
Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 77

(complete bios appear on page 108)

The Java Message Service (JMS) support included with SAP Web
Application Server (SAP Web AS) Java1 6.20 and higher,2 delivered
by a built-in messaging server called the JMS provider, makes your
application development life a whole lot easier. When faced with the
task of enabling communication between components running in
distributed landscapes, you are no longer limited to synchronously
calling specific methods with Java Remote Method Invocation
(RMI).3 Using JMS, you can build applications out of loosely coupled
components that exchange data asynchronously via messages. The
main advantage of the JMS approach is that it decouples your application
components, so unlike with RMI, not all parts have to be available at the
same time. JMS also lets your application delegate tasks to be processed
asynchronously, freeing it to do other processing or temporarily return
control to the user while a lengthy process executes. For these reasons,
asynchronous, message-based communication is useful not just for
system-to-system applications, but also for building interactive
applications. And as a set of standardized, predefined interfaces,
JMS enables a platform-independent approach that makes your
programs portable across different vendors’ messaging servers.

Using Advanced Java Message
Service (JMS) Features to Increase
the Efficiency and Maintainability
of Your Distributed Java Applications
Sabine Heider, Michael Kögel, and Radoslav Nikolov

1 SAP Web AS can be deployed in three ways: with the Java/J2EE runtime (SAP Web AS Java),
with the ABAP runtime (SAP Web AS ABAP), and with both the Java/J2EE and ABAP runtimes
(SAP Web AS Java+ABAP).

2 SAP Web AS 6.20 introduced support for the Java programming language and version 1.2 of the
J2EE standard, plus support for JMS 1.0.2b. SAP Web AS 6.30/6.40 has even better scalability
features, is fully compliant with J2EE 1.3, which includes support for JMS 1.0.2b, and is required
for the example detailed in this article.

3 Remote Method Invocation (RMI) is part of J2SE. For more information, visit
http://java.sun.com/products/jdk/rmi/.

Sabine Heider, Java Server
Technology Group, SAP AG

Michael Kögel, Java Server
Technology Group, SAP AG

Radoslav Nikolov, Java Server
Technology Group,
SAP Labs Bulgaria

SAP Professional Journal September/October 2004

78 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Key JMS Terms and Concepts in Review

Here we’ll briefly recapitulate some of the key Java Message Service (JMS) terms and concepts we
introduced in our previous article, “Building Flexible, Reliable, Distributed Java Applications with the
Java Message Service (JMS) — An Introduction to JMS Programming” (SAP Professional Journal,
July/August 2004).

JMS Provider, JMS Clients, and Messages

JMS is a standard service of the Java 2, Enterprise Edition (J2EE) platform, and provides a way for
business applications to exchange data asynchronously (without being directly connected to each other)
via messages. JMS defines a set of interfaces in the javax.jms package (included as part of the J2EE
standard) that applications can use to send and receive messages to and from a destination on a JMS
messaging server (also called a JMS provider). Java programs that send or receive messages using
JMS are called JMS clients.* JMS messages can contain any kind of data, including plain text, HTML,
XML, and images.

JMS Objects

In order to send or receive messages via JMS, a JMS client instantiates several JMS objects, including
a connection, session, producer, or consumer object, for example. Connection objects and session
objects represent just what their names imply. Producer objects are used to send messages to a
destination on the JMS provider; consumer objects are used to receive messages from a destination.**
To help you instantiate JMS objects in a vendor-neutral way, JMS defines a series of factory methods to
instantiate the objects without having to specify their (vendor-specific) class names.*** The factory

�� Note!

For a detailed introduction to JMS, see the article “Building Flexible, Reliable, Distributed Java Applications with
the Java Message Service (JMS) — An Introduction to JMS Programming,” published in the July/August 2004
issue of SAP Professional Journal. A brief review of the key JMS terms and concepts introduced in that article is
available in the sidebar above.

* Programs written in other languages, like C++, can also send and receive messages via a JMS provider if the JMS server
vendor offers them a (proprietary) programming interface. These clients are called “non-JMS clients.”

** It is common to refer to the entire JMS client as a producer or a consumer, although it is actually a producer or consumer
object that sends or receives the messages.

*** It may surprise you to learn that, under the hood, each of these objects are instances of classes that are specific to the vendor of
the JMS provider (in our case, SAP). Your code stays vendor-neutral and portable, however, because these objects implement
the standardized interfaces from the javax.jms package, so you can address the objects via the interface regardless of which
vendor implemented them and of which type they actually are. Thus your JMS applications will work with any JMS server.

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 79

In a previous article,4 we developed a practical
example using the JMS API to introduce you to the
fundamentals of JMS programming and to show you
how to get started building JMS-based applications
quickly on your own. In this article, we will reuse the

example to build on that foundational knowledge by
extending it using some advanced JMS programming
features. We will show you how to implement asyn-
chronous message delivery to streamline your code,
and how to use JMS message selectors to reduce
application memory consumption.

Before we immerse ourselves in the programming
details, however, let’s briefly get reacquainted with

methods are chained, so you use the connection object to create a session object, the session object to
create a producer object, and so on.

Administered Objects

Some JMS objects — the connection factory used to start the instantiation of other objects, and the
destination to which you send and from which you receive messages — must be instantiated in advance
by an administrator and placed centrally in the application server so that the JMS clients can access
them. Such objects are called administered objects. The clients use the standard Java Naming and
Directory Interface (JNDI) service to retrieve references to administered objects from a directory service
called the JNDI provider (the JNDI provider is part of every J2EE-compliant application server).

JMS Messaging Models

JMS provides two messaging models (also called messaging domains): point-to-point (ptp) and
publish-subscribe (pubsub). The ptp model is used for “one-to-one” message delivery; the pubsub
model is used for “one-to-many” message delivery. Depending on whether you use ptp or pubsub,
destinations, producers, and consumers each have more specific names. With ptp, destinations are
called queues, producers are called senders, and consumers are called receivers. With pubsub,
destinations are called topics, producers are called publishers, and consumers are called subscribers.
These names are actually very logical given the scenario each model supports.

Temporary Destinations (Queues or Topics)

Just like regular destinations, temporary destinations represent a logical place to which a producer
can send messages (and from which a consumer can receive messages). Unlike regular destinations,
however, temporary destinations are not set up as administered objects; rather, they are created by the
JMS client at runtime using a factory method of the session object. Temporary destinations exist only for
the lifetime of the connection in which they are created. When the connection is closed, the temporary
destination is deleted, and all messages inside the destination are lost. Also, only consumers created in
the same connection as the destination can receive messages from it, although all producers can send
messages to it. Temporary destinations are intended to facilitate a simple request/reply mechanism, like
the one used in the example application outlined in our previous article.

4 “Building Flexible, Reliable, Distributed Java Applications with the
Java Message Service (JMS) — An Introduction to JMS Programming”
(SAP Professional Journal, July/August 2004).

SAP Professional Journal September/October 2004

80 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

the example scenario introduced in the previous arti-
cle,5 and then take a closer look at where the coding
can be improved, how we are going to improve it, and
the benefits such improvements will provide to the
example, and to your own JMS-based applications.

An Overview of the Sample
Scenario
To demonstrate the use of the JMS API, in our previ-
ous article we developed the credit card validation
process of an existing online shopping application.6

The example consists of a frontend JSP/servlet appli-
cation that lets a user enter a credit card number, and
a backend Java application that simulates the credit
card validation normally provided by an external serv-
ice. Figure 1 illustrates the major steps and compo-
nents of the application scenario (the parts that are
covered by our example are highlighted in black);

Figure 2 shows the interaction between the applica-
tion components and the JMS provider within SAP
Web AS. To summarize, the frontend payment pro-
cessing servlet accepts the data entered by the user
(the credit card number) and sends it to the backend
validation component in a JMS message. The valida-
tion component checks the data and sends a new JMS
message to the servlet with a positive or negative
result, which the servlet then reports to the user.

�� Note!

Technically, the payment module sends a JMS
message with the credit card data to a predefined
queue (step ➋ in Figure 2).7 Since the payment
module expects a reply, it creates a temporary
queue8 (step ➊) and adds a reference to it in the
reply-to destination of the message sent in step ➋.
The credit card validation module receives the
message using a synchronous “pull” approach
(step ➌), validates the credit card information,
and sends the result to the temporary queue
in a new JMS message (step ➍). The servlet
periodically checks9 the temporary queue for new
messages (step ➎), and deletes the queue upon
successful receipt of the reply (step ➏).

���������	
���

�
����������

�
��
������
���

���������
�������
����

�����������

��������

���

������
���
�	���
�

�����������������
���
�	���
�

���������
��

Figure 1 Use Case for the
Sample Application

7 spjDemoQueue is an example of an object that has to be created in
advance (e.g., by an administrator) for later use. At runtime, we retrieve
a reference to the existing queue object using standard Java Naming and
Directory Interface (JNDI) methods (rather than instantiating the object
directly in the application). Objects defined in this way are called
“administered objects.”

