
A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 111

Katarzyna Fecht, SAP
NetWeaver PMO, SAP AG

(complete bios appear on page 140)

ERP systems, information systems, e-business applications, and
Web services differ widely in scope, size, scalability, and resource
requirements. But ultimately they all rely on data stores that guarantee
the availability and integrity of the stored information. Meeting this
expectation requires a stable, powerful, and scalable persistence
mechanism that supports application portability and offers features
such as database abstraction layers and diagnostic tools.

Starting with Release 6.20, SAP Web Application Server (SAP
Web AS) supports runtime environments for two technologies. ABAP
applications use the classic ABAP Engine, while Java applications run
in the J2EE Engine.1 Both software stacks communicate via well-defined
interfaces (SAP JCo,2 SAP Java Resource Adapter, and Web services)
that make the ABAP persistence layer accessible from Java and vice
versa. However, pure Java applications should ideally access the
database directly from Java, rather than through ABAP. Naturally, the
Java world offers a wide variety of solutions, standards, and APIs for
achieving persistence in an application. But how does SAP Web AS
support this demand? Is there a Java solution that possesses the qualities
of the ABAP persistence layer3 while adhering to Java standards? As of
SAP Web AS 6.30, SAP introduces a comprehensive solution that meets
these needs — the Java Persistence Framework.

A Guided Tour of the SAP
Java Persistence Framework —
Achieving Scalable Persistence
for Your Java Applications
Katarzyna Fecht, Adrian Görler, and Jürgen G. Kissner

1 The J2EE Engine is a certified J2EE (Java 2 Platform, Enterprise Edition) application server,
fully compliant with the J2EE standard.

2 The SAP Java Connector (JCo) is a framework that supports calling Java from ABAP and
vice versa.

3 The ABAP persistence layer offers a wide range of solutions, including Open SQL, Dynamic
Open SQL, Native SQL, and Object Services. For more information, see the articles “Write
Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with
Object Services” (January/February 2002) and “Enhanced ABAP Programming with Dynamic
Open SQL” (September/October 2001).

Adrian Görler, Java Server
Technology Group, SAP AG

Jürgen G. Kissner, SAP
NetWeaver Development,

SAP AG

SAP Professional Journal May/June 2004

112 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

As part of a continuing series on the Java
Persistence Framework,4 this article provides an
overview of the framework to serve as a foundation
for other articles that explore its components in more
depth. It discusses how the SAP J2EE environment
supports persistence, while providing a glimpse
into the world of Java persistence in general.
Consequently, this article offers something for Java
and ABAP developers alike. For maximum benefit,
readers should be familiar with Java, especially Java
Database Connectivity (JDBC), and have a basic
understanding of the Java 2 Platform, Enterprise
Edition (J2EE).

What Is the Java Persistence
Framework?
Let’s begin by briefly reviewing the fundamental

building blocks of the Java Persistence Framework (as
shown in Figure 1) before discussing each of them in
more detail.

For maximum flexibility, SAP refrained from
defining a proprietary API for the Java Persistence
Framework. Instead, you write application code that
uses APIs defined by well-established Java and J2EE
standards — JDBC and SQL Java (SQLJ) for rela-
tional persistence, and Java Data Objects (JDO) and
Enterprise JavaBeans (EJBs) for object-relational per-
sistence. Therefore, from an application developer’s
perspective, the framework is largely invisible and
works transparently behind the scenes.

These persistence APIs are built on the Open SQL
Engine, which is the heart of the Java Persistence
Framework. Regardless of which API is used, the
Open SQL Engine handles and mediates all database
accesses before the vendor-specific JDBC driver
finally accesses the database. In this way, all persis-
tence APIs can take advantage of added features in the
Open SQL Engine for:

Figure 1 The Java Persistence Framework

���������	
���

	
��������
��

��	
���

	
��������
��

�
�
����	��
���

�
�
������

��	
���

	
�
�
�
��

��� ������� ����

���
����
�
��
�

�����������

��� ���������	��
���
���	
���� �
����������	�

������������
��� �
���������������	
���� �����
���

4 See also “Achieving Platform-Independent Database Access with Open
SQL/SQLJ — Embedded SQL for Java in the SAP Web Application
Server” (January/February 2004).

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 113

• Enhanced performance by caching (a table buffer
for table contents, and a statement pool for SQL
statements)

• Scalability (a database connection pool for
caching database connections)

• Diagnostics (a SQL trace tool)

Moreover, the Open SQL Engine comprises a
database abstraction layer that supports writing per-
sistence code once and running it on any database sup-
ported by SAP Web AS.

The database is accessed through the vendor’s
JDBC driver. However, the Java Persistence
Framework is not tied to a particular database. You
can freely choose the target database, either one that
already exists, or one that is newly installed as part of
installing SAP Web AS.

Finally, to support the various tasks related to
persistence coding, the Java Persistence Framework
works seamlessly with the SAP Java Development
Infrastructure (JDI) and with SAP NetWeaver
Developer Studio.5

Understanding the ABAP and
Java Schemas
Regardless of which programming language is used,
persistent data in an SAP environment is ultimately
stored in a relational database. The ABAP Engine of
an R/3 system uses the ABAP Schema, which is the
database schema that stores all persistent data for the
system. This data includes business data for ABAP
applications and internal data (such as ABAP sources,
binaries, configuration data, and logging data) of the
ABAP Engine. Until Release 6.20, the J2EE Engine
stored its internal data (such as configuration data and

Java archives) in the file system, rather than in the
database. Because a default database schema did not
exist for the J2EE Engine, Java applications could use
any schema in any database for storing business data.

Starting with Release 6.30, the J2EE Engine
stores its internal data in a dedicated schema — the
Java Schema — of an external relational database.
This schema is configured during server installation
and acts as the system database schema for the J2EE
Engine. You typically create the Java Schema in the
same database as the ABAP Schema.

