the scope of
this article).

Step 9: Set up the partner profile

The partner profile enables the communication

34

www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

noog 2=

EER
Tessane ype! /BAY2/UCLVSBCUSTRED
Change document items for message toe
| Object |Table name Field name
| |oes1 KnA1 IBNRED [+]
| IpeeI KNAT AUFSD hd
| jpEeI KNAT KEY
| |peex KNA1 KNURL
N =3 KNAT KTOKD
| [pEBI KNAT KUNNR
| |pee1 KNAT LAND1
| |peex KNAT LIFSD
| |pesr KNAT LOEVH
| |pEBT KNAT [NAnET
Figure 8 Identifying the table and fields included in the message type

et

0 eae

Distribution Model Changed

“ T @ B B ¥ Filter model display | [] Create modelview |||] AddBAPI | |] Add message type

| Distribution Madel
= B8 SAP to Siebel
5 E Deployment 3 .04 QA Client 470
= [mMosERIES
Dy /BAY2IUCLYSBCUSTRED

Description
Technical name: MG_U8Q470
Technical name: USQMAT0
Taechnical name: MQ_USEMATO
AH Qutbound Customers

Figure 9 Setting up the distribution model for the ALE configuration

between the systems so the data exchange can happen.

In the partner profile, you identify the systems that
are involved in the exchange (i.e., the “partners’) and
the port that will be used to facilitate the exchange.
To begin, use transaction BD82 (Generate Partner
Profiles).

The profile in Figure 10 (on the next page) shows
that we are using the standard DEBMAS05 I1Doc, the
extension is/BAY 2/UCLVDEBMAS05, and the
message type is /BAY 2/UCLV SBCUSTRED. Also
indicated in the profile is that we are using a transac-

Note!

The partner profileis part of any normal 1Doc
configuration and may apply to EDI as well
asALE.

tional RFC (tRFC) port connected to a third-party EAI
tool, in our case, the Siebel system.

No portion of this publication may be reproduced without written consent.

35

SAP Professional Journal = May/June 2006

Partner profiles: Outbound parameters

@ JIH eee LR anod BE @
Partner profiles: Outbound parameters
'®
Partn.number HO_UBEH4TO MQSERIES
Parin type Ls Logical system
Partn funct
& Message ype LBAY2JUCLVSBCUSTRED AH Outbound Customers
Message code
Message funclion || Test

Outbound options | Message Control | Postprocessing: permitted agent | Teleo..|j, [+]» I

Receiver port ADDooUoL 38
Packetsize 1

Transgactional RFC maglink

Oulput mode
@ Transfer IDoc immed.
() CollectiDocs

Quiputmode 2

IDoctype
Basicype
Extension

DEBHASHS
[BAYZ (UCL VDERHASAHS

Customer master data distnb_
Customer Master Extension ...
View

[] Syntax check

Seg Release in IDoc ype

Figure 10

Setting up the partner profile for the ALE configuration

@ T i @eO@ DHB PDoAB

() Iy

Display extension: /BAY2/UCLVDEBMASO05
Bl = &

F Customer Master Extension for Sisbal Interfaces
= ETKNAIN

Haster customer master basic data (KNA1)

—3 /BAY2/UCLVSIEBELCUST Extension for Customer Haster Data for Siebel
TBAYZ TUCLVSTERELCUST_LNUM Legacy Number for Siehel Tnterfaces
TBAYZJUCLVSIEBELCUST_PHIN Primary HIN's or Si1ebel lntertaces
JBAY2JUCLVSIEBELCUST_SHIN Secondary HIN's or Siebel Interfaces
JBAY2JUCLVSIEBELCUST_SID Legacy Number For Sisbel Interfaces
——E1KNATY Customer Master: Additional General Fields (KNA1)
—3 E1KNATH Haster customer master basic data: Texts, header
—E E1KNVH Hastler customer masler sales dalta (KNVW)
—E E1KNEIH Haster Customer MAaster Company Code (KNB1)
ETKNEKH Master customer master bank detalls and bank master
——E1KNVAN Hagter customer master unloading point (KNVA)
E1WRF12 Segment for plant/receiving points
——E1WRFAN Segment for plant/departments
—D E1KNVKN Master customer master contact person (KNVK)
——E1KREXN Haster customer master export data
——E1KNASH Haster customer master additional EU Lax number
E1KNKAH MASTEr CUSTOMEr MASTEr crediT MAnAgement central data (KNKA)
—E ETKNKKH Master customer master credit mgmt control area data (KNKK)
E1VCKUN Customer Master: Credit Card Data

Figure 11 Displaying the characteristics of the extended IDoc

36 www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

Let's take a closer look at the extended IDoc using
transaction WE30 (IDoc Type). Figure 11 shows an
overview of the characteristics of the extended 1Doc.