8 Temporary queues are dynamically instantiated destinations to which
messages can be sent and from which messages can be retrieved. For
more details, refer to our previous article in the July/August 2004 issue
of SAP Professional Journal, and also to the sidebar “Key JMS Terms
and Concepts in Review” on page 78.

9 We coded the servlet to return a temporary “please wait” HTML page
after sending the validation request, to give users a visual indicator of
activity and to free resources by preventing the servlet from stalling as
it waits for a reply. Before exiting, the servlet stores the temporary
queue in the user’s session memory. A metatag in the wait page causes
the browser to periodically submit a “status check,” which prompts the
servlet to check the temporary queue for a reply message. If there is
no reply, the servlet generates another wait page. Note that this page
is available as part of the download at www.SAPpro.com.

5 The complete code for the example is available for download at
www.SAPpro.com.

6 The example discussed in the article and included in the download does
not include the online shop itself; it includes only the credit card verifi-
cation component, which is where the JMS logic is used. The online
shop referenced in the article is only intended to illustrate a scenario in
which the demo could be embedded.

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 81

In the interest of simplicity, some components
of the example application were implemented in a
suboptimal way, however. Using some advanced
JMS programming features, we can:

• Increase maintainability by streamlining the
message exchange.

• Improve performance and scalability by reducing
the number of temporary message queues.

• Improve scalability and leverage additional
services by implementing the validation module
as an Enterprise JavaBean (EJB).

Streamlining the Message Exchange

We implemented the validation module (which is
essentially a server, since its only task is to process
external messages sent to spjDemoQueue) in a simple,

� ��!�"� ��������
�����#��

$%����
#����

��������
��%
����

�&�������$�%

��

�
�

'����#�� ������

�
������
�

(�#�&)(
)%�

���

������ ����

*

+
,�������

�����	�

��
�
�����	�

������ ��
���

�������
�����	�

��	�-����*
�(.�	
-����

/

���	����%
����

�
������
�

��

�
�

������ '����#��

(�#�&)(
)%�

���

���	�
���
 ����
������

���������� �������������������

0 ��
�
�����	�

1

Figure 2 JMS Design of the Application’s Credit Card Verification Process

but not very elegant way: we use an endless loop to
constantly ask the JMS provider to check for mes-
sages in spjDemoQueue. Inside the loop, we call a
special version of the receive method of the JMS API
that blocks execution — i.e., the calling program
doesn’t continue — until there is a message to deliver.
A major disadvantage of this approach is that we
cannot shut down the program properly. Unless it
is processing a message, the program lies dormant
waiting for a new message, so to shut it down we have
to kill the entire Java process using operating system
commands (or, alternatively, write code to spawn an
additional thread for shutdown handling, which
greatly increases the complexity of the program).

Fortunately, JMS provides a more elegant, easy-
to-implement way to check for and receive incoming
messages — asynchronous message delivery.
Essentially, we create and register a “message lis-
tener” with the JMS provider that is notified as soon
as a message arrives. As you will see later in the
updated example, this will free our main program to
do other tasks instead of just waiting for messages,
and usually leads to much cleaner and more main-
tainable code.

Reducing the Number of Temporary
Message Queues

The payment module creates a new temporary reply
queue for each credit card number to be validated,
and the validation module will send exactly one JMS
message — the result of the particular validation —
to each of these queues. Creating a large number of
temporary queues instead of using a centralized
queue wastes valuable memory. While it is a feasible
approach for low-volume applications, the scalability
impact will become apparent with the high loads
experienced by most online shops.

A better approach is to use a single queue for all
credit card validation results, and locate the corre-
sponding reply message using some type of unique
identifier. JMS message selectors are just what we
need to perform this logical separation — and we’ll
show you how to use them in this article.

SAP Professional Journal September/October 2004

82 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Implementing the Validation Module
As an Enterprise JavaBean (EJB)

In our current implementation of the example appli-
cation, all requests for credit card validation are
served by a single-threaded validation module that
processes incoming requests sequentially, one after
the other. We chose this approach for its simplicity —
after all, our goal was to explain the JMS fundamen-
tals, not to delve into the details of high-performance
application design — but realistically, under high
loads, such an implementation will cause major
bottlenecks.

So how can we improve the validation module so
that it can handle high loads as well? Clearly we need
to give up the single-threaded approach and allow
multiple receivers to process the incoming requests in
parallel. We could add this capability ourselves, of
course, but there is an easier and better solution: We
can leverage the infrastructure of the J2EE Engine in
SAP Web AS and implement the validation module as
an Enterprise JavaBean (EJB) — i.e., as an application
component that is executed within the J2EE Engine.
In the EJB programming model, we delegate the scal-
ability issue completely to the underlying application
server (SAP Web AS), which will ensure that the
application components work in parallel if required
by the load. While the “classic” EJB types (session
beans and entity beans) are not capable of receiving
JMS messages asynchronously, a new type of EJB,
called a message-driven bean, can. Message-driven
beans were recently added to the EJB standard to fill
the gap between the JMS and EJB programming mod-
els, and are designed to react to messages arriving
at a particular destination (i.e., “queue” or “topic,”
depending on the messaging model in use10).

It is easy to convert our validation module into a
message-driven bean, and doing so will not only solve
our scalability problem, it will also allow us to benefit

10 JMS provides two messaging models: point-to-point (ptp) for one-to-
one message delivery, and publish-subscribe (pubsub) for one-to-many
message delivery. With ptp, destinations are called queues; with pub-
sub, destinations are called topics. For more details, refer to our
previous article in the July/August 2004 issue, and also to the sidebar
“Key JMS Terms and Concepts in Review” on page 78.

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 83

from other J2EE Engine features, such as security,
user handling, and transaction management, for exam-
ple. Finally, since an EJB runs within the J2EE
Engine, rather than as a standalone Java program, we
eliminate the need to separately monitor and adminis-
ter an additional process.

This article will address the first two issues —
improving maintainability by receiving messages
asynchronously and improving scalability by using
message selectors instead of temporary queues. Since
it is such a large topic, we will cover message-driven
beans, plus a few more advanced topics, in a future
SAP Professional Journal article.

Streamlining Your JMS
Applications with Asynchronous
Message Delivery
A JMS application can receive messages either by
actively checking for new messages (synchronous
delivery), or by requesting that the JMS provider
notify it when new messages arrive (asynchronous
delivery). Asynchronous delivery requires a bit
more expertise to implement, but results in shorter
and more maintainable code in most cases. In this
section, we’ll modify the validation module of
our example application to use asynchronous
message delivery.

Let’s review a few fundamentals before we
start coding.

The Fundamentals of Asynchronous JMS
Message Delivery

Synchronous message delivery is a pull-based mecha-
nism — the JMS client calls a receive method on the
JMS consumer object,11 thus initiating the message
delivery process. Recall from our previous article that

there are three versions of the receive method: a
method that blocks execution until a message is avail-
able (a “blocking” method), a non-blocking method
that immediately returns a message if there is one (or
null otherwise), and a blocking method with a time-
out. We chose the blocking version for our validation
module since we wanted it to wait indefinitely for a
new message to arrive. In contrast, we chose the non-
blocking version for our frontend servlet since we
wanted it to quickly check whether a reply had arrived
from the validation module, and to issue a “please
wait” page if not.

In contrast, asynchronous message delivery is a
push-based mechanism. Instead of the client applica-
tion asking for a message, the JMS provider itself
actively delivers an incoming message to the message
consumer. The main implementation difference is
that, instead of calling the receive method explicitly
from the main application code, the application regis-
ters a message listener object with the consumer
object. Since it receives messages asynchronously,
the message listener object is now called an asynchro-
nous consumer. The message listener implements
the JMS interface javax.jms.MessageListener (see
Figure 3), and contains the appropriate business logic
to process a message. When a message comes into

11 A JMS client instantiates producer objects to send messages and con-
sumer objects to receive messages. For more on this, see our previous
article and also the sidebar on page 78.

(�#�&)(
)2

 !����"�#��"$�!����"�%

%�

�����
�����
&&' ���(���))

%�

�����
��������

Figure 3 The Message Listener Implements
the Interface and Calls onMessage
to Process the Request

SAP Professional Journal September/October 2004

84 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

the destination (the “queue” or “topic,” depending on
the messaging model in use) for which the listener
object is registered, the JMS provider’s client-side
components12 call the listener’s onMessage method,
which contains the business logic for processing the

request. In our example application, we will place the
logic that validates the credit card number and returns
a result to the sender inside this onMessage method.
(See the sidebars above and on the next page for some
important considerations to keep in mind when using
asynchronous message delivery in your applications.)

Incorporating Asynchronous Message Delivery
into the Example

The steps a JMS client must take in order to receive

Critical Issue: Avoiding Collisions in Session Objects

Asynchronous delivery applications are inherently multi-threaded, which means that a sequence of tasks
or instructions (a part of the programming code) can be executed in parallel to other sequences. While a
detailed discussion of multi-threaded application development is beyond the scope of this discussion,
there are a few critical dangers related to multi-threading that you need to steer clear of when using
asynchronous delivery in your applications.

