
No portion of this publication may be reproduced without written consent. 109

Put your integrated WebSphere environments into production fast

Over the past 12 years, I’ve seen various forms of persistence technology
come and go — embedded SQL in C/C++ code, ODBC, JDBC, EJB, JDO,1

ORM. Whatever the form, a persistence technology at its essence is simply
a way to help programmers do the same mundane things: store, retrieve, or
delete some piece of data inside a database.

Before the Enterprise JavaBeans (EJB) specification, most Java
developers were content to use the Java Database Connectivity (JDBC)
API as an interface to their databases. JDBC isn’t very object-oriented,
however; it retrieves data as a tabular result set. It is also not very adept
at supporting the architectural best practice of “separation of concerns”;
JDBC persistence logic is often intermingled with business logic. With
JDBC, you essentially have to write your own SQL queries and parse the
result set into a Data Transfer Object (DTO) to enable the view component
to display the results. Plus, you have to manage your own transactions and
security within the realm of your business logic. All of these concerns find
their way into your business domain logic, making for serious challenges
when your code needs to be updated to support one concern or another.

When EJB first appeared in 1998, it promised transparent transaction
support, declarative security, a distributed computing model (remotability),
and the beginnings of Object Relational Mapping (ORM).2 It was a bright,
shiny object in the midst of the dot-com boom, and Java developers flocked
to this new technology that seemed to address the shortcomings of straight
JDBC. Vendors like SAP, IBM, Sun, BEA, and others started to develop
Web application servers that had EJB containers to host EJBs.3 The

The new EJB 3.0 specification —
why it’s time to reevaluate
Enterprise JavaBeans

by Lou Sacco

Lou Sacco
Senior Software Engineer

Lou Sacco has 12 years of
industry experience in designing
and developing business
applications for a leading
technology company in San Diego,
CA. He specializes in various
forms of persistence technologies,
open source frameworks
(Hibernate, Spring, Velocity, etc.),
SOA, and enterprise application
integration and aggregation. Lou
is an IBM Certified Enterprise
Developer – WebSphere 5.0,
and he holds an MS degree in
Computer & Information Science
from the University of Michigan.
You can visit Lou’s blog at
http://www.loutilities.com, or
you can contact him at
lou@loutilities.com.

1 For more on JDO, see the article “Spend More Time Modeling Your Java Applications and Less Time
Trying to Persist Your Data — Java Data Objects (JDO) Makes It Easy!” in the November/December
2004 issue of SAP Professional Journal.

2 The early trendsetters in the ORM space include TopLink (acquired by Oracle through WebGain in
2002) and Enterprise Objects Framework (EOF, which is now part of WebObjects by Apple). More
recent frameworks, like Hibernate, have brought ORM from obscurity to the mainstream.

3 An EJB is any bean written to the EJB spec — a session, entity, or message-driven bean.

SAP Professional Journal • November/December 2005

110 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

honeymoon didn’t last long, however, as the short-
comings of EJB emerged, especially with respect to
entity beans. Its deficiencies included poor perfor-
mance, inadequate query language, and problems with
implementing distributed components, to name a few.
As a result, EJB’s image became tarnished, and many
developers and their managers deserted it for other
technologies. Some headed for vendor-specific imple-
mentations of EJB. Others braved the open source
world of meagerly supported ORM tools. Still others
went back to basics with JDBC, developing their own
in-house data access layers to provide for separation
of concerns.

Now, however, there’s a new EJB specification
(Version 3.0, currently in final draft), and it has made
some real headway in addressing the deficiencies of
the previous specs. I believe that the things that were
good about the original EJB spec have converged with
today’s successful vendor-specific implementations
and open source frameworks under a common spec to
become a de facto standard — one that vendors, the
Java open source community, and developers can
agree upon.

In this article, I highlight the features of the new
EJB 3.0 specification and show how the shortcomings
of the previous releases have been addressed to make
for a more powerful ORM solution. Whether you have
used EJBs in the past and abandoned them, are still
using them, or are simply among the many architects
and developers who want to be aware of emerging
standards, this article provides the information and
perspective you need to evaluate (or reevaluate) EJB
technology for your environment. If you have been
using this spec with the support provided by SAP Web
Application Server (SAP Web AS), or if you have
integrated open source tools like Hibernate into SAP
Web AS, it’s certainly worth learning how those tech-
nologies are converging with the EJB 3.0 spec so you
can prepare for its introduction in a future release of
SAP Web AS.

Pre-EJB 3.0: what went
wrong?
In the introduction, you got an idea of the failings of

previous releases of the EJB specification. Let’s round
out the picture with a closer look at some of those
problems so that the improvements stand out when we
examine the new spec.

From a developer’s point of view, EJB has a steep
learning curve. Although vendor tools, such as SAP
NetWeaver Developer Studio,4 do make EJB develop-
ment a lot easier, to be proficient with EJB, you have
to master many programming concepts — such as
Core J2EE Patterns design (http://java.sun.com/
blueprints/corej2eepatterns), transactions, and the EJB
life cycle, to name a few — plus a host of acronyms
(BMP/CMP, CMT, and CMR). Otherwise, you might
find yourself with a poorly designed, poorly perform-
ing EJB application. Another hassle for developers is
testing; because EJBs must be deployed in an EJB
container, testing requires a lot of overhead. You need
to make changes, compile EJBs, deploy, test, and
repeat. Even testing tools that eliminate some of the
tedium of manual testing, like JUnit and Cactus, don’t
help much because you have to deploy EJBs to the
server to test them.

Using EJB prior to 3.0, especially for entity
beans, you have to deal with complex workarounds
to perform what would otherwise be simple tasks
with JDBC or more recent ORM tools. For instance,
when I first started programming with EJB, dealing
with dates was cumbersome because of the disparity
between how my database represented the dates
and how EJB represented them — I had to write
wrapper code to overcome the disparity. Sequences
(database-generated indexes for primary keys) have
been another challenge, as there is nothing in the pre-
EJB 3.0 specification to address them; you usually
have to come up with a workaround of some form or
another to address the idiosyncrasies of sequences.

If all this weren’t bad enough, EJB implementa-
tions have affected end users negatively. Performance
has been slow, and time-to-market has been an issue
due to EJB’s steep learning curve for developers;
for a long time, maintenance was cumbersome in

4 For more on this tool, see the article “Get Started Developing,
Debugging, and Deploying Custom J2EE Applications Quickly and
Easily with SAP NetWeaver Developer Studio” in the May/June 2004
issue of SAP Professional Journal.

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 111

production because monitoring tools to keep tabs on
deployed EJBs were still in the infancy stages. Today,
monitoring tools (like Wily Introscope or Tivoli) are
much improved. For managers, EJB implementations
have meant higher training costs, increased project
cycles, and lost revenue on projects delivered late or
scrapped as failures.