Although the ABAP Engine and the J2EE Engine
logically operate as one SAP Web AS, they cannot
share the same database schema due to several non-
trivial technical constraints:

• ABAP-based applications have historically used
single-byte code pages for character data, while
Java consistently uses Unicode.6 Converting
between these character representations is gener-
ally impossible without knowing the semantics
of the stored data.

• Altering ABAP tables from Java would bypass
the ABAP table buffers and table logging, and
vice versa. This operation would require complex
synchronization mechanisms between ABAP
and Java.

• It is nearly impossible to achieve namespace
coordination for database objects between the
ABAP and Java worlds without breaking existing
code. Historically, strict namespace coordination
— even between ABAP projects — exists only
rudimentarily.

• Accessing tables from both worlds contradicts
the concept of encapsulation — i.e., bundling the
data with the methods that operate on it. Even
within either the ABAP or J2EE Engine, the pre-
ferred table access mechanism is via interfaces of
the application that owns the table (rather than via
direct table access).

5 Introduced with SAP Web AS 6.30, SAP NetWeaver Developer Studio
is SAP’s new integrated development environment (IDE) for Java-based
applications. For a detailed introduction to using this tool, see the arti-
cle “Get Started Developing, Debugging, and Deploying Custom J2EE
Applications Quickly and Easily with SAP NetWeaver Developer
Studio” on page 3 of this issue.

6 Starting with Release 6.10, the SAP Web AS ABAP Engine supports
both Unicode and non-Unicode.

SAP Professional Journal May/June 2004

114 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Consequently, the Java Schema must be distinct
from the ABAP Schema. You can install the schemas
either in the same database (as shown in Figure 2)
or in different databases (as shown in Figure 3),
allowing for the scaling and tuning of each database
individually. However, you must use a dedicated
technology (such as JCo) for exchanging data
between Java and ABAP components.

The J2EE standard does not specify where an
application should store its persistent data. In princi-
ple, a single Java application could exchange data
with several schemas in different databases. Of
course, the J2EE Engine supports this flexibility.
However, it is not practical for any Java application —
whether an SAP application or a custom application
— to fully exploit this flexibility.

Obviously you want the ability to assign an
application to a specific database schema in order to

accommodate the needs of different applications or
to achieve optimal scalability. In practical terms, a
single Java application should use a single database
schema (and thus a single database) for storing
business data. To simplify database administration,
all Java applications should be written so that they
are able to share a common database schema.
Consequently, all Java applications should use
the default Java Schema.

Now that you have a basic understanding of the
Java Persistence Framework, we can begin exploring
its components — the Open SQL Engine and the Java
Persistence APIs — in more detail.

The Open SQL Engine
We begin our guided tour with the Open SQL Engine,
which is the core of the Java Persistence Framework.
This component handles every database access from
within the J2EE Engine. As shown in Figure 4, the
Open SQL Engine supports three levels of database
access: Vendor SQL, Native SQL, and Open SQL.
You access the different levels via JDBC using
Open SQL/JDBC, Native SQL/JDBC, and Vendor
SQL/JDBC, respectively. Each access level offers
incremental features and performance enhancements
over basic SQL access. We will examine the

��	
���

	��
�
�
��

���

����
�����

����
�
��
�

�
�

�����

�!��
�
��
�

Figure 2 ABAP and Java Schemas
in the Same Database

���

��	
���

	
�
�
�
��

����
�����

�
�

�����

��	
���

	
�
�
�
��

����
�
��
�

�!��
�
��
�

Figure 3 ABAP and Java Schemas
in Different Databases

�
�
������

��	
���

	
�
�
�
��

��
����
�����	 ����"�
��

#
��������

"
�	���$%%�� �
�
�������

�&

���
����

'�
(������

�
�

��������
��

��)

�
�

��������
��

��)

�
�

��������
��

��)

Figure 4 Access Levels of the Open SQL Engine

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 115

advantages of each level after introducing the funda-
mental concept of connection pools, which applies to
all access levels.

Accessing Data Sources via
Connection Pools

Regardless of the API and access level being used, the
J2EE Engine accesses the database via a JDBC con-
nection. Database connections are valuable resources,
since a database server can have a limited number of
database connections open at one time. An application
should therefore hold a JDBC connection only for as
long as needed and close it as soon as possible.
However, opening a new JDBC connection is slow on
any database. Not surprisingly, the J2EE Engine is
capable of pooling open database connections. To take
advantage of this feature, applications must request a
JDBC connection from a connection pool (rather than
directly from the database). Instead of being physi-
cally closed, connections are automatically returned to
this pool for subsequent reuse.

As specified by the J2EE standard, the J2EE
Engine exposes connection pools to applications
through the JNDI (Java Naming and Directory
Interface) Registry Service. To access a connection
pool, an application looks up the name of the
connection pool via JNDI. This lookup returns a
DataSource object that allows it to obtain a JDBC
connection via the getConnection() method. The fol-
lowing example shows how you would implement a
JNDI lookup in your application:

Context ctx = new InitialContext();
DataSource ds =

(DataSource)ctx.lookup(
"java:comp/env/jdbc/DEMO");

Connection conn = ds.getConnection();

The J2EE Engine can manage multiple connection
pools for accessing the same or different schemas in
one or more databases, even from different database
vendors. The JDBC Connector Service creates and
manages all connection pools. You use the SAP J2EE
Engine Administrator (see Figure 5) to access this

Figure 5 Configuring the JDBC Connector Service

SAP Professional Journal May/June 2004

116 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

service. To create a connection pool, you specify the
JNDI name, the database URL, the JDBC driver, and
the database user for the schema. A connection pool
for accessing the Java Schema is automatically config-
ured during SAP Web AS installation.