Consider our original example application, detailed in our
previous article in the July/August 2004 issue. The application
uses synchronous delivery, and at all times we have full
control over the processing of the (single) thread in which the
application code executes. Since we are dealing with just
one thread of execution, we do not have to worry about the
interaction between different threads or potential concurrency
issues.* With asynchronous message delivery, however, there
are always at least two threads executing: one in which the
client program executes, and a second (the delivery thread) run
by the JMS provider’s client-side components that invokes the
listener’s onMessage method when a message arrives.

Understanding how this works is critical because with the exception of destination objects, connection
factory objects, and connection objects, JMS objects are not coded to be thread-safe.** You need to pay
special attention to session objects, which are involved whenever you send or receive a message. Let’s
say that you set up an asynchronous consumer and start the connection so that the consumer receives
incoming messages. The consumer is associated with a particular session object, and behind the scenes

� Note!

Technically, we could have developed
the validation module to spawn multiple
threads, but for simplicity we chose not to.
If you choose to spawn multiple threads
when using synchronous delivery, be sure
to follow the guidelines discussed here for
asynchronous delivery.

* When multiple threads access a single object concurrently (e.g., by calling a method or changing a variable), and the object is not
coded to handle this concurrent access, the access can cause unpredictable side effects. This is similar to what would happen if two
users were allowed to modify the same Microsoft Excel file on a shared drive at the same time: one user’s changes might be lost, or
worse, a combination of both users’ changes might be saved.

** A thread-safe object is designed to handle concurrent use by more than one thread. In this case, the application developer doesn’t
have to anticipate potential problems because two threads can safely access the object at the same time. Essentially, the critical code
sections (e.g., those where data inside the object is modified) have been coded to execute sequentially instead of concurrently.

12 Recall that each vendor-specific JMS implementation actually consists
of two parts: a server component (the messaging server or JMS
provider) plus a client-side class library that is included in the applica-
tion’s class path. Remember that JMS only defines a set of interfaces
— the actual classes that implement them are provided by the vendor
and are specific to that vendor (SAP, in our case).

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 85

the JMS provider accesses this session whenever it delivers a message to the consumer.*** There are
two threads executing in parallel: thread #1, in which your main application runs, and thread #2, which
the JMS provider uses to deliver messages (by calling the asynchronous receiver’s onMessage method).
Suppose the application running in thread #1 decides to do something that involves processing by a
session object (e.g., send a message, create a new producer object, or create a temporary queue), and
uses the same session object to which the asynchronous consumer is assigned. Suppose further that
at the same time, in thread #2, the JMS provider delivers an incoming message to the asynchronous
consumer. The JMS provider uses the session to track and control the message delivery, so two threads
are accessing the same session object at the same time: thread #1 while processing the application code,
and thread #2 while delivering the message. Concurrent access to the session object is forbidden,
though, and will very likely cause a malfunction. You cannot predict what exactly will happen. You might
receive a JMSException or a RuntimeException, you could lose some messages, or maybe everything will
run without incident — there is no way to know in advance. To make matters worse, application errors
caused by thread collisions are hard to track down because they appear randomly.

Now the good news! The key to avoiding these collisions is simple: except when closing a session, do not
touch the message listener’s session in any way after enabling the listener to receive messages (i.e., after
calling the start method on the connection object). This includes instantiating new consumer or producer
objects, calling other methods on the session object, or even sending messages with existing producers.
Each of these actions involves processing by the session object, which can potentially collide with an
incoming message, as you just saw. Instead, if you need to send messages, for example, create a
new session and producer object to do so in parallel — i.e., dedicate a separate session object for the
asynchronous consumer exclusively to the message delivery thread, which the application cannot control
(see the section “Tips for Successful JMS Programming” at the end of this article).

In summary, while the multi-threaded nature of the asynchronous delivery mechanism requires you to
think a bit more carefully about the design of your application, don’t let this discourage you from using it!
The approach is very convenient and easy to use once you’re used to it, and often yields compact and
elegant application code.

*** The session object is the most important JMS object. It is a factory for several objects that use it internally: temporary destinations,
producers, consumers, and all types of messages. Session objects also offer methods and options for delivering messages in
transactional units. In addition, the JMS provider performs all of its internal message tracking and sequencing at the session level.

Handling Runtime Exceptions with Asynchronous Delivery

An important requirement you need to be aware of with asynchronous delivery is that you must catch
runtime exceptions within your message listener. According to the JMS specification, a message listener
must not throw a runtime exception, which is considered a client programming error. The specification
advises you instead to catch all exceptions, including runtime exceptions, inside the onMessage method,
and to forward the message that causes the problem to a dedicated destination for “unproccessable”
messages. While the question of whether it is good programming style to catch runtime exceptions is

(continued on next page)

SAP Professional Journal September/October 2004

86 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

messages asynchronously are very similar to synchro-
nous message delivery, except for two key differences:

• You need to implement an additional message lis-
tener class, and register it with the JMS provider
by calling the setMessageListener method of the
consumer object.

• You don’t have to call the consumer’s receive
method.

With synchronous delivery, you call the con-
sumer’s receive method and receive the message
as a return value. With asynchronous delivery, the
JMS provider automatically calls our registered
message listener’s onMessage method when a
message arrives.

Figure 4 provides a graphical summary of the
steps for receiving a message asynchronously using
the ptp messaging model. In a pubsub messaging

arguable (the original purpose of runtime exceptions was to relieve programmers from having to deal with
errors), it is what JMS expects from you, so it must be done.*

It is beyond the scope of this discussion to demonstrate JMS exception handling in depth (we will provide
a detailed example in an upcoming SAP Professional Journal article, so that you can see how it works
and what you have to do). For now, you just need to understand how the JMS provider treats a runtime
exception and how the application behaves if your message listener throws one. It will depend on the
acknowledgement mode that you chose for your JMS session (this was discussed in our previous article):

• AUTO_ACKNOWLEDGE: If you chose this mode for your session, you will immediately receive the
same message again that caused the problem. To understand the behavior, remember that this mode
hides the message acknowledgement process from the application (the provider’s client-side objects
handle it implicitly). A runtime exception indicates a severe error, so instead of sending an
acknowledgement, the provider recovers the session and resends the (last) message.

• DUPS_OK_ACKNOWLEDGE: This mode is similar to AUTO_ACKNOWLEDGE, but messages other
than the failing one may be resent as well — this mode acknowledges messages as a group or after a
predefined time period has passed, instead of immediately as each message arrives.

• CLIENT_ACKNOWLEDGE: This mode requires you to handle message acknowledgement yourself,
including what happens to a message that causes an exception — JMS does not carry out any
implicit actions (like session recovery) for you. When a message cannot be processed successfully,
JMS continues to send the messages that follow the failing one until you either acknowledge message
delivery or recover the session. If you acknowledge message delivery, the JMS provider will mark all
messages — including the failing one — as successfully received, in which case the failing message
is lost. If you recover the session (via method Session.recover), the JMS provider will redeliver all
messages since the last acknowledged one — including the one that caused the error.

(continued from previous page)

* Runtime exceptions (i.e., exceptions derived from the base class java.lang.RuntimeException) are a special class of exception that
indicate a severe, unexpected error in the program flow, such as a NullPointerException, which is thrown when you access a reference
that has a value of null. Unlike other exceptions, which you have to “catch” (handle the error situation immediately) or “throw” (declare
the exception in the method signature and pass it to the caller), runtime exceptions are dealt with automatically. You can catch and
handle them if you wish, but you don’t have to: they will simply be passed to the caller without being declared in the method signature.
Runtime exceptions are also called “unchecked” exceptions, as opposed to regular “checked” exceptions. Since runtime exceptions
don’t have to be declared, they are the only type of exception a message listener can throw. The listener’s onMessage method is part
of the predefined javax.jms.MessageListener interface and, according to its definition, does not throw any checked exceptions.

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 87

scenario, the ptp-specific interfaces and methods are
simply replaced with their pubsub counterparts.13

Let’s now modify our example to use asynchro-
nous delivery, which involves two overall steps:

1. Develop the message listener class.

2. Modify the validation module to register the
listener with the JMS provider.

Step 1: Develop the Message Listener Class

The first step in porting our validation module from
synchronous to asynchronous delivery is to define a
message listener class to handle incoming messages.
There are two ways to do this:

• Adjust our existing CardValidator class
com.sap.jms.examples.spj.CardValidator to
implement the javax.jms.MessageListener
interface.

• Create an entirely new, separate listener
class.