To address the shortcomings of EJB and tackle
the biggest pain point — persistence — the open
source community has responded, quite successfully,
with frameworks like Hibernate, iBATIS, and
ObjectRelationalBridge. The Hibernate and Spring
frameworks especially have developed a loyal, ardent
following. Open-source-based solutions have resulted
in the introduction of hybrids like
EJB+Hibernate+Spring.

Vendors have also done a decent job of addressing
some of the shortcomings of EJB. One drawback of
a vendor implementation, of course, is that it can lead
to applications that are tightly coupled to your Web
application server provider, which is not very “write
once, run anywhere” (the purported core value of Java
and J2EE). Nonetheless, a vendor implementation
allows EJB adopters to work around the specifica-
tion’s shortcomings. In SAP NetWeaver, SAP has
added extensions to EJB 2.x, including several per-
formance and throughput enhancements, use of the
SAP enqueue server for pessimistic locks, EJB
editors with an object-relational mapping tool in the
Eclipse-based SAP NetWeaver Developer Studio, and
a seamless integration of EJBs into the SAP persis-
tence infrastructure Open SQL for Java.5

Why the need for a standard
in persistence?
Given the vendor and open source success stories just
mentioned, why is it so important to have a standard
for how we persist information to a database? Why
not continue to use the solutions we have today? The

essential benefit of any standard is that it enables con-
vergence between what vendors are doing and what
the open source community is doing so that everyone
can work to the same specification. Furthermore, a
persistence standard unifies J2EE’s strategic position
in the marketplace against competing technologies,
such as the Microsoft .NET framework.

For the developer, the specific benefits of a persis-
tence standard are these:

• You only need to master one persistence
methodology.

• You have a consistent way to perform persistent
operations regardless of the vendor you choose.

• You have a larger base of developers you can col-
laborate with since IT shops usually like to rally
around a standard (and there’s less squabbling in
the J2EE community over what persistence tech-
nology should look like).

From the manager’s perspective, a persistence
standard provides the following benefits:

• You can hire from a broader base of developers
who have skills similar to yours, and you don’t
have to worry about ramping them up on an open
source framework or, worse, on your own persis-
tence framework.

• You can expect to run your application on various
application servers and not be tied to a specific
vendor implementation. You don’t have to worry
about the possibility of a contract being lost
because you don’t have experience with a different
vendor’s EJB implementation.

• You can expect your vendor’s EJB 3.0 implemen-
tation to be consistent with the specification, and
you can expect to get help resolving any issues you
may have through your existing vendor support
(whereas an open source solution would incur its
own support cost).

To improve the EJB specification, members of
the global community of Java developers and J2EE
product vendors formed the Expert Group for Java
Specification Request 220 (JSR 220): Enterprise
JavaBeans 3.0. As the Java Community Process
(JCP) standardization program converges with

5 For more on this infrastructure, see the article “A Guided Tour of the
SAP Java Persistence Framework — Achieving Scalable Persistence
for Your Java Applications” in the May/June 2004 issue of SAP
Professional Journal.

vendor implementations, EJB is becoming a best-of-
breed spec.

A (not so) new paradigm:
transparent persistence
As long as we’re going to have a persistence
standard, wouldn’t it be nice to have transparent
persistence?

Transparent persistence is the idea that your
business objects (the objects representative of your
database) can be treated as first-class citizens in
your application as they pass from a transient state
(in-memory) to a persistent state (in-database) to a
detached state (in the view layer after the connection
with the database is closed). In other words, you
can pass your business objects from layer to layer
throughout your application, and all that really
changes is their state. As an example, to persist a
business object that was in a detached state while
being operated on in the view layer, you call the
persist() method to update its new state to the data-
base. This method not only updates the database, it
also transitions the business object’s state to the
“persistent” state until the session with the database
is closed. The need to implement special interfaces,
write basic CRUD (create, retrieve, update, delete)
SQL statements, define transaction boundaries pro-
grammatically, and the like, just goes away. In
recent years, transparent persistence has moved from
the bleeding edge to become one of the most well-
accepted persistence technologies, thanks to the grass-
roots success of ORM frameworks like Hibernate.

If you think about it, there’s really nothing trans-
parent about either the JDBC or pre-3.0 EJB specifi-
cations. JDBC requires you to work with database
row sets and SQL directly; so does EJB BMP (bean-
managed persistence). Recall that BMP requires you
to write your own persistence code (JDBC) within the
EJB context, while container-managed persistence
(CMP) is a mapping of EJB objects to database tables.
EJB CMP is marginally closer to the transparent
persistence idiom, but it requires you to pass data

SAP Professional Journal • November/December 2005

112 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

around by means of DTOs rather than the actual Java
object entities.6

CMPs do not support the typically transparent
persistence idioms, such as selectively loading
information from the database (lazy loading/eager
fetching), transitive persistence (cascading opera-
tions), or customizable mapping strategies. Moreover,
CMP entity beans, which in general are more
invasive, force you to implement certain interfaces,
use various deployment descriptors, and have one
class and four interfaces for each EJB.

How exactly does transparent persistence help? It
begins with the notion of using POJOs (plain old Java
objects) and their interrelationships for representing
schemas from a database. Now you’re dealing with
objects, and that’s something for which Java (an
object-oriented language) and you (an object-oriented
programmer) are well suited. Instead of JDBC row
sets, you can call getter/setter methods of the object. A
further benefit of transparent persistence relates to
how the data is actually retrieved or updated from the
database. You simply map the object’s fields to the
corresponding tables and columns in a database, typi-
cally using an XML configuration, XDoclet, or in the
case of EJB 3.0, Java 5.0 annotations (I’ll explain
these shortly). Note that you’re not implementing the
EntityBean interface; you’re just using POJOs (there’s
nothing invasive about that).

With the transparent persistence support in
EJB 3.0, your life as a programmer gets better in
these ways:

• You don’t need to write any persistence code.
Gone are the days of managing connections
and writing high-performance SQL in your
JDBC calls (something Java developers may
not be adept at).

• You can deal directly with objects through your
domain model and leave the details of persisting

6 For more on how EJB CMP persists data, see the article “Persist Data
for Your J2EE Applications with Less Effort Using Entity Beans with
Container-Managed Persistence (EJB CMP)” in the July/August 2004
issue of SAP Professional Journal.

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 113

data to the transparent persistence framework,
which makes your life a lot simpler.

• You no longer need to code mundane CRUD oper-
ations. You don’t have to write this code for every
object or table that exists (an especially nice bene-
fit if you have been using stored procedures for
these operations).