Configuring the Access Level of
a Connection Pool

The connection pool from which you obtain a connec-
tion determines its access level. The preconfigured
connection pool for the Java Schema uses Open SQL.
You must not change the setting for the preconfigured
connection pool, which would affect all applications
that use the pool. If you need to access a database
schema other than the Java Schema, or for some rea-
son you need to use Native or Vendor SQL, configure
a separate connection pool for the desired database
schema and set the access level accordingly.

By default, every connection pool created in
the JDBC Connector Service uses Open SQL. You
can change this setting in the SAP J2EE Engine
Administrator (see Figure 6). Select Services →
JDBC Connector → Additional and choose the
intended access level in the SQL Engine frame.
We’ll look at the different access levels in detail next.

Using the Vendor SQL Access Level

For connection pools that are configured to use
Vendor SQL, the JDBC Connector Service directly
accesses the database vendor’s JDBC driver. This
access level adds no features to the JDBC driver
other than connection pooling, and therefore delivers
the lowest quality of service. In this mode, the SQL
statements are passed to the database entirely
unchanged. However, the application cannot access
proprietary classes of the vendor’s JDBC driver and

Figure 6 Configuring a Connection Pool

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 117

must use the classes and interfaces of the JDBC API.
Vendor SQL is generally not recommended, because
it lacks the features and enhancements offered by the
other access levels.

Using the Native SQL Access Level

Like Vendor SQL, Native SQL allows SQL statements
to be passed to the database unchecked. It therefore
supports the entire proprietary SQL dialect of the data-
base vendor. However, Native SQL offers the follow-
ing advantages over Vendor SQL:

• A SQL statement pool that increases overall per-
formance by caching prepared SQL statements

• The ability to trace SQL statements

• Workarounds for known JDBC driver bugs

• Added features to address acknowledged short-
comings of the JDBC interface

In contrast to Vendor SQL, Native SQL allows
the application to access only the set of JDBC drivers
supported by SAP Web AS.7 Native SQL is recom-
mended if you need to use features of a specific data-
base vendor’s SQL dialect or the vendor’s JDBC
driver. However, be aware that portability cannot be
guaranteed. You cannot expect an application built on
Native SQL/JDBC to run unchanged on a different
database platform. In some situations, Native SQL
might be useful for accessing an existing database
containing non-SAP data.

Let’s take a closer look at the advantages offered
by Native SQL.

Statement Pool for Caching SQL Statements

Before executing a SQL statement, the database
engine must first prepare it. The database engine ana-
lyzes the statement, checks it for correctness, and
determines a suitable execution plan based on current
database statistics. These steps are time-consuming.

For a quickly executed statement, the preparation
time could exceed the execution time. To avoid this
expense, JDBC provides a PreparedStatement object,
which is an abstraction for a prepared statement on the
database. The database engine can execute this pre-
pared statement multiple times without repeating the
preparation steps.

Using prepared statements offers the advantage of
increased application performance. However, remem-
ber that an application must release database resources
such as connections, statements, and result sets as
quickly as possible. So, using prepared statements
also makes it difficult to simultaneously save on both
resources and computational expenses. To address
this conflict, Native SQL provides a statement pool
that allows an application to save on statement prepa-
ration costs without keeping PreparedStatement
objects open longer than absolutely necessary.

The statement pool is a cache for
PreparedStatement objects. Caching is completely
transparent to the application. The first time a state-
ment is used, it is prepared and executed on the data-
base as usual. Upon invoking the close() method, the
Open SQL Engine puts the prepared statement object in
the statement pool (rather than closing the statement).
Subsequently, for a statement with equal statement text
that needs to be prepared on the same database connec-
tion, the Open SQL Engine simply takes the statement
from the statement pool. This approach prevents costly
repeated preparation on the database.

SQL Trace for Performance Analysis

Persistence coding typically consumes a considerable
share of the overall execution time of an application.
Consequently, the database code is a reasonable start-
ing point when you are searching for performance
bottlenecks. Especially in the world of object-
relational persistence, you cannot spot problematic
statements simply by analyzing the source code.
Instead, you need a tool that inspects the SQL state-
ments that are sent to the database. Unfortunately,
the JDBC standard lacks an API for this type of
performance analysis.

7 SAP Web AS supports Microsoft SQL Server, Oracle, MySQL MaxDB,
DB2 UDB, DB2 UDB for iSeries, and DB2 UDB for z/OS.

SAP Professional Journal May/June 2004

118 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

To fill this gap, Native SQL provides the SQL
Trace tool. It logs all SQL statements and JDBC
method calls that access the underlying database,
including their parameters and return values. The
SQL Trace tool also records the execution time and
duration of each statement, together with useful con-
text information, such as the executing thread and the
connection on which the statement was executed.

SAP provides a Web application for administering
and activating the SQL Trace tool. From an HTML
browser, enter the URL http://<host>:<port>/
SQLTrace, where <host> and <port> are the host
name and the HTTP port of the J2EE Engine. You
also use this application for viewing the trace results,
as shown in Figure 7. The summary shows the
sequence of JDBC methods, their execution time and
duration, as well as their associated SQL statement
texts and return values.

Clicking on any SQL statement displays addi-
tional details, including context information, as shown
in Figure 8. For example, for a JDBC statement exe-
cuted by SQLJ, the trace results include the name of
the Java program, the line number of the SQLJ state-
ment, and the timestamp of the SQLJ source.

Using the Open SQL Access Level

Built on top of Native SQL, Open SQL offers the
highest quality of service in the Open SQL Engine.
In contrast to the lower levels of Native SQL and
Vendor SQL, Open SQL guarantees platform inde-
pendence and ensures the portability of database
access. To reduce the load on the database, Open SQL
also contains a local cache called the “table buffer” for
storing database contents.