�

*�
#%

�

*�
#%

�����������+
 ���'
 #%

�����������,���'
 #%

&&������))

&&������))

������	���'-��#.����%

&&������))

���!����"�/'��� ��#�'��� ��%

��
��#%
��
��#%

 !����"�#�����"�%

&&������))

�
 0���
��

.����

���+�'� � � �'
1 '�'��+
 ��2�

�
 0���
��
�����+
 ���'
 0���
��

�
 ���'

�����+
 ���'

����'

�����,���'

����'-��
�����	���'-��

�����#%

�'��� ��
!����"�/'��� ��

��
��#%

���3�
-'���

Figure 4 Sequence Diagram for Receiving a Message Asynchronously Using ptp

13 Recall that we provided a similar diagram for ptp synchronous delivery
in our previous article.

SAP Professional Journal September/October 2004

88 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

The only requirement is that our Java message
listener class must implement the
javax.jms.MessageListener interface, so from the
perspective of JMS, the approaches are equivalent —
the one you use is entirely up to you. For clarity,
we decided to develop a separate listener class
com.sap.jms.examples.spj.ValidatorMessageListener,
as shown in Figure 5.

The constructor (method
ValidatorMessageListener) expects the queue connec-
tion as an input parameter. This lets us reuse an exist-
ing connection instead of creating a new one (an
expensive task from a processing perspective). We
use the connection to create a non-transacted session,
and then use that session to create a sender without

specifying a queue for the sender to send to. For now
(in keeping with our original design), we will send the
result of the card validation to the temporary queue
specified in the validation request’s JMSReplyTo
header field.

Next, let’s add the code to process an incoming
message. The interface javax.jms.MessageListener
defines just a single method, onMessage, that is
executed when a message arrives in the queue
the asynchronous consumer is listening to (see
Figure 6).

Notice that we have simply moved the logic
for processing a validation request from the class
CardValidator, where it used to be, to our new

Figure 5 Constructor of the ValidatorMessageListener Class

18 /**
19 * This class contains the business logic for the credit card
20 * validation. It is a JMS MessageListener, which means it
21 * asynchronously receives messages for processing.
22 */
23 public class ValidatorMessageListener implements MessageListener {
24
25 private QueueSession session;
26 private QueueSender sender;
27
28
29 /**
30 * Constructs a ValidatorMessageListener object.
31 * @param connection The QueueConnection to be used
32 * @throws JMSException If a JMS error occurs
33 */
34 public ValidatorMessageListener(QueueConnection connection)
35 throws JMSException {
36
37 // Create a non-transacted session
38 session = connection.createQueueSession(
39 false, Session.AUTO_ACKNOWLEDGE);
40
41 // Create a sender with no specific queue
42 sender = session.createSender(null);
43 }

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 89

Figure 6 Implementation of the ValidatorMessageListener Class

46 /**
47 * This method contains the message listener's business logic,
48 * which is the code to be executed on the arrival of a message.
49 * In our case, it simulates the credit card validation.
50 * @param msg The message to be processed
51 */
52 public void onMessage(Message msg) {
53 String cardNumber;
[…]
56 // Get the card number from the message
57 cardNumber = msg.getStringProperty(
58 CardValidator.MSG_PROPERTY_CARD_NUMBER);
59 if (cardNumber == null) {
60 System.out.println(
61 "Not a valid request. Message property missing: "
62 + CardValidator.MSG_PROPERTY_CARD_NUMBER);
63 } else {
64 // Validate the card number,
65 // and keep the result for the response
66 boolean result = validateCard(cardNumber);
67 System.out.println("Validated card number:" + cardNumber);
68
69 // Create a new message and set the result as a property
70 Message replyMsg = session.createMessage();
71 replyMsg.setBooleanProperty(
72 CardValidator.MSG_PROPERTY_CHECK_RESULT, result);
73
74 // Send the reply message to the destination
75 // given in the received message
76 Queue replyQueue = (Queue)msg.getJMSReplyTo();
77 if (replyQueue == null) {
78 System.out.println("JMSReplyTo missing. Request ignored");
79 } else {
80 sender.send(replyQueue, replyMsg);
81 System.out.println("Response sent: " + result);
82 }
83 }
[…]
90 /**
91 * Validates the cardNumber.
92 * <p>
93 * In a real world application, this would probably generate
94 * a request to an external service provider.
95 * We are just checking the length of the number, and simulate
96 * the long external request by sleeping for 10 seconds.
97 * @param cardNumber The credit card number to validate
98 * @return <code>true</code> if the credit card number is okay,
99 * <code>false</code> otherwise.

(continued on next page)

SAP Professional Journal September/October 2004

90 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

message listener class ValidatorMessageListener.
Nothing else has changed: we retrieve the credit card
number to be validated from the incoming message,14

validate the number, and return the result as a reply
message to the temporary queue.15

There’s one more thing to note. As you can see in
Figure 7, we catch all possible exceptions that might
occur (refer back to the sidebar “Handling Runtime
Exceptions with Asynchronous Delivery” on page 85).
For simplicity, we coded the handler to simply print
the stack trace of the exception. In a real application,
you should implement a more robust exception-
handling routine.

For example, you might log the exception in your
environment’s system log for later analysis, and send a
JMS message containing an error message to the reply
queue, which the payment module then displays to the
user. The message could contain a string property
with a more descriptive message like: An internal
error occurred while validating your payment
information. If the problem persists, please inform
the system administrator.

Step 2: Modify the Validation Code to Register
the Listener with the JMS Provider

Now that we’ve moved the business logic for the
example to the message listener class, the main
class CardValidator becomes much shorter. Let’s
compare the new version with the original imple-
mentation from the previous article, section by
section, and insert the code that will register our
new ValidatorMessageListener class with the
JMS provider.

The easiest place to start is with the
CardValidator class’s constructor method, because
it remains unchanged. As before, the code first
creates a javax.naming.InitialContext object in
order to access the Java Naming and Directory
Interface (JNDI) service. We use it to look up the
administered JMS objects — that is, the queue con-
nection factory16 QueueConnFactory and the queue
spjDemoQueue. Finally, we use the connection fac-
tory to create a queue connection that will interact
with the JMS provider. The queue and the connection
are stored in instance variables for later use (see
Figure 8).

100 */
101 public boolean validateCard(String cardNumber) {
102 boolean result = (cardNumber.length() == 16);
103 try {
104 Thread.sleep(10000);
105 } catch (InterruptedException e) {
106 // Hey, this is just an example, so we don't care
107 }
108 return result;
109 }
110
111 }

14 The constant MSG_PROPERTY_CARD_NUMBER, which we use
in Figure 6 to get the message property, is defined in the class
CardValidator. It has the value cardNumber.

15 The result is stored as a message property named result (see the
constant MSG_PROPERTY_CHECK_RESULT defined in the
class CardValidator in Figure 6).

16 Remember from the previous article that instead of instantiating an
object from a vendor-specific class, JMS defines a series of “factory”
methods that instantiate each vendor-specific object for you and return a
reference to that object (see the sidebar “Key JMS Terms and Concepts
in Review” on page 78).

Figure 6 (continued)

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 91

52 public void onMessage(Message msg) {
53 String cardNumber;
54
55 try {
56

[…] // business logic of the listener

84 } catch (Exception e) {
85 // In a serious application, you should handle the exception
86 e.printStackTrace();
87 }
88 }

Figure 7 Exception Handling in the ValidatorMessageListener Class

36 /** The class name of the initial context factory to be used. */
37 public static final String INITIAL_CONTEXT_FACTORY =
38 "com.sap.engine.services.jndi.InitialContextFactoryImpl";
39 /** The URL to the naming service provider's configuration info. */
40 public static final String PROVIDER_URL = "localhost:50004";
41
42 /** The JNDI lookup name for the JMS connection factory to be used.*/
43 public static final String CONN_FACTORY_LOOKUP_NAME =
44 "jmsFactory/QueueConnFactory";
45 /** The JNDI lookup name for the JMS queue to be used.*/
46 public static final String QUEUE_LOOKUP_NAME =
47 "jmsQueues/spjDemoQueue";

[…]
56 private Queue queue;
57 private QueueConnection connection;

[…]
60 /**
61 * Constructs a CardValidator object.
62 * @param username Username used to create an InitialContext and
63 * a JMS connection
64 * @param password Password used to create an InitialContext and
65 * a JMS connection
66 * @throws NamingException If a JNDI error occurs
67 * @throws JMSException If a JMS error occurs
68 */
69 public CardValidator(String username, String password)
70 throws NamingException, JMSException {
71
72 super();
73

Figure 8 Constructor of the CardValidator Class

(continued on next page)

SAP Professional Journal September/October 2004

92 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

The class’s main method (not shown because it is
very straightforward) creates a CardValidator object
and calls the validator’s process method immediately
afterward. We need to modify the process method to
register our message listener with the JMS provider.
As before, we use the connection to create a non-
transacted JMS session, and use the session object
to create a queue receiver that receives messages
from the queue spjDemoQueue. Next, we create a
message listener by instantiating an object of type

ValidatorMessageListener, and register the object as
a message listener for our receiver by calling a new
method on the receiver setMessageListener.