• You can freely make changes to the persistent
Java objects. All changes are automatically
tracked and written back to the database. With
EJB 3.0, this synchronization can occur at any
time during the transaction, not just when the
transaction is committed, a much more efficient
update process.

• Since you’re dealing with POJOs, which can be
serialized, you can easily pass graphs of these
objects through your service layer directly to a
Web application, or you can serialize your POJOs
over a Web services call.

In short, transparent persistence results in a very
clean domain model in which persistence code is not
intermingled with your business logic, so your service
layer code can deal with this code directly.

A deep dive into the EJB 3.0
specification
The upcoming sections address those aspects of the
EJB 3.0 specification that I think you will find the
most useful. We’ll start with a look at some valuable
aspects of EJB that are virtually unchanged from the
previous spec. Then we’ll get into what’s new and
different in EJB interfaces, entity beans, and the
querying language, ending with a look at interceptors
for crosscutting concerns. You’ll get a chance to see
transparent persistence in action in the discussion of
entity beans.

If you haven’t had a chance to get to know the
Java 5.0 annotation feature, please see the sidebar on
the next page. EJB 3.0 makes heavy use of annota-
tions so having a basic understanding of them will
help you follow along.

Admirable aspects of pre-3.0
EJB that carry over
While the persistence aspect of EJB prior to release
3.0 falls woefully short, other aspects of the specifica-
tion not dealing directly with persistence are quite
worthwhile and carry over to 3.0 almost unchanged.
Let’s review some of them now.

One of the success stories of EJB has been
container-managed transactions (CMT), a declarative
programming approach to applying transaction bound-
aries to your code without having to write transaction
code. CMT, which is typically accomplished through
XDoclet or the use of a deployment descriptor (as in
SAP Web AS), is very nice because it enables you to
separate another concern (transaction management)
from your business logic. You can easily update the
deployment descriptor or XDoclet tags if the transac-
tion boundaries need to be changed.

Another success story has been message-driven
beans (MDBs), an integral component of service-
oriented architectures (SOAs). Essentially, MDBs pro-
vide the means for asynchronous processing within a
J2EE application, which is important in SOA as it frees
up your application to continue working and returning
results back to the client, instead of being blocked as
in a synchronous call. If something in the asynchro-
nous call fails, the application can make a callback to
the client, say through a notification service.7

Finally, let’s not forget the ubiquitous Façade
pattern that SAP, IBM, and Sun pushed as a core
J2EE pattern early on. This pattern encapsulates
business logic as course-grained calls made to entity
beans, Data Access Objects (DAOs), MDBs, and the
like; it helps eliminate the chatter over the network of
fine-grained calls made to the underlying components.
By decoupling the calling client from the underlying
components, the Façade pattern also makes it easy

7 For more on using MDBs for asynchronous message delivery, see the
article “Using Advanced Java Message Service (JMS) Features to
Increase the Efficiency and Maintainability of Your Distributed Java
Applications” in the September/October 2004 issue of SAP Professional
Journal.

SAP Professional Journal • November/December 2005

114 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

Annotation basics
Annotations allow you to add metadata to your Java classes. They are typically used to automate the gener-
ation of source code or configuration files (e.g., deployment descriptors) from within a bean class, thus
eliminating the drudgery of managing a deployment descriptor somewhere else in your application. If you
are familiar with XDoclet, the open source tool for generating XML descriptors and interfaces, then you
can think of annotations as the @ tags you use in XDoclet, except that a compiler is required to check
annotations in Java 5.0.

Annotations start with a definition of an annotation type followed by a declaration of the annotation in your
source code. This declaration is preceded by the @ symbol. Annotation types must follow certain rules,
such as no parameters, primitive return types, and no throw clauses. Let’s look at an example from the
EJB 3.0 specification, the TransactionAttribute annotation:

public enum TransactionAttributeType {

MANDATORY,

REQUIRED,

REQUIRES_NEW,

SUPPORTS,

NOT_SUPPORTED,

NEVER

}

@Target({METHOD, TYPE}) @Retention(RUNTIME)

public @interface TransactionAttribute {

TransactionAttributeType value() default REQUIRED;

}

The first thing to notice is that an enumeration (also new in Java 5.0) defines the possible values. Second,
note the meta-annotations @Target and @Retention. @Target says what type of element this annotation can
be applied to, in this case METHOD or TYPE. @Retention says how long annotations are retained with the
annotated type; with RUNTIME they are available in the Java Virtual Machine (JVM) after the class they
annotate has been loaded.

The @interface annotation defines the annotation type TransactionAttribute, which has a value attribute
that defaults to REQUIRED if it is not defined. To utilize this new way of defining transaction attributes in
EJB 3.0, you declare the annotation by preceding any method definition you have in your EJB as follows:

@TransactionAttribute(value="MANDATORY")

public void setName(String) { ... }

In this example, you have the transaction attribute set to MANDATORY for this method call. This basic
explanation of annotations should suffice for understanding how they are used in the new EJB spec. To
learn more about annotations and code generation, see the “Resources” section at the end of this article.

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 115

to update those components without affecting the
client. Transaction boundaries can be easily estab-
lished at the level where the Façade is introduced
because this level is usually a good point in the
application to start a transaction or to join one already
in progress.

In addition to the useful aspects of EJB mentioned
here, you’ve probably found other features that are
particularly useful to you — for example, EJB’s
declarative approach to security.

Where did all those
interfaces go?
The first thing that you’ll notice with the new specifi-
cation is that there are no more home, local, and
remote interfaces to implement. It used to be that you
could potentially have as many as four interfaces and
at least one class implementing a single EJB; now the
number you need is between zero and two interfaces,
depending on the type of EJB (session or entity).
The reduction in interfaces, along with several other

changes, makes EJB 3.0 easier to work with, which is
a primary goal for this spec.

Recall the old 2.1 way of working with the home-
local, home-remote, local, and remote interfaces: First,
you had to acquire the EJB through a Java Naming
and Directory Interface (JNDI) lookup to the EJB’s
home interface. Then you could get the local or
remote interface to call any business methods on the
bean class. The home interface never made much
sense for session beans or MDBs, and it only had
limited implications for entity beans, so the committee
has eliminated it. Also, you no longer have to imple-
ment SessionBean in your bean class. Instead, for
session beans and MDBs, you implement a business
interface that you — not the specification — define.
Let’s look at a few examples that come from the
EJB 3.0 spec and which I have adapted for demonstra-
tion purposes.