Figure 7 SQL Trace Summary

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 119

Meeting the Challenge of Portability

The database engines supported by SAP Web AS
understand different SQL dialects with many syntacti-
cal variants. While the SQL standard defines the
semantics for SQL statements, it leaves some room
for interpretation. Vendor implementations of SQL
can also be inconsistent with the SQL standard.
Consequently, some statements (such as outer joins or
the ORDER BY clause) behave differently on different
databases. SQL data types and semantics also differ
between database vendors.

In addition to differences and incompatibilities
inherent to different database systems, we find a simi-
lar unpleasant variety in the behavior of different
JDBC drivers, because the JDBC standard does not
specify the semantics of a number of methods pre-
cisely enough.

These differences make it cumbersome to write
a truly portable application that will run without
changes on multiple database platforms. You typically
face a considerable porting effort to migrate an appli-
cation to each additional database platform. To
remove this burden, the Open SQL layer contains a
portability engine that allows you to write entirely
platform-independent JDBC and SQLJ code. It con-
sists of three building blocks: Open SQL/JDBC, the
Open SQL Grammar, and the logical catalog.

Open SQL/JDBC

As with the lower levels, Vendor SQL and Native
SQL, you access Open SQL via JDBC — in this case,
using Open SQL/JDBC. This access level supports
truly database-independent JDBC code. The JDBC
classes and interfaces that are exposed by Open

Figure 8 SQL Trace Details

SAP Professional Journal May/June 2004

120 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

SQL/JDBC behave uniformly on all supported data-
base platforms. To achieve this goal, the Open SQL
Engine intercepts the JDBC method calls. Unfortun-
ately, some methods cannot be implemented in a
database-independent way. For example, the JDBC
class java.sql.DatabaseMetaData contains many
database-specific methods, such as DatabaseMetaData.
dataDefinitionCausesTransactionCommit(). For these
methods, Open SQL/JDBC throws an exception.
Fortunately, most of these methods are irrelevant for
developing business applications.

Open SQL Grammar

The Open SQL Grammar defines the SQL statements
that are accepted by Open SQL. In contrast to Open
SQL for ABAP, it is not a proprietary SQL dialect.
Instead, it is a subset of SQL statements specified by
SQL 92.8 It contains only statements that SAP has
identified as syntactically recognized and executed

with equal semantics by the database systems of all
supported database vendors.

The Open SQL Grammar comprises only queries
and DML9 statements. Because you can create, alter,
and delete database tables using the table editor, DDL
statements are not supported.10 We discuss this graph-
ical tool later in this section.

Open SQL supports the set of queries and DML
statements defined in SQL 92 Entry Level.11 It also
supports some joined tables (INNER JOIN and LEFT
OUTER JOIN, with some minor restrictions) as
defined in SQL 92 Intermediate Level. Furthermore,
Open SQL for Java supports a SELECT … FOR
UPDATE statement for selecting and exclusively lock-
ing a single row in a database table. As compared to
Open SQL for ABAP, Open SQL for Java is more

9 Data Manipulation Language (INSERT, UPDATE, and DELETE).
10 Data Definition Language (for example, CREATE TABLE and ALTER

TABLE).
11 SQL 92 Entry Level is the lowest of three support levels (Entry Level,

Intermediate Level, and Full Level) defined by the ISO/IEC 9075:1992
standard.

Figure 9 JDBC Data Types Supported by Open SQL
Data Type Value Range Variable Length Comparable

VARCHARa 1 … 127 characters Yes Yes

LONGVARCHAR 1 … 1,333 characters Yes No

CLOB 1 … 357,913,941 characters Yes No

BINARY 1 … 255 bytes No Yes

LONGVARBINARY 1 … 2,000 bytes Yes No
BLOB 1 … 1,073,741,824 bytes Yes No
SMALLINT -32,768 … 32,767 — Yes

INTEGER -2,147,483,648 … 2,147,483,647 — Yes

BIGINT -9,223,372,036,854,775,808 …
9,223,372,036,854,775,807

— Yes

FLOAT ±1.175E-37 to ±3.4E+38 — Yes

DOUBLE ±1.0E-64 to ±9.9E+62 — Yes
DECIMAL Precision < 32,

scale between 0 and 30
— Yes

DATEb yyyy-mm-dd — Yes

TIMEb hh:mm:ss — Yes

TIMESTAMPc yyyy-mm-dd hh:mm:ss — Yes

a Empty strings or strings with trailing spaces are not allowed, although a single space may be stored.
b The DATE and TIME types are not time-zone aware. They behave as if the values were stored in a string representation.
c The TIMESTAMP type is time-zone aware. Its values are stored as UTC timestamps.

8 SQL 92 refers to the Structured Query Language defined by the
ISO/IEC 9075:1992 standard.

At design time, you create a table declaration in
the table editor of SAP NetWeaver Developer Studio
(see Figure 10). During deployment, this table decla-
ration is transferred to the J2EE Engine and the physi-
cal database table is created or altered as needed. The
database-independent table description is also stored
in a metadata repository. At runtime, the Open SQL
Engine performs semantic checks against this logical
table description. This approach ensures that all SQL
statements executed via Open SQL undergo the same
checks on all databases.

Table Buffer

All server nodes of a J2EE Engine cluster share
a central database that they access via a local area
network with limited bandwidth. Not surprisingly,
this central database can easily become a perfor-
mance bottleneck under the heavy workload of a pro-
duction system. To increase overall performance,
reducing database load and network communication
as much as possible is highly desirable. The Open

powerful and offers added features such as unions,
arithmetic expressions, and using queries in the set
clause of UPDATE statements.

The documentation that comes with SAP
NetWeaver Developer Studio describes the Open
SQL Grammar in detail.