Figure 9 shows the updated process method. The
added code is shown in boldface type.

Next, after everything is set up, we start the con-
nection (see Figure 10). From this point on, the JMS
provider will deliver messages to our message listener.

74 // Create an initial context for doing JNDI lookup
75 Properties env = new Properties();
76 env.put(Context.INITIAL_CONTEXT_FACTORY, INITIAL_CONTEXT_FACTORY);
77 env.put(Context.PROVIDER_URL, PROVIDER_URL);
78 env.put(Context.SECURITY_PRINCIPAL, username);
79 env.put(Context.SECURITY_CREDENTIALS, password);
80 InitialContext jndi = new InitialContext(env);
81
82 // Lookup factory and queue
83 QueueConnectionFactory factory =
84 (QueueConnectionFactory)jndi.lookup(CONN_FACTORY_LOOKUP_NAME);
85 queue = (Queue)jndi.lookup(QUEUE_LOOKUP_NAME);
86
87 // Create the connection
88 connection = factory.createQueueConnection(username, password);
89 }

�� Note!

Notice in line 141 of Figure 9 that we pass in our connection object when instantiating the message listener object.
As shown earlier in the code for class ValidatorMessageListener (Figure 5), the listener needs to instantiate a
sender object to send the reply messages. Normally you would use the connection factory to create a connection,
the connection to create a session, and, finally, the session to create a sender. In this case, however, we can reuse
the connection object already instantiated by the CardValidator, so we don’t have to create another one.

We could even have passed the session object directly, in which case the asynchronous consumer and the sender
would share the same session object. But remember that the session object is not thread-safe, so we shouldn’t do it
unless we are 100% sure that no concurrent access to the session is possible (refer back to the sidebar “Critical
Issue: Avoiding Collisions in Session Objects” on page 84). In this particular case it would be okay (see the tips
section later in the article for details), but we prefer the defensive approach of creating separate session objects for
the sender and the consumer. It is clearer, easier to maintain, and, in the end, less error-prone.

Figure 8 (continued)

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 93

This continues until the consumer object the message
listener belongs to is closed, or until the connection is
explicitly stopped.

Switching to asynchronous message delivery
enables us to implement a more graceful shutdown
mechanism without much effort. Recall that origi-

nally the validation server process ran indefinitely in
an endless loop — you had to manually terminate the
validation server process via an operating system
function. With our new design, we print status infor-
mation to the console and simply wait for manual
input from the administrator to stop the validation
program. Figure 11 shows the required code.

128 /**
129 * Process the incoming validation requests.
130 */
131 public void process() {
132
133 try {
134 // Create a non-transacted session and a receiver for the queue
135 QueueSession session = connection.createQueueSession(
136 false, Session.AUTO_ACKNOWLEDGE);
137 QueueReceiver receiver = session.createReceiver(queue);
138
139 // Create and set the message listener
140 ValidatorMessageListener listener =
141 new ValidatorMessageListener(connection);
142 receiver.setMessageListener(listener);

Figure 9 CardValidator — Create and Set the Message Listener

144 // Start the connection in order to receive messages
145 connection.start();

Figure 10 CardValidator — Start the Connection

147 // Inform the user
148 System.out.println(
149 "CardValidator running. Press return to stop");
150 System.in.read();

Figure 11 CardValidator — Implement a Program Shutdown

SAP Professional Journal September/October 2004

94 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Once the administrator presses the Return key in
the console, the credit card validation program is shut
down properly. This includes closing the connection
we opened in the constructor, which in turn closes all
subordinate objects — i.e., the two sessions, the con-
sumer, and the producer. We place the code in the
finally class of our process method, as shown in
Figure 12.

To summarize, we didn’t have to change much to

use an asynchronous consumer inside our validation
module. We created and registered a MessageListener
object that the JMS provider actively notifies when-
ever a message arrives. This approach is a great fit for
server-like programs like ours (i.e., ones that respond
to incoming messages), and leads to more straightfor-
ward and maintainable application code. Next, we’ll
look at how we can improve the performance and
scalability of our example using message selectors
instead of temporary queues.

155 } finally {
156 // Make sure we close the connection in any case
157 try {
158 if (connection != null) {
159 connection.close();
160 }
161 } catch (JMSException e1) {
162 e1.printStackTrace();
163 }
164 }
165 } // end process
166
167 }

Figure 12 CardValidator — Close the Connection

�� Tip

The “message handler” design pattern is quite commonly employed in object-oriented programming languages like
Java. If you’ve seen it before, you may have expected that the switch to using handlers could tremendously improve
our application’s scalability, perhaps by letting us easily instantiate potentially dozens of message handlers to
process requests in parallel. This is possible, as long as message order does not matter. The JMS queue defines
a natural order for the messages: the ones that are sent first are received first. When you switch to parallel
processing, the order is lost.

Keep in mind that there is a 1:1 relationship between consumer objects and message handlers, so you need to set up
multiple consumers as well. JMS does not define how a JMS provider handles multiple consumers on a queue,
though! SAP Web AS allows multiple consumers on a queue and serves them with messages in a round-robin
fashion, so you can use this technique to distribute your load. However, an application relying on this behavior is
not necessarily portable across different providers. Also keep in mind the concurrency issue (refer back to the
sidebar on page 84): Each consumer needs its own session object in order to operate in parallel to the others.

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 95

Improving the Efficiency of
Your JMS Applications with
Message Selectors
Recall that our original example used a separate (tem-
porary) destination17 for each credit card validation
result. This was done for convenience, and to demon-
strate how to set up and use temporary destinations.
Although JMS message selectors are primarily
intended for defining a subset of messages for a con-
sumer to receive, we can also leverage them to more
efficiently handle our validation results.

The Fundamentals of JMS Message
Selectors

When designing a JMS-based application, you will
usually separate different types of messages by using

different destinations (queues or topics). In an online
shop application, for example, you would send a new
customer’s registration to a different destination than
an existing customer’s order. Each is an independent
business process, and the requests are handled in com-
pletely different ways, so setting up separate destina-
tions makes sense. Sometimes, however, you’ll want
to further categorize and process a type of message.
In our shopping example, for instance, you might
want to add an order approval step if the total value of
the order exceeds a specified limit. In other words,
you might want to categorize the orders according to
their purchase value.

In principle, there are two different ways to
process messages according to a logical “category”
(see Figure 13):

• The application can set up separate destinations
for each category.

• The application can use a common destination and
let the consumers filter their messages using a
message selector.

�
�
�	���*
3
�����
������4

�
�
�	���0
3
�����
������4

�
�
�	���+
3
�����
������4

%�

���
������
�

��
�����

�
�
�	���*

�
�
�	���0

�
�
�	���+

��������
.�
������
�

��
�����

17 Technically a queue, since we used point-to-point messaging. Recall
that destinations are called “queues” with point-to-point (ptp) messag-
ing and “topics” with publish-subscribe (pubsub) messaging (see the
sidebar “Key JMS Terms and Concepts in Review” on page 78).

Figure 13 Processing Messages Using Separate Destinations vs. Message Selectors

To use a message selector, you simply have to
pass it to the factory method used to create a con-
sumer object. We’ll demonstrate how to do this next
using our example.

�� Note!

The specifics of the message selector syntax
are beyond the scope of this article, but most
developers can write them without much trouble.
For a reference, consult the JMS specification
document available at http://java.sun.com/
products/jms.

Incorporating Message Selectors into
the Example

To gain experience with message selectors, let’s
exchange the temporary-queue-based reply mecha-
nism in our example with one that uses message
selectors. Figure 15 shows how this will affect the
interaction between the application components.

Instead of using a separate temporary queue as a
reply-to destination for each user session (i.e., each
credit card number to validate), we’ll now send all
reply messages to a single reply queue called
spjReplyQueue. Since this queue will hold replies for
all validation requests, our payment module will need
a way to identify its own reply message. This is
where message selectors come in: the payment mod-
ule will place a unique identifier in the header field

A message selector is essentially a provider-side
filter for messages. Only messages that match the fil-
ter criteria are actually delivered to the consumer.
Each consumer can use its own message selector,
which is defined when you create the consumer
object, and therefore have an individualized view of
the available messages in a queue or topic.

The approach that is best for your application will
depend on the situation. If you need a large number of
message categories, for example, you will probably
prefer the message selector approach since it involves
less overhead than creating a large number of destina-
tions. Also, if your categories are dynamic (e.g., if
categories can be created, removed, or rearranged),
message selectors will model the category structure
much better than separate destinations because they
are more flexible. Correspondingly, if you need just
a few categories and don’t expect any changes to
the category structure, you might prefer a separate
destination for each category — this approach is
slightly faster because the JMS provider does not
have to evaluate the message selectors prior to
sending a message.