In Example 1, you see how to define a stateless
session bean (SLSB) with a business interface for
the methods that you want in the concrete implemen-
tation of the session bean. Note the use of @Remote,

// This interface is defined with @Remote allowing remote invocation

@Remote interface Calculator {

float add (int a, int b);

float subtract (int a, int b);

}

/*

* The bean class implements the Calculator business interface:

*/

@Stateless public class CalculatorBean implements Calculator {

public float add (int a, int b) {

return a + b;

}

public float subtract (int a, int b) {

return a - b;

}

}

Example 1 Defining a stateless session bean

SAP Professional Journal • November/December 2005

116 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

serialization to the persistent store in order to retain
their state during activation and passivation, there are
these two callback methods:

• ejbActivate() (or @PostActivate)

• ejbPassivate() (or @PrePassivate)

An alternative to these four callback methods is
to use an annotation, as shown in Example 2, where
the code in the destroy() method is the same as if
you had implemented an ejbRemove() method in this
bean class.

The @Remove annotation is unique to stateful
session beans; @Remove tells the container that it
can remove a stateful session bean from the container
after the method annotated with @Remove has
been called.

What happened to JNDI
lookups to the home
interface?
Since there are no more home interfaces for acquiring
an EJB, exactly how does a client acquire an EJB in
the new specification? Recall that the previous spec
requires you to use variations of a JNDI lookup
depending on whether the bean is a local or remote
bean, as demonstrated by the code in Example 3. But
remember, this code is only the half of it; you also

which enables remote access to the EJB. The notion
of local and remote invocation is still pertinent;
declarative annotations have replaced the interfaces.
You define the bean class with the @Stateless annota-
tion to provide the implementation based on the
business interface. If you want to make the session
bean stateful, simply use the @Stateful annotation.

When no @Remote or @Local annotation is
declared, then the default will be @Local, which
provides for only “local” invocation at runtime.

If you are familiar with the pre-3.0 EJB specifica-
tion, you’re probably wondering what happened to
all the EJB callback methods, such as ejbCreate(),
ejbRemove(), and so forth. They’re still there. Now,
however, you only implement them if you need them,
which makes sense: you rarely need to implement
them, so why have the empty stubs in your code? The
spec also provides only the callbacks that make sense
for a particular kind of EJB bean. To that end, in
SLSBs, you only have the following two callback
methods (you can use the existing callback methods,
or you can use the annotations prefixed to an existing
method of your own):

• ejbCreate() (or @PostConstruct) — occurs after
the bean has been engaged but before the first
method is called.

• ejbRemove() (or @PreDestroy) — occurs before
the bean is destroyed.

Likewise, for stateful session beans that require

@Stateless public class FooBean {

private float total;

...

@PostConstruct public void init() {...}

@PreDestroy public void destroy() {...}

}

Example 2 Annotating your methods to introduce EJB callback methods

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 117

must have the EJB defined in your deployment
descriptor as follows:

<ejb-ref>

<ejb-ref-name>ejb/FooBeanEJB</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>FooBeanHome</home>

<remote>FooBean</remote>

</ejb-ref>

Well, in EJB 3.0 things just got a whole lot
easier with the dependency injection (DI) approach
made popular by lightweight containers, like
PicoContainer (http://picocontainer.codehaus.org)
and Spring (http://www.springframework.org). With

DI, a class that has dependencies is not responsible
for obtaining instances to the classes it’s dependent
on. Instead, the lightweight container injects those
dependencies exactly where and when they are
needed. The PicoContainer and Spring frameworks
accomplish DI through constructor or setter depen-
dency injection (see http://www.martinfowler.com/
articles/injection.html for more details). As you
might have already guessed, EJB 3.0 accomplishes
DI through the use of annotations. Let’s take a
look.

In Example 4, you can see how the JNDI call has
been streamlined using the @Resource annotation.
Notice that we didn’t have to do anything special, as

try {

Context context = new InitialContext();

FooBeanHome fooHome =

(FooBeanHome)PortableRemoteObject.narrow(context.lookup

("java:comp/env/ejb/FooBeanEjb"), FooBeanHome.class);

FooBean fooBean = fooHome.create();

...

}

catch(RemoteException re) {

System.err.println("Remote Exception: " + re.getMessage());

}

catch(NamingException ne) {

System.err.println("EJB not found: " + ne.getMessage());

}

catch(CreateException ce) {

System.err.println("Error creating EJB: " + ce.getMessage());

}

Example 3 A remote JNDI lookup pre-EJB 3.0

@Resource SessionContext ctx;

private FooBean foo = (FooBean)ctx.lookup("ejb/FooBeanEJB");

Example 4 JNDI lookup performed with the @Resource annotation

SAP Professional Journal • November/December 2005

118 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

we did in Example 3, to account for remote invocation
of the EJB resource. The annotation transparently han-
dles invocation, whether local or remote. There’s an
even easier way, however. As Example 5 shows, you
can use the @EJB annotation directly on the EJB vari-
able to further streamline the code.

Finally, you may wish to take the approach of
using setter injection to add dependencies to your EJB
on the fly. This approach is necessary when establish-
ing resources such as database references. Example 6
provides a couple of examples of using setter injection
to add dependencies.

Entity beans resurrected
At the start of this article, I made the case for taking
another look at entity beans, despite past problems
and contempt for them. I strongly believe that the
designers of the EJB specification finally got it right

in EJB 3.0 and that the new spec dramatically changes
EJB entity beans for the better.

Transparent persistence in action

The EJB 3.0 specification provides a POJO-based
implementation for transparent persistence. This
approach offers the developer the advantage of being
able to work transparently with database data elements
as regular Java objects throughout the many layers of
a J2EE application. Let’s take a look at an example of
transparent persistence (Example 7).

In this example, you’re looking at an implementa-
tion of an EJB entity bean, though you’ll notice that
this code doesn’t implement the EntityBean interface.
Instead, it uses the annotation @Entity to identify the
class as an EJB 3.0 entity bean, and it implements the
java.io.Serializable interface to allow the Entity object
to be serialized across remote invocations or over a
Web service (i.e., no separate DTOs are required!).

// This is one way to add a dependency using an explicit name

@Resource(name="CustomerDB")

public void setDataSource(DataSource myDB) {

this.ds = myDB;

}

// In this example, name is inferred from the property name after "set"

@Resource

public void setCustomerDB(DataSource myDB) {

this.customerDB = myDB;

}

Example 6 Two ways to add dependencies using setter injection

@EJB (name="ejb/FooBeanEJB")

private FooEJB fooEjb;

Example 5 Dependency injection using the @EJB annotation

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 119

relationships (I’ll cover how this release specifies
implementing relationships a little later). Below are
descriptions of the annotations in Example 7 taken
from the top down in the code:

• @Entity — defines the class as an EJB entity
bean.

Note too that the Customer entity bean is not an
abstract class, and it has a public constructor — yes,
that’s right, it’s a pure POJO that can be instantiated.