Asyou can see, we have created a custom segment
to hold all of the characteristics of the customer class.

Step 10: Configure the user exit to
capture the classification data and
to append the data to the segment

Remember the user exit mentioned at the beginning

of the article, EXIT_SAPLVVO01 001? Thisiswhere
you encapsulate the code by the message type and
insert the fields from the classification data. There
are several BAPIs available for doing this— one is
BAPI1_CLASS_GET_CLASSIFICATIONS, and another
would be BAP1_0BJCL_GETDETAIL. The BAPI you use
will depend on your specific business requirements.

Figure 12 is an example of the code needed for
capturing the classification data and appending it to
the custom segment. As you can see, this example
USeS BAPI_CLASS_GET_CLASSIFICATIONS.

TYPE ¢ VALUE "KNA1-".

CONSTANTS: c 011(3) TYPE klassenart VALUE "011°,
c_knal(4)
DATA: i_class_objects LIKE bapi_class_objects

OCCURS O WITH HEADER LINE,

i_obj classfctn TYPE STANDARD TABLE
OF bapi_object values
WITH NON-UNIQUE KEY name_char

WITH HEADER LINE .

*

IF idoc_type = "DEBMASO05".
* Append the IDOC

i_class _objects-object_key =
i_class_objects-object_type =
APPEND i1_class_objects.
CLEAR 1_class_objects.

elknalm-kunnr.
c_knal.

CALL FUNCTION "BAPI_CLASS_GET_CLASSIFICATIONS*

EXPORTING
classtype
classnum
key_ date
TABLES
object _classification
class_objects

Figure 12 Capturing the classification data and appending it to the custom segment

c_011
c_ahhinp
sy-datum

i_obj classfctn
i_class objects.

Continues on next page

No portion of this publication may be reproduced without written consent.

37

SAP Professional Journal = May/June 2006

Figure 12 continued

SORT i_obj classfctn BY name_char.

READ TABLE i_obj classfctn

WITH KEY name_char = c_ah_hin_primary.

IF sy-subrc = 0.

X_sbcust-hinprm = i_obj_classfctn-char_value.

ENDIF.

idoc_data-sdata = x_sbcust.
APPEND idoc_data.

ENDIF.

We've now completed the steps required to imple-
ment the first solution — we have created an extended
IDoc for including classification data in master data
scenarios. Before we move onto the second solution,
we need to test the results of our work so far.

Testing the solution

To test our solution, we are going to make a change
in the customer master data. To begin, use transaction
XD02 (Change Customer) to bring up a customer
(customer 5237547 in the example) and to make a
change to the data. Let’s first take a moment to look
at the classification data that's already there (see
Figure 13).

Note that the characteristic AH HIN Primary has
the value BT0000035 for class type 011. Now, let's
change something in the non-classification data.
Asyou can seein Figure 14, | have entered the
prefix “Mr.”

Saving this change to the customer master data
triggers the IDoc. An IDoc is created for that
customer, and based on what is found in class type
011 (the customer class type), the user exit will pull
the characteristics and insert the custom segments
respectively, as shown in Figure 15 on page 40.

Asyou can seein Figure 15, the IDoc has success-
fully captured the classification data within the user
exit, appended it in the correct spot to the custom
segment, and will now be sent to the Siebel system
viathe port predefined in the partner profile.

For many of you, the solution we have just walked
through may already be in place. However, it is essen-
tial that it not only be in place, but aso work correctly
before you can attempt the next solution, so be sure to
test it thoroughly before moving on to the next part.
Now comes the solution you al have been waiting
for: triggering the correct IDoc when changes are
only made to the classification data.

Triggering an IDoc when only
classification data changes

This section provides a solution to the problem that
arises when only classification data is changed, which
eliminates the need for the “workaround” described
in the introduction (i.e., to aways edit unimportant
customer master data when you edit classification
datain order to trigger the IDac). The goal is that
when a user changes the classification data only, the
same IDoc is produced without having to change
something in the customer master data.