A message selector is a textual, conditional
(boolean or arithmetic) expression that can filter
messages based on their properties and some header
fields. A selector cannot refer to the body of the mes-
sage, however! Technically, the message selector is a
string that follows a syntax referred to by the JMS
specification as “a subset of the SQL92 conditional
expression syntax.” In practice, this means that mes-
sage selectors look very similar to the WHERE clauses
of SQL SELECT statements. Figure 14 lists some
examples of valid message selectors.

SAP Professional Journal September/October 2004

96 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Message Selector Description

JMSType = 'ABC' Receive only messages where the header field JMSType has the value
ABC.

purchaseValue > 10000
OR customerGroup = 1

Receive only messages where the value of the property purchaseValue is
greater than 10000 or the value of the property customerGroup is 1.

customerName LIKE 'A%' Receive only messages where the property customerName starts with A.

Figure 14 Some Valid Message Selectors

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 97

JMSCorrelationID of the request message,18 and the
validation module will copy this value into the header
field JMSCorrelationID of the reply message. The
payment module will create a receiver with a message
selector that filters on the specific value of the
JMSCorrelationID, thereby receiving only its own
reply message from the generalized queue.

The basic interaction between the payment and
validation modules, however, is hardly changed. The

payment module sends the credit card verification
request (with header field JMSCorrelationID set
appropriately) to spjDemoQueue (step ➊). The valida-
tion module receives this message (step ➋) and vali-
dates the credit card number. It sends a reply message
to spjReplyQueue, again setting the value in the
header field JMSCorrelationID (step ➌). The pay-
ment module receives this message (step ➍), because
it matches the receiver’s message selector, and contin-
ues its work according to the result.

So what changes in the coding? The version
of the validation module that uses message selectors

� ��!�"� ��������
�����#��

$%����
#����

��������
��%
����

�&�������$�%

��

�
�

'����#�� ������

�
������
�

0 �������
�����	�

�������
�����	�

���	����%
����

�
������
�

��

�
�

������ '����#��

�('����-����
�(.�	
-����

,

(�#�&)(
)%�

���

4!,+
������'
 15 ����

���������� ������������������

(�#�&)(
)%�

���

4!,+
������'
 15 ����

������ ����

��
�
�����	� +

������
��4!,+
������'
 15�6�7����7

* ��
�
�����	�

Figure 15 Updated JMS Design of the Example Using Message Selectors

18 Our example implementation uses the HTTP session ID for
this identifier.

SAP Professional Journal September/October 2004

98 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

is implemented in class
com.sap.jms.examples.spj.CardValidator2.
The code of interest is in the message listener
class, implemented in class
com.sap.jms.examples.spj.ValidatorMessageListener2.
Both classes are available for download at
www.SAPpro.com.

Let’s now walk through what we need to do to
enable our example to use message selectors:

1. Update the message listener code.

2. Update the payment module servlet.

Step 1: Update the Message Listener Code

Our implementation of class CardValidator2 will be
almost identical to our previous CardValidator imple-
mentation (Figures 8-12). The queue for the card

validation reply messages is now a regular queue
(instead of a temporary queue), so we simply add
another JNDI lookup statement to the constructor19

and store the queue’s reference in an additional
instance variable called replyQueue. In the process
method (called by the main method), we instantiate a
different message listener — an object of type
ValidatorMessageListener2 — and set this as our
receiver’s message listener.

Both changes are straightforward, so we’ll skip
the code example. It is more interesting to look at
the message listener class, because this is where we
send the reply message for a validation request.
Figures 16-18 show a new version of the message
listener class (the modified code is shown in bold-
face type).

28 public class ValidatorMessageListener2 implements MessageListener {
29
30 private QueueSession session;
31 private QueueSender sender;
32
33
34 /**
35 * Constructs a ValidatorMessageListener2 object.
36 * @param connection The QueueConnection to be used
37 * @param replyQueue The queue to send the reply messages to
38 * @throws JMSException If a JMS error occurs
39 */
40 public ValidatorMessageListener2(
41 QueueConnection connection, Queue replyQueue)
42 throws JMSException {
43
44 // Create a non-transacted session
45 session = connection.createQueueSession(
46 false, Session.AUTO_ACKNOWLEDGE);
47
48 // Create a sender for the reply queue
49 sender = session.createSender(replyQueue);
50 }

Figure 16 Constructor of the ValidatorMessageListener2 Class

19 Recall that we previously used JNDI to retrieve a reference to
spjDemoQueue, which was defined as an administered object on
the SAP Web AS system.

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 99

Note in Figure 16 how the listener’s constructor
expects a second reply queue parameter in addition
to the queue connection. We pass this reply queue
to the factory method that creates the sender object
to indicate where the sender should send messages
to. Remember that in the original code, we used a
temporary queue reply mechanism we called
session.createSender(null), because the temporary
queue was not available at that point in time and
because we had to specify a different queue for
each message.

Next, in the listener’s onMessage method,
we have to copy the value of the header field

JMSCorrelationID from the request message to the
reply message. Recall that the payment module will
use this value to identify the reply message that corre-
sponds to its validation request. Figure 17 shows the
relevant code, with the modifications shown in bold-
face type.

Next, when we send the reply message, we don’t
have to specify the destination (i.e., the reply queue)
as we did in the previous implementation. JMS
already knows where we want to send the message (to
replyQueue) since we told it when creating the sender
object. Figure 18 shows the relevant code, with the
modifications shown in boldface type.

53 /**
54 * This method contains the message listener's business logic,
55 * that is, the code to be executed on the arrival of a message.
56 * In our case, it simulates the credit card validation.
57 * @param msg The message to be processed
58 */
59 public void onMessage(Message msg) {

[…] // get the card number from the request and validate it
75
76 // Create a new message and set the result as a property
77 Message replyMsg = session.createMessage();
78 replyMsg.setBooleanProperty(
79 CardValidator.MSG_PROPERTY_CHECK_RESULT, result);
80
81 // Copy the original message's correlation ID to allow
82 // a mapping between request and reply message
83 replyMsg.setJMSCorrelationID(msg.getJMSCorrelationID());

Figure 17 Implementation of ValidatorMessageListener2 — Create a Reply Message

85 // Send the reply message to the reply queue
86 sender.send(replyMsg);
87 System.out.println("Response sent: " + result);

[…]
93 }

[…]
116 }

Figure 18 Implementation of ValidatorMessageListener2 — Send the Reply Message

SAP Professional Journal September/October 2004

100 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Step 2: Update the Payment Module Servlet

Let’s now shift our focus to the servlet
com.sap.jms.examples.spj.servlet.CCVerifyServlet,
which is the core of our frontend payment module.

CCVerifyServlet accepts the credit card validation
requests coming from the browser and translates them
into JMS requests. The servlet then looks for JMS
reply messages containing the validation result and
sends the appropriate result page to the browser if

72 /** Name of the request parameter specifying the action */
73 public static final String ACTION_PARAM_NAME = "action";

[…]
79 /** Value of the request parameter ACTION_PARAM_NAME, meaning that
80 * the action to be performed is to send a credit card validation
81 * request */
82 public static final String ACTION_SEND_VALIDATION_REQUEST =
83 "sendVal";
84 /** Value of the request parameter ACTION_PARAM_NAME, meaning that
85 * the action to be performed is to receive a credit card validation
86 * response */
87 public static final String ACTION_RECEIVE_VALIDATION_RESPONSE =
88 "receiveVal";

[…]
227 protected void doGet(
228 HttpServletRequest request, HttpServletResponse response)
229 throws ServletException, IOException {
230
231 // Get the action parameter from the request
232 String action = request.getParameter(ACTION_PARAM_NAME);
233
234 try {
235 if (ACTION_SEND_VALIDATION_REQUEST.equals(action)) {
236 // Executed for requests coming from the form
237
238 // Get the card number from the form
239 String cardNumber =
240 request.getParameter(CARD_NUMBER_PARAM_NAME);
241 // Create a JMS message and set the card number as a property
242 Message validationRequest =
243 getSession(request).createMessage();
244 validationRequest.setStringProperty("cardNumber", cardNumber);
245 // Set the session ID as JMSCorrelationID
246 validationRequest.setJMSCorrelationID(
247 request.getSession().getId());
248 // Send the message
249 getSender(request).send(validationRequest);
250
251 // Redirect the browser to the wait page
252 response.sendRedirect("wait?time=10");

Figure 19 Implementation of CCVerifyServlet — Send a Validation Request

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 101

one is found.20 In the listings that follow, the code
sections that have changed to enable our new message-
selector-based reply mechanism are shown in bold-
face type.

Let’s start by adding logic to set the unique identi-
fier value we’ll use to locate our reply request in the
generalized reply queue (see Figure 19).