Logical Catalog

Different database systems also have different data
types. To abstract from their characteristic properties,
the Open SQL Engine contains a logical catalog (the
Java Dictionary) for describing database tables using a
database-independent type system. In this logical cat-
alog, the JDBC types (as specified by java.sql.Types)
denote the column types. Figure 9 summarizes the
JDBC types supported by Open SQL. The logical
catalog is available at design time to components of
SAP NetWeaver Developer Studio (such as the SQLJ
Translator and the EJB Query Language Parser)
and at runtime to the Open SQL Engine.

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 121

Figure 10 Creating a Table Description in the Table Editor

SAP Professional Journal May/June 2004

122 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

*����&������!++,������-.��		���������������(.

�����
��
� �����
��
�

�������#�(��/ �������#�(��!

��#
����$
��
���

��&���
	

)0�

�!���������
1����&
��
�$�����

���������
1����&
��
�$�����

"
�	���$%%��

����������
��2
��
�$�����

�����2
��
�$�����

���������

���3��4�������� ���3��4��������

�
�
�
��
�������

���������

���3��4��������

�
�
�
����
���

�
�
�
���5�	��

"���
(

��

�����

"���
(

��

�����

"
�	���$%%��

"���
(

��

�����

Figure 11 How the Table Buffer Works

Figure 12 Setting Table Buffer Properties in the Table Editor

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 123

SQL access level provides the table buffer for this
purpose. Figure 11 illustrates how the table
buffer works.

The table buffer is a local cache on each
server node of the J2EE Engine. It improves
performance by buffering database contents on
the application server. The J2EE Engine simply
retrieves localized data from the table buffer,
instead of fetching it from the database.
Buffering is completely transparent to the applica-
tion, requiring no special code to take advantage
of the table buffer. You use SAP NetWeaver
Developer Studio (see Figure 12) at design time
to enable and configure the table buffer for
individual tables.

Instead of caching the entire contents of a table,
you can choose to store just the portion that is fre-
quently accessed. You specify these portions (referred
to as the “buffer granularity”) in the table editor.
Granularity refers to the number of primary key
columns that determines the key range of the table to
be buffered — that is, the set of rows whose first n
key columns have equal values. Figure 13 shows
the options for defining buffer granularity. For n = 0,
the complete table is buffered — that is, its entire
contents are loaded into the buffer upon first access
to any data in the table. Otherwise, the table is
divided into generic areas with equal values for the
first n key columns. When a row in a generic area is
accessed, the contents of the entire generic area are
loaded into the table buffer.

		�4�&�%��	(� �6��4�&�%��	(� �
��4�&�%��	(
��4�&�%��	(�

���� ���� ���� ����

��� � � 	� ������

��� � ! 	� ������

���
 � 	� ������

���
 � 	� ������

���
 " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���
 � 	� ������

���
 � 	� ������

���
 � 	� ������

��� � � 	� ������

��� � � 	� ������

��� � " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

���
 � 	� ������

���
 ! 	� ������

��� � " 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���� ���� ���� ����

��� � � 	� ������

��� � ! 	� ������

���
 � 	� ������

���
 � 	� ������

���
 " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���
 � 	� ������

���
 � 	� ������

���
 � 	� ������

��� � � 	� ������

��� � � 	� ������

��� � " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

���
 � 	� ������

���
 ! 	� ������

��� � " 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���� ���� ���� ����

��� � � 	� ������

��� � ! 	� ������

���
 � 	� ������

���
 � 	� ������

���
 " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���
 � 	� ������

���
 � 	� ������

���
 � 	� ������

��� � � 	� ������

��� � � 	� ������

��� � " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

���
 � 	� ������

���
 ! 	� ������

��� � " 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���� ���� ���� ����

��� � � 	� ������

��� � ! 	� ������

���
 � 	� ������

���
 � 	� ������

���
 " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

���
 � 	� ������

���
 � 	� ������

���
 � 	� ������

��� � � 	� ������

��� � � 	� ������

��� � " 	� ������

��� � � 	� ������

��� � � 	� ������

��� � # 	� ������

���
 � 	� ������

���
 ! 	� ������

��� � " 	� ������

��� � � 	� ������

��� � # 	� ������

��� � $ 	� ������

Figure 13 Defining Buffer Granularity for the Table Buffer

SAP Professional Journal May/June 2004

124 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

With these options, you have the flexibility to
define the key range in the most suitable way for the
database table size and access pattern. For a large
table where typical access is via a fully qualified key,
you would choose all key fields as the buffering gran-
ularity. For small tables, you would more commonly
specify the coarsest granularity by choosing no key
fields in order to load the entire table contents.

Every server node has its own table buffer. Any
modifications to the local buffer also invalidate the
affected key ranges in remote buffers, ensuring data
consistency across all server nodes of a J2EE Engine
cluster. Consequently, buffer granularity affects buffer
synchronization between J2EE Engines, in addition to
determining the amount of cached records in the buffer.

Now that you understand the topology of the Open
SQL Engine, we will continue our guided tour by
focusing on how your application code works with it.

The Java Persistence Application
Programming Interfaces (APIs)
Relational databases are accessed in two fundamen-
tally different ways:

• Via relational persistence, where you access
database tables with SQL.

• Via object-relational persistence, where you
manipulate persistent objects that are mapped to
database tables by object-relational mapping
(rather than accessing database tables directly).
Changes to persistent objects are translated into
database calls by an appropriate runtime compo-
nent on the application server.