38

www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

Change Customer: Classification

& B

Object,~

Customer 5237547 1256 Caftle Co

Clazs type 011 Customer class

Aggignments -
Class Description std.Js.flc..[im | [
AHCUST \AH Customer Info Ot [eftie |:

| funine IAH HIN Primary O |etize |Z

|| | I3
4+ [IEYIEY

'EE @EE iE1E! {E]@@ Entry 1 12

Values for Clags AHCUST - Object 5237547 .~

General |

| [Characteristic d

Valu

14H Legacy number

14H Contract 1D
I4H Cost Center

]

AH Clinic Name

jAH HIBCC View-Showili..

Al Siebel

| &)

AH HIN Primary

ET0000035

Figure 13

Classification data before making a change to the customer master data

THICaa SERE Ao

5] | @ I

Change Customer: General data

rat Caneral data

Company code data || Sales arca data (2]

Customer 5237547

1256 Cattle Co Wray

Address k Conlrol data 't Paymenl iansactions ’I Markeling h Unloading points & Exporl dala k Conlad persons |

(2 [review | |

Name -
Title M.]
Hame 1256 Cattie Co
&l
Search terms
Search term 1/2 1256
Stroet address
StreetHouse number 26795 Hwy 34
District YUMA
Postal codelCity BYTHE Wray
Country us uss Region co Colorado
Time zong HET Jurisdict code BE12510071
Transportation zone 20700-9060 ZIP 807 €O E

PO box address

[]

Figure 14 Changing non-classification data in the customer master data

No portion of this publication may be reproduced without written consent.

39

SAP Professional Journal = May/June 2006

&| a0 @e@ CHE aonn DO QB

SAP R/3
iDacdizpizy | [ecnicai snon into
~ [IDuc 0000000000763285 el |, Outbax
D Control rec. e i oo
52 |_] Data records Total number: 000027
< B E1KNATH Segment 000001 A EELIE
[2) /BAY2IUCLVSIEBEL CUST Segment 000002 Extension /BAY2/UCLVDEBHNAS
[BAY2IUCLVSIEBELCUST Segment 000003 Message ype IBAY2fUCLVSBCUST -
D BAY2/UCLVSIEBELCUST Segment 000004 Parn.number HO_UBCM4TO
= .'El.-:\\"Z'UfL:-r:SleIELCUST Scgment 000005 B e s
= =2 -:Eln‘r’?.'U:L.-rSI:EIELEUST 3egment 000006 L RO
[2 BAY2UCLVSIEBELCUST Segment 000007
(=] /BAY2UCLVSIEBELCUST_PHIN Segment 000008
|=) BAY2UCLVSIEBELCUST _SID Segment 000009 Content of selected segment
2 E1Kna11 Segment 000010
D B E1kAM Seoment 000011 T — I
2 Btk Segment 000024 P HIN BT0800035 =
=) E1rmkkmM Segment 000025 = =
2 E1knKRM 3egment 000026 =
2 E1knKEM Segment 000027
[» (I Status records
[4]
A
[4][»] [[[«l[e]

Figure 15 IDoc triggered by the change to the customer master data includes the classification data

As explained at the beginning of this article, if a IDoc when only classification data has been changed,
user makes a change to the classification data, no follow these steps:
IDoc is triggered, even with the extended 1Doc for 1. Identify the current shared master data (SMD)
adding classification datain place, so the customer or function module.
vendor master data is not in synch with the associated 5 - oy the current SMD function module and save it
classification data. Let's ook at how you can address as a new function module.

that problem and trigger the 1Doc the user expects. 3. Turn on change pointers for the CLFMAS

To create a function module that will generate an (Classes) message type.

Notel

SAP does provide the ability to distribute master data between SAP systems using the message types
CLFMAS (Classes) and CHRMAS (Characteristics and character values) as their own ALE scenarios. But
using or implementing either of these to address the issue of triggering the correct IDoc when classifica
tion data changes would necessitate an additional interface and would require a new IDoc, possibly EAI
changes or additions, and target system modifications, which in the end is a great deal of work. The solu-
tion provided here is a better and more efficient way of handling this situation, and this solution leverages
an existing function module, again, making the task easier and more technically sound.