The servlet processes the HTTP GET requests
coming from the browser in its doGet method. If this
request contains a parameter called action with the
value sendVal, it indicates that the request contains a
credit card number to validate. We do basically the
same thing here that we did in the original example
from the previous article: get the credit card number
to validate, create a new JMS message, and set the

number as a string property cardNumber. In order
to later identify the response that corresponds to this
request, we set the header field JMSCorrelationID
to a unique value — in this case, the unique server-
generated HTTP session identifier — which we get by
calling request.getSession().getId(). Notice also that
we don’t have to set the JMSReplyTo header field to
provide the validation module with a reference to a
temporary reply queue, since we’re no longer creating
or using one — the validation module will be able to
look up the regular queue using JNDI. The name of
the queue is part of the application “contract” that
has to be agreed to by all components beforehand.
CCVerifyServlet finally uses a queue sender object to
send the message to spjDemoQueue and redirects the
browser to a wait page that informs the user about the
ongoing validation process.

The wait page periodically sends a request to
CCVerifyServlet to check if there is a validation result

20 Note that the result pages are available as part of the download at
www.SAPpro.com.

�� Note!

The code sample in Figure 19 also uses the helper methods getSession(request) and getSender(request), which we
used when developing the original example in the previous article. The getSession(request) and getSender(request)
helper methods retrieve the session and sender objects that we store as part of the HTTP session object provided
automatically by the J2EE runtime. Recall that our design involves showing a wait page while the credit card
validation processes, which includes having the browser periodically check (i.e., relaunch our servlet) to see if a
reply message has arrived. Since HTTP-based communication is inherently stateless, the servlet that receives the
“just checking in” request from the browser would ordinarily be starting from scratch from a memory perspective.
Fortunately, the J2EE runtime provides an HTTP session object in which we can store variables and object
references, and automatically makes it available to the responding servlet whenever a request arrives from the
browser session. This saves us from having to create a new JMS session, sender, and other objects for each new
HTTP request from a user. Keep in mind that we cannot share the JMS session and the sender across user sessions,
however, because they are not thread-safe — i.e., they are not designed to be accessed by multiple threads at the
same time (see the sidebar on page 84) — and each user session (HTTP session) runs in parallel to the others in a
separate thread.

Note that we have slightly modified the methods here from how we used them in the original example. We now store
“wrapper” objects in the HTTP session that contain the actual JMS objects. On the first call, the respective JMS
object and its corresponding wrapper object are created, the wrapper object is stored in the HTTP session context,
and the JMS object is returned. Any later call belonging to the same session locates the wrapper object in the
session context and simply returns the JMS object stored inside. We explain why we use these wrapper objects in
the sidebar “Using Wrapper Objects to Avoid ‘Passivation’ Errors” on page 103.

SAP Professional Journal September/October 2004

102 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

available. Figure 20 shows the part of the doGet
method that executes.

This part of the code remains unchanged from the
original version of the example. We use the receiver

object to look for a message in the reply queue (with-
out blocking). If there is one, we retrieve the valida-
tion result from the message property result and
redirect the browser accordingly. Otherwise, we
return to the wait page to wait for several seconds

254 } else if (ACTION_RECEIVE_VALIDATION_RESPONSE.equals(action)) {
255 // Executed for requests coming from the wait.jsp page
256
257 // Try to receive the response from the reply queue
258 // without waiting
259 Message validationResponse =
260 getReplyReceiver(request).receiveNoWait();
261 if (validationResponse == null) {
262 // Return to the wait page and wait some more
[…]
265 } else {
266 // Get the check result from the received message
267 boolean result = validationResponse.getBooleanProperty(
268 CHECK_RESULT_MSG_PROPERTY);
269
270 // Redirect the browser to the appropriate page
[…]

56 /** Attribute name used to bind the reply receiver to the
57 * HttpSession */
58 public static final String REPLY_RECEIVER_ATTRIB_NAME =
59 "replyReceiver";

[…]
164 protected QueueReceiver getReplyReceiver(HttpServletRequest request)
165 throws JMSException, NamingException {
166
167 HttpSession session = request.getSession();
168 QueueReceiverWrapper wrapper =
169 (QueueReceiverWrapper)session.getAttribute(
170 REPLY_RECEIVER_ATTRIB_NAME);
171 if (wrapper == null) {
172 // stop the connection before creating a receiver
173 getJMSConnection().stop();
174 Queue replyQueue = getQueue(REPLY_QUEUE);

Figure 21 Specifying a Message Selector When Instantiating a Message Receiver Object

Figure 20 Checking for New Messages and Issuing a Wait Page If None Is Found

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 103

before retrying. The key difference is how we set
up the receiver for the reply queue in method
getReplyReceiver(request), as shown in Figure 21.

See how easy this is? We use the HTTP session to
store the reply receiver — or, to be precise, the wrap-
per object for the receiver (see the sidebar above for

Using Wrapper Objects to Avoid “Passivation” Errors

As you can see in lines 183-185 in Figure 21, we store an object of type
com.sap.jms.examples.spj.servlet.QueueReceiverWrapper in the session context — not the
javax.jms.QueueReceiver object itself. Why? The reason is that the QueueReceiver object is not
serializable* — i.e., it is not possible to write the complete state of the object and all the objects it
references to an output stream (e.g., a file, a byte array, or a stream associated with a TCP/IP socket) in
order to re-create it at some later time by reading its state from the stream. This is actually not a problem
on most application servers — we can store non-serializable objects in the HTTP session — unless our
application needs some failover capabilities, which includes the ability to migrate a session from one
server node to another. To support this capability, the underlying application server “passivates” sessions
(i.e., prepares to move them to another server), which implies that all objects stored inside the session
are serialized. If the session contains a non-serializable object, the attempt to serialize it will cause a
java.io.NotSerializableException, and the session will not be passivated.

* To be serializable, an object (as well as all objects it references as member variables, and are not marked with the keyword
“transient”) must implement the java.io.Serializable or java.io.Externalizable interface.

(continued on next page)

175 String messageSelector =
176 "JMSCorrelationID = '" + request.getSession().getId()
177 + '\'';
178 QueueReceiver qreceiver = getSession(request).createReceiver(
179 replyQueue, messageSelector);
180 // start the connection, so the receiver can work
181 getJMSConnection().start();
182
183 wrapper = new QueueReceiverWrapper(
184 qreceiver, REPLY_RECEIVER_ATTRIB_NAME);
185 session.setAttribute(REPLY_RECEIVER_ATTRIB_NAME, wrapper);
186 System.out.println(
187 "Created reply receiver " + request.getSession().getId());
188 }
189 return wrapper.getQueueReceiver();
190 }

Figure 21 (continued)

more on why we use wrapper objects here). By calling
session.getAttribute(REPLY_RECEIVER_ATTRIB_NAME)
in lines 169-170, we check if the HTTP session already
contains a reply receiver, and if not we create one
that references the centralized reply queue on the
JMS provider. The reference is retrieved using JNDI
within getQueue(REPLY_QUEUE) — the actual
JNDI lookup is performed just once for the servlet and
stored in the servlet context. In the highlighted part
of the listing, we then create a receiver object with a

SAP Professional Journal September/October 2004

104 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

message selector. Obviously, we are only interested in
the reply that matches our validation request, not all
the other reply messages residing in spjReplyQueue,
so we specify the message selector JMSCorrelationID
= '<our session ID>' as the second parameter when
creating the receiver. From the receiver’s point of
view, it looks as if there is a separate queue holding
only its individual reply message (just as in the origi-
nal temporary queue approach), although in fact all
reply messages are sharing the same physical queue.

The key to avoiding these errors is to remove non-serializable objects (like our QueueReceiver object)
from the HTTP session just before SAP Web AS tries to passivate the session. But how do we know
when this is about to happen? Fortunately, the SAP Web AS J2EE runtime includes a notification
mechanism. All our object has to do is implement the javax.servlet.http.HttpSessionActivationListener
interface. Any object stored in the session context that implements this interface will be notified right
before the session is passivated. The application server calls the method sessionWillPassivate (defined in
the interface), so we can remove the object from the session and close the receiver object by adding code
to this method.

Here is the code for the wrapper class that will avoid the potential issue:

26 class QueueReceiverWrapper
27 implements HttpSessionActivationListener, Serializable {
28
29 private transient QueueReceiver receiver = null;
30 private transient String attributeName = null;

[…]
49 public void sessionWillPassivate(HttpSessionEvent arg0) {
50 System.out.println("sessionWillPassivate:" + arg0);
51 if(receiver != null) {
52 arg0.getSession().removeAttribute(attributeName);
53 try {
54 receiver.close();
55 receiver = null;
56 } catch (JMSException e) {
57 e.printStackTrace();
58 }
59 }
60 }

The same mechanism is used inside the getSession, getReceiver, and getSender methods of
CCVerifyServlet.

(continued from previous page)

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 105

In summary, we have just modified our payment
processing servlet and credit card validation compo-
nents to use a more efficient, message-selector-based
reply mechanism instead of the original temporary-
destination-based approach. In this way, all sessions
now share a central, administered queue for replies as
well as requests.

�� Note!

The example uses an additional administered
object, spjReplyQueue, which needs to be set up
before you can run the application. On SAP Web
AS 6.30 and 6.40, however, you don’t have to create
the queue manually — this happens automatically
during deployment of the application.