A wide range of Java solutions have come to sup-
port both programming paradigms. In keeping with
this trend, an important design goal of the Java
Persistence Framework is to allow you to choose
the appropriate API for your needs. Therefore, the
Java Persistence Framework supports the most
prominent APIs:

• For relational persistence, Java Database
Connectivity (JDBC) and SQL Java (SQLJ)

• For object-relational persistence, EJB entity beans
with container-managed persistence (CMP) or
bean-managed persistence (BMP), and Java Data
Objects (JDO)

The Java Persistence Framework gives you the
flexibility to mix APIs as needed in your Java applica-
tions. You might use any of the APIs exclusively or
you might use several APIs in combination, even
within the same database transaction if needed.
Choosing the appropriate approach is clearly a com-
plex task based only partly on the technology. You
also need to consider factors such as the programming
skills of the development team and possible reuse of
the developed software components.

Figure 14 compares the features of these APIs to
help you in your assessment. Next, we will introduce
each option and examine when and how to use them.
While a single article could not possibly cover every-
thing you need to know, these APIs are industry-
standard technology. Many printed and online publica-
tions are available from SAP and other sources (see the
sidebar on page 139 for some suggestions). In addition,
look for other SAP Professional Journal articles that
focus on programming with SQLJ,12 EJB CMP, and
JDO. At the end of this section we will also briefly
look at how you can use ABAP as the backend of a
Java application and the available APIs for managing
local and distributed transactions.

Relational Persistence APIs

With relational persistence, you access a database
using SQL — the most widely used query language.
You must manually write the SQL statements. On one
hand, you can write highly efficient statements that
are tailored for the specific needs of the application.
On the other hand, you must possess strong Java and
SQL skills. Because the SQL statements address spe-
cific database tables and column names, an applica-
tion using relational persistence is programmatically
tied to these names. They cannot be changed without
modifying the application code.

12 “Achieving Platform-Independent Database Access with Open
SQL/SQLJ — Embedded SQL for Java in the SAP Web Application
Server” (January/February 2004).

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 125

Good programming practices dictate separating
the database code from the business logic. With rela-
tional persistence, SQL statements can be executed
anywhere in the Java code. Therefore, the relational
persistence programming model does not enforce this
separation; this is sometimes considered a drawback
of relational persistence.

The Java world offers two well-established APIs
for accessing a database with relational persistence —
JDBC and SQLJ, both of which are supported by the
Java Persistence Framework.

�� Note!

As you learned in the Open SQL section, it is
generally very burdensome — if even possible —
to write truly portable database code with SQL.
However, if your JDBC or SQLJ application
is using the Open SQL access level of the J2EE
Engine, you can be sure that your database access
implementation is portable between the databases
and operating systems supported by SAP.

The JDBC API

Java Database Connectivity (JDBC) 2.1 is part of the
Java 2 Platform, Standard Edition (J2SE), and is also
the underlying database technology for J2EE. As the
oldest and probably most widely used of the Java per-
sistence APIs, JDBC is a SQL call-level API. When
you work with JDBC, your Java program invokes
JDBC methods to obtain a database connection, pre-
pare SQL statements, execute statements on the data-
base, and process the result set of queries. The JDBC
classes and interfaces are contained in the Java pack-
ages java.sql.* and javax.sql.*.

JDBC methods take SQL statements as Java string
arguments, and the SQL statements sent to the data-
base are always constructed at runtime. The advan-
tage of this approach is that it allows the posting of
SQL statements that cannot be determined at design
time. For example, you might want to construct a
WHERE clause dynamically at runtime. The disad-
vantage is that the SQL statements cannot be checked
at design time. Faulty statements might be detected
only at runtime, possibly in a production system.

You can use JDBC with connection pools

Feature SQLJ JDBC JDO EJB CMP

Persistent object type N/A N/A Java class
(lightweight)

Entity bean
(heavyweight)

Supports dynamic queries? No Yes Yes No

Query language SQL 92 SQL 92 JDOQL (Java-like) EJBQL (SQL-like)

Supports aggregates? Yes Yes No Yes

Supports inheritance? N/A N/A Yes No

Performs design-time checks
on queries and DML statements?

Yes No No Partially supported*

Supported in SAP NetWeaver
Developer Studio?

Yes No Planned for SAP
NetWeaver 2005

Yes

Can access Open SQL? Yes Yes Yes Yes

Can access Native SQL? No Yes Yes Yes

Can access Vendor SQL? No Yes Yes Yes

Usable outside of EJB container? Yes Yes Yes No

* Full support planned for SAP NetWeaver 2005.

Figure 14 Comparison of Java Persistence APIs

SAP Professional Journal May/June 2004

126 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

configured for any Open SQL access level (Open
SQL, Native SQL, or Vendor SQL). SAP refers to
these options as Open SQL/JDBC, Native SQL/JDBC,
and Vendor SQL/JDBC, respectively:

• With Open SQL/JDBC, your SQL statements are
checked against the Open SQL Grammar for
portability. The JDBC methods are also checked
for portability.

• With Native SQL/JDBC and Vendor SQL/JDBC,
you can use the proprietary functionality of the
database vendor’s JDBC driver (at the cost of
code portability).

The example above illustrates how to use JDBC
for relational persistence.

The SQLJ API

SQL/OLB,13 also known as “SQL Java” (SQLJ) is
an ISO14 standard that defines a mechanism for
embedding SQL statements directly in Java code.
With SQLJ, you still write the SQL code, but you are
freed from learning and applying the JDBC methods.

Example: Using the JDBC API for Relational Persistence

In this example, we use JDBC to insert a new department into the database table TMP_DEPARTMENT.
Assume that we have already obtained a data source (dataSource) using a JNDI lookup. In line 5,
we obtain a JDBC connection (conn) from this data source. Next, we prepare an INSERT statement
(lines 8-9) that contains two parameters as markers for the department ID and name. Before executing
the statement, we bind the values to the parameters (lines 12-13). Then we execute the statement
(line 16). Finally, we close the prepared statement object and the connection.