40 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

5 & Mow entries | [EH @ &

Change View "Additional Data for Message Type": Overview

L hnan EE @

Messdye ype B Inessdue lype
fBAYZ/MA | HAS
[BAY2/UB/DEBMASE3_81
| |/BAY2/UB/HATHASE3 81
|| |reavasucLvsRCUSTRED
fBAY2/UCLY_CUSTFLG
/BAY2/UF/DEBMASE3_61
[BAY2[UF/HATMASE3_61
fBAY2FUFLP_PLASMA
IADRZHAS
| [auR3nas
LADRMAS
IARTHMAS
INEEMOD
ASSORTHENT
BATHAS

|eLaorD

[ROHMAT

MAITMAS
DEBMAS
MATHMAS
DEBMAS]
/BAY2 /UCLV_CUSTFLG
DEBMAS

MATHAS

HRMD_A

IADRZNAS

IAUR3HAS

IADRMAS

ARTMAS

SSMOD

IASSORTHENT

BATIMAS

BLAORD

ROMMAT

4]+] S { < |[

HE

0]

|EH___ Position. | Entry 1 of 124

Figure 16 Displaying the function modules running on your SAP R/3 back-end system

4. Modify the new function module.
5. Implement and activate the new function module.

After completing these steps, you will have the
ability to change classification data associated with
this customer master data and produce the expected
IDoc.

Step 1: Identify the current shared
master data (SMD) function module

First, we need to find out what function moduleis
being called for the message type in question. The
standard message type for customersis DEBMAS, but
for this example it is/BAY 2/UCLVSBCUSTRED. If
you do not know the name of the function module,
use transaction BD60 (Additional Data for Message
Type) to determine this information (see Figure 16).

The table shown in Figure 16 is a client-
independent table and is configured in the
respective client. Double-click on the line that
represents the message type being used. As shown
in Figure 17, the function module being called is
MASTERIDOC_CREATE_SMD_DEBMAS. This
is the standard function module in SMD that is used
for customer master data distribution. Thisis the func-
tion module that we need to use to create one that will
generate an IDoc.

Step 2: Copy the current SMD function
module and save it as a new function
module

Next, we make a copy of function module
MASTERIDOC_CREATE_SMD_DEBMAS. (In
Step 4, we'll customize the function module to
address the issue of triggering the correct IDoc when

No portion of this publication may be reproduced without written consent.

41

SAP Professional Journal = May/June 2006

criteria Utilities System Help

Change View "Additional Data for Message Type": Details
%53 Mewenties [B B & E3

BEE @=

Message type FDAY2 [UCLVEDCUSTRED

| Additional data -

| Basictype DEBMAS i
Function module MASTERIDOC_CREATE_SHD_DEBHAS @‘1

| []Message type reducible

| Classifivalion dale -~

Classifiable object KNAT

| Obiecttype KUNNR

| Creanon data -~

| Created by sap
Created on

| Change data

| Changed by ESLIP
Date changed B5/26/2005

Figure 17 The MASTERIDOC_CREATE_SMD_DEBMAS function module being called

only classification data has been changed.) Enter a
name for the new function module (in this example,
/BAY 2/CREATE_SMD_DEBMAYS), as shown

in Figure 18.

We will come back to this new function module
in a moment, but first we need to make sure that
changes to the classification data are tracked and
implemented.

Step 3: Turn on change pointers for
the CLFMAS (Classes) message type

We need to turn on change pointers for the message
type CLFMAS (Classes), which is part of the
MASTERIDOC_CREATE_SMD_DEBMAS function
module we just copied. Use transaction BD50
(Activate Change Pointers for Message Type) to
display the message types, as shown in Figure 19.

Make sure there is a checkmark in the Activate
column for the CLFMAS message type. With the
change pointers activated, we can return to the new
function module to complete the modifications.

Step 4: Modify the new function module

Now, we need to add data statements to our new
function module /BAY 2/CREATE_SMD DEBMAS
(see Figure 20 on page 44). The code identifies the
internal table itab_chgptrs and tells the system to
include the database table BbCP when executing
changes. Also, we want the changes to be part of
asecond internal table, itab_cpident.

We next need to add the code that will read the
change pointers for this message type. We'll add the
code, which is shown in Figure 21 on page 44, after
the standard SAP code. Note that SAP accumulates
the change pointers for /BAY 2/UCLV SBCUSTRED

42 www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

MASTERIDOC_CREATE_SMD_DEBMAS
/BAY2/CREATE_SMD_DEBMAS
w1

Figure 18 Creating a new function module from an existing one

Figure 19 Displaying message types in the MASTERIDOC_CREATE_SMD_DEBMAS function module

No portion of this publication may be reproduced without written consent. 43

SAP Professional Journal = May/June 2006

DATA: BEGIN OF itab_chgptrs OCCURS 10.
INCLUDE STRUCTURE bdcp.
END OF itab_chgptrs.