Most of the rest of the code in Example 7 is
similar to old-style EJB implementations, with the
exception that it uses annotations and implements

@Entity

@Table(name="EDI_CUSTOMER")

public class Customer implements java.io.Serializable {

private Long id;

private String name;

private Address address;

private Collection<Order> orders = new HashSet();

private Set<PhoneNumber> phones = new HashSet();

// No-arg constructor

public Customer() {}

@Id(generate=SEQUENCE, generator="CUST_SEQ")

@Column(name="CUSTOMER_ID")

public Long getId() {

return id;

}

public void setId(Long id) {

this.id = id;

}

@Column(name="CUST_NAME", nullable=false, length=100)

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public Address getAddress() {

return address;

}

public void setAddress(Address address) {

this.address = address;

Example 7 Implementation of an EJB entity bean using transparent persistence Continues on next page

SAP Professional Journal • November/December 2005

120 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

• @Table — is optional only if the class name
matches the table name; otherwise, use this annota-
tion to identify the table name to which to map
and, if necessary, the schema or catalog.

• @Id — is used to specify the primary key fields
of the entity bean. The parameters
(generate=SEQUENCE, generator=“CUST_SEQ”)
indicate that the “CUST_SEQ” sequence will
be used to generate the primary keys in the
database.

• @Column — identifies the table column to
which a persistent field of the entity bean is
mapped. As illustrated by the name field,
@Column can also take on several other parame-
ters, such as nullable and length. These attributes
(nullable and length) identify database constraints
that are verified before the database ever gets a
chance to complain about any violations — a
nice efficiency.

• @OneToMany — see the next section for a
description.

What happened to container-managed
relationships (CMR)?

Look again at the bottom half of Example 7. Do you
see the @OneToMany annotation related both to
orders and phone numbers? As you probably guessed,
this annotation refers to relationships with other
objects, namely Order and PhoneNumber. Since the
Customer class has a one-to-many relationship with
the Order and the PhoneNumber class, the Customer
class represents this relationship as having a set of
each type. Therefore, the Order and the PhoneNumber
classes will each have a customer field of type
Customer, which would be represented as the foreign
key in the database. In EJB 2.1, the container manages
these relationships with what is known as CMR
(container-managed relationships). In EJB 3.0, you
have more flexibility and can manage them yourself
using annotations and the Java 5.0 generic type
feature (which allows you to identify what types
of objects can exist in the collection).

CMR is actually pretty nice within SAP
NetWeaver Developer Studio. There are several

}

@OneToMany

public Collection<Order> getOrders() {

return orders;

}

public void setOrders(Collection<Order> orders) {

this.orders = orders;

}

@OneToMany

public Set<PhoneNumber> getPhones() {

return phones;

}

public void setPhones(Set<PhoneNumber> phones) {

this.phones = phones;

}

}

Example 7 continued

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 121

editors for dealing with CMP entity beans, including
editors for managing relationships and OR mapping;
however, the tool uses the EJB 2.x specification, so
you also have to do things in the ejbPostCreate()
method to initialize CMR relationships, which can
be cumbersome to manage and easy to forget.

With annotations, everything is in one central spot,
and in my opinion, it’s the best spot — the business
object representing the database table. You have the
same controls as you did with CMR, and you can see
clear as day how each collection maps back to another
object representative of the foreign key relationship in
the database.

Let’s examine how EJB 3.0 manages relationships.

Example 8 is a typical example of a one-to-
many relationship between employees and depart-
ments (departments having many employees and an
employee having only one department). In the
Employee class, we declare the department as
Department type. On the getter method, we introduce
the @ManyToOne annotation, which makes the rela-
tionship bidirectional, thus allowing navigation to
department through employee. In the Department
class, note the Employee type collection of employees
and the @OneToMany annotation with the attribute
mappedBy=“department”. The mappedBy attribute

@Entity

public class Employee {

private Department department;

@ManyToOne

public Department getDepartment() {

return department;

}

public void setDepartment(Department department) {

this.department = department;

}

...

}

@Entity

public class Department {

private Collection<Employee> employees = new HashSet();

@OneToMany(mappedBy="department")

public Collection<Employee> getEmployees() {

return employees;

}

public void setEmployees(Collection<Employee> employees) {

this.employees = employees;

}

...

}

Example 8 One-to-many relationship

designates the field in the entity that is the owner of
the relationship (i.e., Employee’s department field).
Also, because the types are generic, the collection
type implies that Employee is the object that contains
the department field.

The one-to-many relationship is probably the
most common one that you’ll use. One-to-one and
many-to-many relationships follow essentially the
same rules. In Example 9, you see how to handle the
one-to-one relationship for an entity bean. Here,
you’re mapping an object to an object rather than a
collection of objects. Example 10 shows just the
opposite for the many-to-many relationship, where
you map a collection of objects (projects) to another
collection (employees). In both cases, the same
semantics are at work.

So far, we have looked at bidirectional relation-

SAP Professional Journal • November/December 2005

122 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

ships. Recall that in EJB 2.1 you can restrict naviga-
bility to only one owning side. Well, you can do the
same thing in EJB 3.0 — simply eliminate the annota-
tions on the inverse side (the side without the foreign
key) of the relationship. The code in Example 11
looks very similar to that of Example 8, with the
exception that the AnnualReview class does not
contain the @ManyToOne annotation to allow naviga-
bility back to Employee — a nice feature in this case
for data security.

Leveraging entity beans

Before moving on to the more advanced features of
entity beans in EJB 3.0, let’s look at how SLSBs
integrate with entity beans, especially considering that
there are no explicit home, remote, or local interfaces.

EJB 3.0 introduces the concept of an

@Entity

public class Employee {

private Cubicle assignedCubicle;

@OneToOne

public Cubicle getAssignedCubicle() {

return assignedCubicle;

}

public void setAssignedCubicle(Cubicle cubicle) {

this.assignedCubicle = cubicle;

}

...

}

@Entity

public class Cubicle {

private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")

public Employee getResidentEmployee() {

return residentEmployee;

}

public void setResidentEmployee(Employee employee) {

this.residentEmployee = employee;

}

...

}

Example 9 One-to-one relationship

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 123

@Entity

public class Project {

private Collection<Employee> employees = new HashSet();;

@ManyToMany

public Collection<Employee> getEmployees() {

return employees;

}

public void setEmployees(Collection<Employee> employees) {

this.employees = employees;

}

...

}

@Entity

public class Employee {

private Collection<Project> projects = new HashSet();;

@ManyToMany(mappedBy="employees")

public Collection<Project> getProjects() {

return projects;

}

public void setProjects(Collection<Project> projects) {

this.projects = projects;

}

...

}

Example 10 Many-to-many relationship

@Entity

public class Employee {

private Collection<AnnualReview> annualReviews = new HashSet();;

@OneToMany

public Collection<AnnualReview> getAnnualReviews() {

return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualReviews)

{

this.annualReviews = annualReviews;

}

...