1 int depId = ...;
2 String depName = ...;
3
4 // obtain a connection
5 java.sql.Connection conn = dataSource.getConnection();
6
7 // preprare a statement
8 java.sql.PreparedStatement stmt = conn.prepareStatement(
9 "insert into TMP_DEPARTMENT (DEPID, NAME) values (?, ?)");

10
11 // bind the parameters
12 stmt.setInt(1, depId);
13 stmt.setString(2, depName);
14
15 // execute the statement
16 stmt.executeUpdate();
17
18 // free resources
19 stmt.close();
20 conn.close();

13 Object Language Binding.

14 For more information about the International Organization for
Standardization (ISO), see www.iso.org.

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 127

A SQLJ framework generates the corresponding
JDBC code.

You can use SQLJ only with connection pools
configured for the Open SQL access level.
Consequently, the SAP SQLJ solution is called “Open
SQL/SQLJ.”15

In SAP NetWeaver Developer Studio, you can use
the SQLJ Editor to implement Java classes that con-
tain SQLJ clauses. A SQLJ clause starts with the

keyword #sql and contains the SQL statement
enclosed in curly brackets {… }. The example on the
next page illustrates the look and feel of SQLJ. If you
are familiar with Open SQL for ABAP, you will notice
that it is very similar.

The major advantage of SQLJ is that the SQLJ
Translator checks the embedded SQL clauses at
design time. The task list in SAP NetWeaver
Developer Studio displays any detected errors so
you can correct them without having to test your
application on the server, which shortens the applica-
tion development cycle. The SQLJ Translator checks
the syntax of the SQL statements for conformance

In order to illustrate a simple query, we next show you how to determine which employees work in
a specific department. As in the previous example, where we inserted a new department into the
database table, we first obtain a connection from a data source (line 4). Again, we prepare the query as
a SQL statement (lines 6-7). Executing the query returns a ResultSet object (line 10), which we process
in a loop (lines 12-18). For every iteration, we process a single row of the result set. In lines 13-14, we
use the getString() method to extract the column values from the result set. From the column values, we
create a new Employee object and “do something” with the data.

1 int depId = ...;
2
3 // obtain a database connection
4 java.sql.Connection conn = dataSource.getConnection();
5
6 java.sql.PreparedStatement stmt = conn.prepareStatement(
7 "select FIRST_NAME, LAST_NAME from TMP_EMPLOYEE where DEPID = ?");
8
9 // execute the query

10 java.sql.ResultSet rs = stmt.executeQuery();
11
12 while (rs.next()) {
13 String firstName = rs.getString("FIRST_NAME");
14 String lastName = rs.getString("LAST_NAME");
15 Employee emp =
16 new Employee(depId, firstName, lastName);
17 doSomething(emp);
18 }
19 rs.close();

20 stmt.close();

21 conn.close();

15 For more information on Open SQL/SQLJ, see the article “Achieving
Platform-Independent Database Access with Open SQL/SQLJ —
Embedded SQL for Java in the SAP Web Application Server”
(January/February 2004).

SAP Professional Journal May/June 2004

128 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

with the Open SQL Grammar, which guarantees that
your SQL code is portable across any database sup-
ported by SAP Web AS. The semantics of the SQL
statements are checked against the table definitions in
the logical catalog to ensure consistency. This check
verifies that your application uses proper table and
column names, and that the Java types match the
defined data types for the database.

Another advantage of SQLJ over JDBC is the
ability to write more compact code. You can use
Java variables directly within SQL statements
(as shown in the SQLJ example above) to achieve
straightforward data exchange between Java and
SQL in both directions.

However, SQLJ does not replace JDBC completely:

• Open SQL/SQLJ requires you to use the Open
SQL access level. If you want to access the data-
base using a Native SQL or Vendor SQL connec-
tion pool, you must use JDBC.

• SQLJ only supports static SQL statements.
Generating SQL statements at runtime is not pos-
sible; you must use JDBC for dynamic SQL.

Fortunately, combining SQLJ and JDBC is
straightforward, because the SQLJ framework is actu-
ally using JDBC behind the scenes. Open SQL/SQLJ
and Open SQL/JDBC both use the same SQL checker
and execute statements using the same runtime envi-
ronment. Consequently, these two APIs can seam-
lessly interact with each other. SQLJ and JDBC can
share a database connection and transaction, and work
on the same statements and result sets.

Example: Using the SQLJ API for Relational Persistence

In this example, we illustrate how to use SQLJ for the same business scenario used in the JDBC
example on page 126 — inserting a new department into the database table TMP_DEPARTMENT. First,
we create a new SQLJ connection context instance, which represents a database connection (line 5).
On this connection context, we execute the INSERT statement that contains the values to be inserted
as embedded host variables (lines 8-9). Finally, we close the connection context (line 12).

1 int depId = ...;
2 String depName = ...;
3
4 // obtain a SQLJ connection context
5 Ctx ctx = new Ctx();
6
7 //
8 #sql [ctx] { insert into TMP_DEPARTMENT (DEPID, NAME)
9 values (:depId, :depName) };

10
11 // free the resources
12 ctx.close();

As in the JDBC example, we’ll next demonstrate how to select all employees who work in a specific
department, only here we will use SQLJ. In lines 4-5, we define a SQLJ result set iterator that serves
as the typed handle to the result set. Again, we create a connection context (line 8). In lines 12-15,
we assign the result of the query to the iterator (iter). We process the result set in a loop, one row per
iteration (lines 16-21). Then, we extract the column values from the iterator using the named getter

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 129

The Object-Relational Persistence APIs

Java is an object-oriented programming language.
Business applications, however, typically store
persistent data in relational databases. Object-
relational persistence bridges the gap between the
object world of Java and the relational world of the
database. In object-relational persistence, you do
not access database tables directly. Instead, the
application works with persistent objects. Therefore,
with object-relational persistence, development
of persistent objects and the business application
are decoupled.