Tips for Successful JMS
Programming
Here are some important things to remember in order
to avoid common issues with asynchronous delivery
and message selectors.

Message Listeners Need Exclusive Access to
Their JMS Sessions

As mentioned earlier (see the sidebar on page 84),
JMS session objects must not be accessed concur-
rently from different threads. If you create and regis-
ter message listeners for asynchronous message
delivery, you have to make sure not to subsequently
use the JMS sessions associated with these listeners.

Here are some guidelines to avoid collisions:

If you have one application component that
sends and consumes messages asynchronously,
use separate sessions for the producer and con-
sumer objects.

�

�� Exception!

If you use the message producer only inside the
onMessage method of the message listener —
for example, to forward a message to another
destination — you can use the same session object
for the consumer and the producer. Inside the
onMessage method, your code is executed within
the message delivery thread, so there is no
potential concurrency issue.

Similarly, use different session objects for a syn-
chronous receiver and an asynchronous receiver,
if you need both.

Multiple message listeners for the same destina-
tion are handled by the JMS provider automati-
cally in order to obey the session’s concurrency
restriction. That is, if you create multiple asyn-
chronous consumers that share the same session
object (i.e., if you set up one session, create multi-
ple consumers on it, and then register a message
listener with each consumer), the JMS provider
will deliver messages to each consumer sequen-
tially, and wait until its handler has finished pro-
cessing before delivering the next.

In contrast, if you provide each consumer with its
own session (i.e., if you set up multiple sessions,
create a consumer on each of them, and then reg-
ister a message listener with each consumer), they
can receive and process messages in parallel. The
thing to remember is that creating additional lis-
teners to a queue or topic will only improve your
application’s performance and scalability if each
is provided its own session to work with.

In the rare case that you need more than one mes-
sage listener for a session, make sure the connec-
tion is stopped (or hasn’t been started) before you
create them. While this is good programming
practice anyway, here it is essential in order to
avoid potential concurrency problems. The JMS
provider starts message delivery as soon as the

�

�

�

SAP Professional Journal September/October 2004

106 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

connection is started (so it must own the session
object exclusively), but in order to create an addi-
tional listener on the same session, you have to
access the session object as well.

Message Listeners Need Their Consumer Objects

A message listener cannot work without the consumer
object it is assigned to. When you close the consumer
object, your listener won’t receive any more mes-
sages. Don’t forget that this also happens during
garbage collection, so don’t lose the reference to the
consumer or your listeners won’t work!

Not All Message Header Fields Are Intended
for Client Use

While the javax.jms.Message interface defines a
setter method21 for each header field, not all fields

are intended to be set by client applications directly.
Figure 22 summarizes the available fields and how
their values are set.

Only fields that are intended for client use
should be set directly using the corresponding
setter method. For example, don’t call the
Message.setJMSDeliveryMode method to set the
delivery mode. This field is set by the producer
object’s send or publish method automatically, so
it will override whatever you specify manually.
In this case, use the producer’s setDeliveryMode
method to set its default delivery mode, or use a
variant of the send/publish method that allows you
to specify the delivery mode for each message indi-
vidually. There are similar options for the other
fields as well.

Use Message Selectors to Filter
Messages

With message selectors, you can define a provider-
side message filter for a consumer. If your applica-
tion is not interested in all messages that are sent to a

Header Field Setter Method Called by How Client Can Set the Field*

JMSDestination Send/publish method QueueSession.createSender, QueueSender.send

JMSDeliveryMode Send/publish method QueueSender.setDeliveryMode, QueueSender.send

JMSExpiration Send/publish method QueueSender.setTimeToLive, QueueSender.send

JMSPriority Send/publish method QueueSender.setPriority, QueueSender.send

JMSMessageID Send/publish method —

JMSTimestamp Send/publish method —

JMSCorrelationID Client (directly)

JMSReplyTo Client (directly)

JMSType Client (directly)

JMSRedelivered Provider —

* The appropriate API methods are given for the ptp model. The pubsub model offers similar corresponding methods (e.g.,
TopicPublisher.publish).

Figure 22 Header Fields Available to Clients

21 A setter method modifies a member variable (header field in this case)
of a class on your behalf since most classes don’t let you modify these
values directly (to preserve data integrity).

Using Advanced Java Message Service (JMS) Features to Increase the Efficiency and Maintainability of Your Distributed Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 107

destination, just those in a subset, use a consumer with
a message selector to receive only the relevant ones.
Keep in mind that filtering on the client side will
downgrade your performance.

Use Message Selectors to Replace
Multiple Queues

We have showed you how to use message selectors
in request/reply scenarios. You can use them more
generally, however, to replace multiple queues with a
single queue and distribute the messages using mes-
sage selectors instead. This reduces the resources
that are used. Remember, though, that you’ll need a
value in the message header or properties with which
to filter the messages.

Temporary Queues vs. Message
Selectors

You have seen two different approaches to imple-
menting a JMS request/reply mechanism: using
temporary queues and using regular queues with a
message selector.

So when should you use which? What are the
differences? Temporary queues are convenient,
because you don’t have the administrative overhead
of a regular, administratively created queue. But
they are tied to the connection object under which
they are created. When the connection is closed or
dies due to an error, the destination is deleted and all
messages within it are lost! If this is a problem for
you, use a regular destination instead. In addition,
keep in mind that you can only receive messages from
the temporary destination if the consumer uses the
same connection as the temporary destination. This
prevents other clients from reading your messages.
But if your client application cannot use this connec-
tion (for whatever reason), again, use a regular desti-
nation instead.

In any case, avoid using too many temporary des-

tinations — they consume processing time and waste
resources. Use the same destination for multiple
request/reply cycles by using a regular destination with
a message selector. Alternatively, combine one tempo-
rary destination with a message selector to achieve the
same result.

Message Selectors Are Not Optimized

Although the message selector strings resemble
SQL WHERE clauses, the JMS provider in SAP
Web AS doesn’t handle them as efficiently as a
DBMS. The message selector is not optimized, for
example, before being evaluated. So avoid superflu-
ous select conditions. For example, ID = 1 AND
(TYPE = 'X' OR TYPE <> 'X') will be slower than
simply ID = 1.

Summary
This article has explored two important JMS features
you will want to leverage in your own distributed Java
applications — asynchronous message delivery and
message selectors:

Asynchronous delivery involves defining and reg-
istering a message handler class for the JMS mes-
sage server (JMS provider) to actively “push”
messages to the message consumer for processing,
instead of “pulling” messages directly within your
main program by calling a receive method. You’ll
find asynchronous delivery especially useful when
writing server-like programs, since it frees the
main thread to perform other processing, and can
also be used to improve scalability if you spawn
multiple threads. The key to avoiding trouble
with asynchronous delivery is to avoid concurrent
access to the JMS session object, which is best
accomplished by providing each handler with its
own session.

Message selectors offer a powerful way for your
applications to selectively identify one or more

�

�

SAP Professional Journal September/October 2004

108 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

messages from a generalized queue, and facilitate
high-performance architectures in many scenarios,
like in our example, where we were able to
replace a large number of temporary queues by a
single queue plus message selectors. You’ll still
use temporary queues for smaller applications that
you don’t want to set up a permanent queue for
on the JMS server, however.

The next step is for you to download the example
code from www.SAPpro.com, if you haven’t already,
and try your hand at working with each of these fea-
tures. In an upcoming issue of SAP Professional
Journal, we’ll explore even more ways you can
take advantage of JMS programming in your distri-
buted Java applications. In particular, we will look
at how to use message-driven beans, which can
improve the scalability of your applications, and also
enables you to benefit from additional features of the
J2EE Engine, including security, user management,
and transaction handling, plus a few more advanced
JMS topics that will help you on your way.

Sabine Heider is a member of SAP’s Java Server
Technology group, and since 2002 has worked on
the integration of the JMS provider into SAP Web
Application Server, as part of the JMS project.
Sabine started her career with SAP in 1997 as a
developer with the porting team for the DB2 on
OS/390 database platform. After three years in
that position, she supported strategic development
projects as a technical solution specialist. Prior
to joining SAP, Sabine studied physics at the
University of Bonn, Germany, where she received
her diploma in 1995. You can reach her at
sabine.heider@sap.com.

Michael Kögel studied technical computer science
at FH Konstanz in Germany. After completing his
thesis on distributed computing with Java and
receiving his diploma in 1998, he worked as a
consultant on several major projects in banking,
financials, and telecommunications. In early 2003,
Michael joined SAP’s Java Server Technology group,
where he is currently leading the JMS project. He
can be reached at michael.koegel@sap.com.

Radoslav Nikolov graduated with a degree in
mathematics from Sofia University, Bulgaria, after
completing a master’s degree thesis on multimedia
message services. He joined SAP Labs Bulgaria
at the end of 2002 after working for a consulting
company. Radoslav is currently a member of the
Java Server Technology group, where he leads the
JMS development team. He can be reached at
radoslav.nikolov@sap.com.