DATA: BEGIN OF itab_cpident OCCURS 10,
cpident LIKE bdcp-cpident,
END OF itab_cpident.

Figure 20 Adding data statements to identify the internal tables that will store classification changes

* read all not processed change pointers for the given message type,
* object class DEBI
CALL FUNCTION "CHANGE_POINTERS READ"
EXPORT ING

change_document_object class
message_type
creation_date_high
creation_time_high

c_cdobjcl_debi
message_type
creation_date_high
creation_time_high

read_not_processed_pointers = c_X
TABLES
change_pointers = t_chgptrs.

Figure 21 Storing changes to the internal table t_chgptrs

CLEAR itab_chgptrs.
CLEAR itab_cpident.
REFRESH itab_chgptrs.
REFRESH itab_cpident.

Figure 22 Clearing and refreshing custom data areas

message type in the internal table t_chgptrs, which We are now ready to read any and all classification
stores the information for all changes to names, changes using our modified message type CLFMAS
addresses, phone numbers, etc. (which we enabled in Step 3) as shown in Figure 23.

Note that the results are being externalized to our

Following the code that reads the change pointers, custom table itab_chptrs.

we add the code needed to clear and refresh the
custom data areas, as shown in Figure 22. Because you can have classification changes for

44 www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

* read all not processed change pointers for the given message type,
* object class CLFMAS
CALL FUNCTION "CHANGE_POINTERS READ*

EXPORTING
change_document_object class = "CLASSIF*®
message_type = "CLFMAS*
creation_date_high = sy-datum
creation_time_high = "235959"
read_not_processed_pointers = c_X

TABLES
change_pointers = itab_chgptrs.

Figure 23 Using the modified message type CLFMAS to read any changes to classification data

LOOP AT itab_chgptrs.
CLEAR: t_chgptrs.
MOVE-CORRESPONDING itab_chgptrs TO t _chgptrs.
MOVE t_chgptrs-tabkey+4 TO t_chgptrs-tabkey.
MOVE "DEBI* TO t_chgptrs-cdobjcl.
MOVE t_chgptrs-tabkey TO t_chgptrs-cdobjid.
APPEND t_chgptrs.
MOVE t_chgptrs-cpident TO itab_cpident.
APPEND itab_cpident.

ENDLOOP.

Figure 24 Looping through our custom table to generate the IDoc

objects other than customers, we need to delete all Thisinternal table will then be passed down the

entries that are not tied to classification object KNA1 line to ALE code that will use the t_chgptrs table to

by entering the following code in the function module: generate the IDoc. There is still one last piece of code,

however. We have to ensure that we set the status for

the change pointers we create manually as processed,
Here is where the magic occurs. We want to loop so we need to enter this code, shown in Figure 25 on

through our custom table and insert entries into the the next page, after the standard code in the function

SAPtable, so it looks as if SAP put them there in the module.

first place (see Figure 24). We also want to save the

CPIDENT field for later use, so we append the row to

the second custom internal table itab_cpident. We Step 5: |mp|ement and activate the

will use this table at the end to set the status as new function module

processed, so we do not keep getting the same

changes over and over for subsequent runs. Now, regardless of whether a user changes only

DELETE itab_chgptrs WHERE tabname NE "KNA1-".

No portion of this publication may be reproduced without written consent. 45

SAP Professional Journal = May/June 2006

* write status of all processed pointers
CALL FUNCTION "CHANGE_POINTERS_STATUS_WRITE*®

EXPORTING
message_type

TABLES
change_pointers_idents

COMMIT WORK.

message_type

t_cpident.

CALL FUNCTION "CHANGE_POINTERS_STATUS_WRITE®

EXPORTING
message_type
TABLES
change_pointers_idents
COMMIT WORK .

CALL FUNCTION "DEQUEUE_ALL".

ENDIF.

MESSAGE ID "B1" TYPE "1" NUMBER 038"

"CLFMAS*®

itab_cpident.

WITH created_m_idocs message_type.

MESSAGE 1D "B1" TYPE "1° NUMBER "039*"

WITH created_c_idocs message_type.

Figure 25 Passing the t_cpident table so that the change pointers are marked as processed

classification data, just general customer data, or both,
an IDoc will be produced and sent via the partner
profile and distribution module entries already in
place. That's it!