}

@Entity

public class AnnualReview {

...

}

Example 11 Unidirectional one-to-many relationship

SAP Professional Journal • November/December 2005

124 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

EntityManager (em) object using DI. The
@PersistenceContext annotation allows us to inject
the EntityManager object into our SLSB to perform
CRUD operations using the entity bean POJOs you
have created. Let’s look at Example 12.

Here you see an SLSB using DI to introduce
EntityManager. The client program calls enterOrder(),
passing custID and a newOrder object. First, we use
EntityManager to find and return a Customer object
based on the custID, and then we bind the Order
object with the Customer object by establishing a rela-
tionship between them. Finally, we call the persist()
method to persist the objects to the database. This
technique may seem a little unorthodox at first.
However, you must fulfill both sides of the relation-
ship because these objects are defined as having a
bidirectional relationship in the entity beans. So first
add the Order object to the Customer’s order collec-
tion (the many side); then, add the Customer object
in the Order (the one side).

As good stewards of J2EE design, we have just
abstracted access to the entity bean using the Core
J2EE Patterns Session Façade pattern. How will
our client access the façade, and how is it that we
can pass an entity bean into the enterOrder method
here?

Here are a couple examples of how you can pro-
vide access to the session bean from the Web tier. The
first is through DI as follows:

@EJB OrderEntry orderEntry;

The other way is through a JNDI lookup as
follows:

@Resource SessionContext ctx;OrderEntry

orderEntry

= (OrderEntry)ctx.lookup("ejb/OrderEntry");

Both of these methods provide the same result and,
in the spirit of the new specification, they greatly sim-
plify the process of obtaining the session bean from
the EJB container.

Having entity beans as POJOs is a huge advantage.
You can now use the <jsp:usebean> tag to hold the
entity beans in an HTTPSession object. When you are
ready to store them in the database, you can pass these
entity beans directly to the session bean method. In
other words, these entity beans are serving two pur-
poses (see the sidebar on the next page for a consider-
ation to keep in mind when using entity beans for dual
purposes). You no longer need to map a DTO back to
the entity bean since the concepts of storing data from
objects and transferring data as objects are both
merged into a single entity bean business object.

Transitive persistence and lazy loading

By manually defining relationships between two or
more objects, you have the ability to process these

@Stateless public class OrderEntry {

@PersistenceContext EntityManager em;

public void enterOrder(int custID, Order newOrder) {

Customer cust = (Customer)em.find("Customer", custID);

cust.getOrders().add(newOrder);

newOrder.setCustomer(cust);

em.persist(newOrder);

}

}

Example 12 Using an EntityManager object to call entity beans

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 125

objects (in the form of a graph) using a cascading
mechanism provided by the new specification. This
mechanism is commonly known as “transitive persis-
tence” or “persistence by reachability” (i.e., if the
root object being persisted can reach a sub-node
object, it will persist the sub-node object as well).
Transitive persistence enables you to perform the
following cascading options:

• PERSIST — cascades the ability to persist an
entity into the database.

• MERGE — cascades the ability to merge a
detached entity onto persistence entities.

• REMOVE — cascades the ability to delete entities
from the database.

• REFRESH — cascades the ability to refresh the
objects in memory from the database. It overwrites
any changes made in memory up to that point.

• ALL — allows the ability to do all of the above
with one keyword.

No DTOs and optimistic locking
Using entity bean business objects for dual duty as DTOs is a good thing, but it brings an interesting prob-
lem to the table; namely, how does the object maintain data integrity in the face of concurrent usage? The
scenario is as follows: User A reads from the database and then User B reads from the database. User A
makes a change to the record, which persists that record to the database; slightly later, User B also makes a
change that persists the record to the database. Since both users were working from the same original data,
User A’s changes would be lost (i.e., last in wins).

Enter optimistic locking. In this scenario, User A reads a row from the database, and the version column
(usually a sequential index) has a value of 1. User B reads the same row before User A commits any
changes, and the version column is also 1. User A commits his changes to the database, and the version
column is automatically incremented to 2. When User B attempts to save her changes a short time later, the
save fails because the version column value for the row she read (1) no longer matches what is in the data-
base. In this case, an exception would be thrown; she could either reread the data and attempt to save again,
or she could pass the exception to the view layer.

How is optimistic locking supported in EJB 3.0? It’s simple. There’s another annotation called @Version
that helps solve problems with concurrent usage. All you need to do is define the version column in your
entity bean as a numeric value and add the @Version annotation to the accessor method as follows:

@Version

@Column(name="EMP_VERSION", nullable=false)

public int getVersion() { return version; }

protected void setVersion(int version) {this.version = version;}

Optimistic locking is a great approach for solving concurrency issues, especially if concurrency is the
exception rather than the norm in your application. Optimistic locking affords you better performance
because it doesn’t require you to use expensive row-level locks. Always look to use optimistic locking in
favor of pessimistic locking if your application doesn’t require a lot of concurrency at the row level.

SAP Professional Journal • November/December 2005

126 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

In Example 13, you see how to implement transi-
tive persistence using the PERSIST cascade attribute
in the @ManyToMany annotation. Essentially, you are
allowing Project objects or Employee objects to be
persisted from either side of the relationship when
either are the root node — but that’s it! Be careful
when using this feature: if you were to choose ALL
or included REMOVE, you could inadvertently delete
employees or projects from the database.

Lazy loading allows you to retrieve information
on an as-needed basis. By default, most relationships
are lazy loaded, which means if you want only the
Employee object, you get just the employee and not
all of his or her projects. When you need the projects,
you bring them into scope by calling the getProjects()
method. If you want projects right away, you can have
Project objects fetched eagerly (as opposed to lazily)
and cached. Example 13 would lazily load either proj-
ects or employees, depending on your entry point,

because that is the default behavior for this relation-
ship. Now let’s look at modifying the relationships
to support eager fetching.

In Example 14 you see how to modify the
Project’s many-to-many relationship with Employee
such that Project always uses the fetch attribute of the
@ManyToMany annotation set to EAGER. This
approach may be appropriate for retrieval through
Project; I would not recommend doing the same thing
in the Employee class for performance reasons (and so
I have not included that in the example).

Advanced relationship features:
multi-table mapping and inheritance

A nice feature of EJB 3.0 is the ability to do multi-
table mappings to one object using the
@SecondaryTable annotation. This annotation

@Entity

public class Project {

private Collection<Employee> employees;

@ManyToMany(cascade=PERSIST)

public Collection<Employee> getEmployees() {

return employees;

}

public void setEmployees(Collection<Employee> employees) {

this.employees = employees;

}

...

}

@Entity

public class Employee {

private Collection<Project> projects;

@ManyToMany(cascade=PERSIST, mappedBy="employees")

public Collection<Project> getProjects() {

return projects;

}

public void setProjects(Collection<Project> projects) {

this.projects = projects;

}

...

}

Example 13 Cascade PERSIST in a many-to-many relationship

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 127

eliminates the necessity of having to create an object
for every single table that exists. In essence, you can
combine tables into one object whenever that makes
sense, as demonstrated in Example 15.

In Example 15, you see the @SecondaryTable

annotation being defined above the class; this annota-
tion tells the class to join the primary key ID column
in the EMPL table to the EMP_ID column in the
EMP_SALARY table. In the getSalary() method, you
see the annotation parameter secondaryTable, which
says to use the EMP_SALARY column from the

@Entity

public class Project {

private Collection<Employee> employees;

@ManyToMany(cascade=PERSIST, fetch=EAGER)

public Collection<Employee> getEmployees() {

return employees;

}

public void setEmployees(Collection<Employee> employees) {

this.employees = employees;

}

...

}

Example 14 Eager fetching of employees for a Project

@Entity

@Table(name="EMPL")

@SecondaryTable(name="EMP_SALARY", pkJoin=@PrimaryKeyJoinColumn(name="EMP_ID",

referencedColumnName="ID"))

public class Employee implements Serializable {

private Long id;

private Long salary;

public Employee() {}

@Id(generate=TABLE)

public Integer getId() { return id; }

protected void setId(Integer id) { this.id = id; }

...

@Column(name="EMP_SAL", secondaryTable="EMP_SALARY")

public Long getSalary() { return salary; }

public void setSalary(Long salary) {

this.salary = salary;

}

}

Example 15 Multi-table mappings

SAP Professional Journal • November/December 2005

128 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

defined table to obtain the salary amount. This annota-
tion allows you to encapsulate the EMP_SALARY
table (without having to create a new object) within
the Employee object; it effectively provides a single
business object represented from two tables. To that
end, this concept helps keep object proliferation down
to a minimum for the trivial fields that can be easily
merged with other objects.

Multi-table mapping and inheritance are not part
of the EJB 2.x spec. Additionally, there are severe
conceptual issues with adding inheritance to EJB 2.x
CMP entity beans. Though SAP’s implementation of
EJB 2.x does not support multi-table mappings or
inheritance, both features are available in SAP Web
AS through the SAP JDO implementation. JDO sup-
ports several mapping strategies for inheritance,
including the single-table-per-class-hierarchy mapping
strategy. In EJB 3.0, multi-table mapping and inheri-
tance are now part of the spec. There are three types
of inheritance model in release 3.0: Single_Table (one
table per class hierarchy), Table_Per_Class (distinct
table per class), and Joined (one joined table per sub-
class). More details can be found in the EJB 3.0 spec.

EJB-QL — a real query
language for real people
and projects
EJB-QL has come a long way in the EJB 3.0 specifi-
cation. In this release, you have the option to perform
bulk update and delete operations, JOIN operations
(inner, outer, left), GROUP BY, HAVING, sub-
queries, arithmetic functions, and more. Also, this
release introduces named parameters for use in static
and dynamic queries. Basically, anything that you can
dream up in SQL can now be done in EJB-QL — it’s
a real query language for real people and projects!
The spec devotes nearly 40 pages to the new querying
features. I’ll just touch on some of the basics and my
own personal favorites.

Parametric queries

You’re probably already familiar with parametric

queries from pre-3.0 EJB-QL; they allow you to
develop dynamic queries by using parameters to
define the inputs. In Example 16, you can see a
parametric query that takes the employee’s name as
a parameter. Similar to the way the EntityManager
object called CRUD operations in the section
“Leveraging entity beans,” the em.createQuery()
method can do data retrieval. The “:” before the
employee’s name (empName) signifies that a parame-
ter will be used for this value; the setParameter()
method allows you to set the parameter with the name
variable. Note that if you want to use positional
parameters instead, you use a “?” before an integer
(starting with 1).

Finally, you can limit the result set to whatever
number you choose (it’s 50 in Example 16) and
getResultList() will return the results as a List
collection.

Named queries

Formerly, static queries were defined through the
EJB deployment descriptor. EJB 3.0 continues
to allow you to create static queries by using the
@NamedQuery annotation. If you are familiar with
Hibernate, you may recall that you can put named
queries directly in the HBM XML file. Whether that
will happen in EJB 3.0 through a deployment descrip-
tor (similar to 2.1) is yet to be seen.

Example 17 shows how to define and use a named
query.

Polymorphic queries

All queries are polymorphic by default in EJB 3.0. For
instance, if you take a typical inheritance example
where Manager and ExemptEmployee are subclasses
of Employee, the following query would result in the
return of both types of employees with salaries greater
than $80,000:

select e.salary from Employee e where

e.salary > 80000;

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 129

SQL queries

Depending on your target database, you might need to
use native SQL queries, oftentimes for performance
optimizations. Understandably, these queries would
not be portable. However, the new specification
allows you to write raw SQL queries if you need some
function that your database vendor’s implementation

of SQL provides; you can map the result set back to
your entity beans using the @SqlResultSetMapping
annotation.

In Example 18, you see how to use the
createNativeQuery() method of EntityManager to
create an SQL statement. The first parameter of this
method is the raw SQL statement, and the second

public List findByName(String name) {

return em.createQuery("SELECT e FROM

Employee e WHERE e.name LIKE :empName")

.setParameter("empName", name).setMaxResults(50).getResultList();

}

@NamedQuery(

name="findAllEmployeesWithName",

queryString="SELECT e FROM Employee e WHERE e.name LIKE

:empName"

)

List employees = em.createNamedQuery("findAllCustomersWithName")

.setParameter("custName", "Smith").getResultList();

Example 17 Named query

Example 16 Parametric query

Query q = em.createNativeQuery(

"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description "+

"FROM Order o, Item i " +

"WHERE (o.quantity > 25) AND (o.item = i.id)",

"OrderItemResults");

@SqlResultSetMapping(name="OrderItemResults",

entities={

@EntityResult(entityClass=com.acme.Order.class),

@EntityResult(entityClass=com.acme.Item.class)

}

)

Example 18 Creating a native query with SQL

SAP Professional Journal • November/December 2005

130 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

parameter is a string to define where the result set
goes. In the @SqlResultSetMapping annotation,
the name parameter utilizes that string and maps it
to entities, in this case, the Order and Item classes.
Therefore, the Order’s ID and quantity, and the
Item’s name and description, are populated based
on the query.

Projection and sub-queries

Projection and sub-queries are features that you won’t
find in the previous EJB specification.