Let'slook at an example. We will use the same
customer we used earlier (customer 5237547), and use
transaction XDO02 (Change Customer) to navigate to
the classification data (see Figure 26).

Let’s change characteristic AH HIN Primary from
BT0000035 to BT0O000036. Remember, we are only
making a change to a classification characteristic and
not to any customer data. The message shown at the
bottom of Figure 27 indicates a change has been
successfully made.

Having saved the change, let’s see what IDoc has
been generated. Use transaction WEO5 (IDoc Lists).

Figure 28 (on page 48) shows that IDoc
0000000000776144 has been generated and the
P_HIN characteristic reflects the new value
(BT0O000036).

You now have resolved the issue of triggering the
same IDoc when only classification data has changed.
Thiswill help to keep your master data synchronized
and accurate.

Conclusion

This article has shown you how you can start distrib-
uting classification data along with your customer and
vendor master data changes, rather than transmitting it
separately. Unless you are running SAP Net\Weaver

46

www.SAPpro.com ©2006 SAP Professional Journal. All rights reserved.

Integrate your classification changes into customer and vendor master data ALE scenarios

o EE @E

Change Customer: Classification
a8

jert
Dhjert .
Customer 5237547 1256 Uattle Co
Class type o911 Customer class

Assignmerm;/

Clasa Description Sid...
AHCUST AH Customer Info
AHHINP WH HIN Pritnary

Sinio) | D
@ @E@ Enlry 1 A

Values for Class AHCUST - Object 5237547
General |

tm
18
20

=] (=
~=le
<%

HDILE

Characteristic description Value

][] [+ [

|

| 14H Legacy number
| |aH ContractiD

| laH Cost Center

| 14H Clinic Mame

| |aH HIBCC view-ShowiLt...
|

|

|

|

|

\\H Sicbel Intcgration Id
1AH HIN Primary BT0000035 =)

Figure 26 Classification data before a change is made

Customer M F237547 [5)1286 Catile Co

Cunnpdny code

Sales area

Bales organization
Distribution channel
Division

| Al 2ales Areas | | Custnmer's s3les areas

W ga O & %

| [& cnanges have been made

Figure 27 Changing classification data only

No portion of this publication may be reproduced without written consent. 47

SAP Professional Journal = May/June 2006

+ a DAY2UCLYSICI Gegment 000007

Caa FE @
SAP R/3
ID“'_:FFQD[Q"' | Tedmival shortinfe - |
= 1 IDac 0000000000776144 Direction] 1 Bl
[Z) cuntiul e, C- """" i“'t i 03
= (] Data records Total number: 000027 Urreys syl — |
%) ETKNATM Segment 000001 Dasictype DEEISED |
|5) /BAY21UCLVSIE| Segment 000002 Extension IBAYZ/UCLVDEBMAS . |
D [BAY2IUCLVSIE|l Segment 000003 Message type JBAY2/UCLVSBCUST.. |
D {BAY2/UCLVSIE|l Seament 000004 Partnnumbar MO_USEM470
|
o | = |
: - Port A0E00a0030 |

D (BAYZIUCLY| Segment 000008
D (BAYZUCLY| Segment 000003

Content of selected segment

B [Status records

EIE1KNATT | Segment000010

D [E) ETKNWM | Segment 000011 Fidname |Fid cont I
[E) E1KNKKM | Segment 000024 PN S O
[E) E1KNKKM | Seament 000025 =
D FAKNKKM Segment D00026
D E1KNKKIM Segment 000027

Figure 28

04, which includes SAP NetWeaver Master Data
Management (MDM) 5.5, there are no standard SAP
classification ALE distribution scenarios, so a custom
solution, such as the one described here, is required.

You aso learned how to overcome the common
“gotcha’ when changes are made only to classification
data. Transmitting classification data only when
master data record changes occur can lead to data
integrity problems, since users might maintain classi-
fication data independently.

IDoc triggered for classification data change

So, where do you go from here? Take alook
around your enterprise and see if any business
processes are exchanging customer or vendor master
data with third-party or other SAP systems. If they
are not sending classification data along with the
customer or vendor master data, you now know
how to enable that ability. If they are, seeif they are
running into the gotcha we just explored. You will
now be able to fix the problem, adding value to the
business processes that deal with master data and
classification in your organization.

48

www.SAPpro.com

©2006 SAP Professional Journal. All rights reserved.