• Projection queries — allow you to project
the results of a query directly to an entity,
without having to iterate through a collection to
produce the objects. The query in the following
example returns new OverworkedEmployee
objects for those employees with more than
three projects:

SELECT NEW

com.loutilities.OverworkedEmployee

(e.id, e.firstname, e.lastname)

FROM Employee e JOIN c.projects p WHERE

p.count > 3

• Sub-queries — allow you to embed a query within
another query. The following query yields those
employees who have spouses working at the same
company:

SELECT DISTINCT emp FROM Employee emp

WHERE EXISTS (

SELECT spouseEmp FROM

Employee spouseEmp WHERE spouseEmp =

emp.spouse)

Bulk update and delete operations

Probably one of my favorite features in the 3.0
release is the new ability to perform bulk update and
delete operations without having to make a special
call to JDBC or a stored procedure.

For example, you can set the status of all employ-

ees with a released date that is less than the current
date to “inactive” (bulk update) like this:

UPDATE employee e SET c.status =

'inactive'

WHERE e.date_released < CURRENT_DATE

To remove all employees that have a status set to
“inactive” (bulk delete), do this:

DELETE FROM EMPLOYEE e WHERE e.status =

'inactive'

Interceptors to address your
crosscutting concerns
The interceptors feature is one of the nicest introduced
in the EJB 3.0 specification. A key element of AOP
(Aspect-Oriented Programming) interceptors are
classes (or “aspects” if you are using something like
AspectJ) that allow you to manage crosscutting
concerns across several objects in a single program-
ming construct. A crosscutting concern could be
something like exception handling, profile logging,
security, or auditing. Instead of duplicating the code
to handle these concerns in every class where you
need it, you can use an interceptor class to provide the
necessary mechanisms.

EJB 3.0 introduces the @Interceptors annotation
to define the interceptor(s) that a call uses. In
Example 19, you can see how an interceptor has
been introduced into the AccountManagementBean
class by using the @Interceptors annotation. The
Metrics interceptor provides the ability to gather per-
formance metrics on how long it takes to execute each
method in the AccountManagementBean class. Note
that it’s not necessary to add anything to this class
other than the interceptor at the top.

In the Metrics interceptor class, the
@AroundInvoke annotation defines the desired
functionality around each invocation of this intercep-
tor. In this example, you see that we first capture the
current time, allow the original method called from

The new EJB 3.0 specification — why it’s time to reevaluate Enterprise JavaBeans

No portion of this publication may be reproduced without written consent. 131

AccountManagementBean to continue using the
proceed() method; then, in the finally code block,
the code reports the timing metrics to the console.

Even with an example this simple, you can see
the power of interceptors. You can put common cross-
cutting code into one area and then, in the classes that
need it, introduce the interceptor with the annotation.
All the while, there are no other modifications
required in the calling classes. Pretty powerful stuff!

Where do we go from here?
At the time of this writing, EJB 3.0 has been released

for public review. In August 2005, members of the
Executive Committee for SE/EE8 (including SAP)
voted unanimously in favor of the new specification.
EJB 3.0 is part of Java EE 5.0, which is scheduled for
Q1 2006. Oracle is the co-specification lead, and it
looks like the Oracle TopLink product will be used as
the reference implementation, much to the dismay of
the Hibernate community.9

@Stateless

@Interceptors({

com.acme.Metrics.class

})

public class AccountManagementBean implements AccountManagement {

public void createAccount(int accountNumber, AccountDetails

details) { ... }

public void deleteAccount(int accountNumber) { ... }

public void activateAccount(int accountNumber) { ... }

public void deactivateAccount(int accountNumber) { ... }

...

}

public class Metrics {

@AroundInvoke

public Object profile(InvocationContext inv) throws Exception {

long time = System.currentTimeMillis();

try {

return inv.proceed();

} finally {

long endTime = time - System.currentTimeMillis();

System.out.println(inv.getMethod() + " took " +

endTime + "milliseconds.");

}

}

}

Example 19 Using an interceptor to profile the AccountManagementBean class

8 The SE/EE oversees Java technologies for desktops and servers. See the
“Resources” section on the next page for a link to the list of committee
members.

9 See the discussion thread “Oracle becomes sponsor and co-specification
lead of EJB3” at TheServerSide.com: http://www.theserverside.com/
news/thread.tss?thread_id=34877.

SAP Professional Journal • November/December 2005

132 www.SAPpro.com ©2005 SAP Professional Journal. All rights reserved.

JBoss (using Hibernate) and Oracle both have
implementations of EJB 3.0 that conform to the cur-
rent release of the specification. Another newcomer,
Versant, also has an EJB 3.0 implementation that is
available as a plug-in to the Eclipse IDE. SAP, too,
has already started with its EJB 3.0 implementation.
Though there isn’t yet an official statement on when
the SAP EJB 3.0 implementation will be available,
there are rumors that preview versions will be made
available to early adopters in mid-2006.

The current lack of an SAP implementation
should not deter you from experimenting with the
new spec, however. I know many of you have
explored Hibernate with SAP Web AS. The creators
of the most recent release of Hibernate (R3) have
made great efforts to match the Hibernate API with
the EJB 3.0 API. Certainly, if you want to explore
outside the realm of SAP Web AS, you can take a
look at some of the early vendor implementations
mentioned above.

The nice thing about the spec is that an implemen-
tation that works on one platform, say Oracle, should
work on SAP Web AS as well. So instead of vendor-
specific EJB implementations, we get back to our
“write once, run anywhere” Java roots. Even so, I’m
looking forward to seeing what SAP NetWeaver will
bring to the table in light of the new spec and how
applications will leverage EJB 3.0. I hope, after read-
ing this article, you are too. It’s an exciting time to be
a J2EE developer.

Resources
Aspect-Oriented Refactoring Series —
Part 1: Overview and Process
http://www.theserverside.com/articles/
article.tss?l=AspectOrientedRefactoringPart1

Hibernate EntityManager for EJB3 (Hibernate’s
implementation of EntityManager)
http://www.hibernate.org/299.html

How to use Java 5’s built-in annotations
http://www-128.ibm.com/developerworks/java/
library/j-annotate1/

Java Community Process (JCP) Home —
JSR-220: Enterprise JavaBeans 3.0
http://www.jcp.org/en/jsr/detail?id=220

JBoss TrailBlazer (An EJB tutorial of JBoss’
implementation of the specification)
http://trailblazer.demo.jboss.com/EJB3Trail/

The Executive Committee info for J2SE/J2EE
http://www.jcp.org/participation/committee/
index.jsp#SEEE

Oracle’s EJB 3.0 Preview (Oracle’s implementa-
tion of the specification)
http://www.oracle.com/technology/tech/java/
ejb30.html

Versant’s Open Source JSR220-ORM
http://www.versant.com/opensource/orm/