For each class of persistent objects, you declare
the object-relational mapping to the data store in an
XML file. The object-relational mapping designates

the Java class fields that will be persistent, including
the database table and column for storing the specified
attributes. An underlying server-side persistence
framework component (which is commonly called
a “persistence manager”) uses the provided object-
relational mapping rules and synchronizes the persis-
tent objects with the data store. This operation is
transparent to your application, which does not con-
tain any persistence coding.

Although the persistence manager automatically
generates the SQL statements, remember that
you must understand the underlying database model
in order to correctly specify the object-relational
mapping for the persistent object. Furthermore,
the current specifications do not offer the flexibility
of JDBC and SQLJ. Notably, the JDO and EJB CMP

methods FIRST_NAME() and LAST_NAME(). With these values, we create a new Employee object and
“do something” with the data.

1 int depId = ...;
2
3 // define a iterator class
4 #sql iterator EmpIter
5 (int DEPID, String FIRST_NAME, String LAST_NAME);
6
7 // obtain a SQLJ connection context
8 Ctx ctx = new Ctx();
9 EmpIter iter = null;

10
11 // execute the query
12 #sql [ctx] iter = {
13 select FIRST_NAME, LAST_NAME
14 from TMP_EMPLOYEE
15 where DEPID = :depId};
16 while (iter.next()) {
17 // do something with the data
18 Employee emp =
19 new Employee(depId, iter.FIRST_NAME(), iter.LAST_NAME());
20 doSomething(emp);
21 }
22
23 // free the resources
24 iter.close();
25 ctx.close();

SAP Professional Journal May/June 2004

130 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

query languages lack the power and expressiveness
of SQL.

SAP Web AS supports the two most prominent
APIs for relational persistence — EJB CMP
and JDO. SAP Web AS 6.30 supports EJB CMP
version 2.0 and JDO version 1.0. We’ll look at
these APIs next (upcoming SAP Professional Journal
articles will address these APIs and how they work
with SAP Web AS in detail).

The EJB CMP API

Enterprise JavaBeans (EJBs) are the building blocks
of J2EE applications. In the J2EE architecture, they
are the reusable components of which all applications
are composed. Entity beans are specialized EJBs that
represent data in a persistent data store.

To reduce the complexity of developing stable
and scalable applications with EJBs, the J2EE
server offers additional services such as transaction
management and security. These services allow you
to concentrate on developing the application’s busi-
ness logic. The concept of EJB entity beans with
container-managed persistence (CMP) offers an addi-
tional advantage. The J2EE server also takes control
of all persistence-related activities, such as database
connectivity and database queries or modifications,
which relieves the entity beans of responsibility for
relational database access.

In other words, EJB CMP is the J2EE approach
for object-relational persistence. The EJB container
and the underlying persistence manager use JDBC to
synchronize the attributes of the entity bean with the
database at runtime. Synchronization also applies to
persistent relationships between entity bean instances.

Example: Using the EJB CMP API for Object-Relational Persistence

In this example, we illustrate how to use an EJB CMP entity bean to insert a new department into the
database. Assume that instances of an entity bean named DepartmentBean represent department entities.
In order to work with the bean, we first obtain the local home interface of the bean DepartmentLocalHome
using a JNDI lookup (lines 5-6). In line 9, we invoke the create() method on the home interface to create a
new bean instance.

1 int depId = ...;
2 String depName = ...;
3
4 // Look up the bean's home interface inside Web AS Java's namespace.
5 DepartmentLocalHome departmentHome = (DepartmentLocalHome)
6 ctx.lookup("java:comp/env/ejb/DepartmentBean");
7
8 // create a new department bean
9 departmentHome.create(depId, depName);

As with the JDBC and SQLJ examples on pages 126 and 128, we next determine which employees work in a
department with a given ID. Assume that the employee entities are represented by the EmployeeBean with
the local home interface EmployeeLocalHome and the business interface Employee. In lines 4-5, we obtain
the local home interface of the EmployeeBean using a JNDI lookup. In order to execute the query that retrieves
the desired set of employees, we simply execute the findEmployeesByDepId() method on the home interface
(line 7), which returns a collection of Employee entities. In lines 9-11, we iterate over this collection and “do
something” with the data.

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 131

Upon deployment of CMP entity beans, the necessary
JDBC code is generated based on the information pro-
vided by the bean’s deployment descriptor and object-
relational mapping.

Proper implementation can be tedious and error-
prone, but SAP NetWeaver Developer Studio offers
wizard-driven entity bean definition. It generates the
client interfaces and a template for the bean class, and
then you simply edit the XML files and implement the
bean class.16 Once you have defined the entity bean,
you can benefit from a pure Java approach when
working with it in your applications. The example
above illustrates this approach.

To search for specific entity beans or their persis-
tent fields, you use specialized finder and select meth-
ods. EJB CMP comes with a query language for this
purpose called “EJB Query Language” (EJBQL), which
has a SQL-like syntax. It supports static queries only,
which are checked by the framework at design time.

The JDO API

The Java Data Objects (JDO) standard, which
emerged from Java Specification Request (JSR) 12,
has gained considerable popularity inside the Java
community. Since JDO is not part of the J2EE stan-
dard, you can use it either inside or outside of EJBs.

The primary benefit of JDO is that you can
declare plain Java classes as persistence-capable.
Think of JDO as a natural extension of the Java

1 int depId = ...;
2
3 // look up the home interface
4 EmployeeLocalHome employeeHome = (EmployeeLocalHome)
5 ctx.lookup("java:comp/env/ejb/EmployeeBean");
6
7 Collection col = employeeHome.findEmployeesByDepId(depId));
8
9 while (col.hasNext()) {

10 doSomething((Employee)col.next());
11 }

In order to run the entity bean, we provide the EJBQL statements with the method findEmployeesByDepId()
inside the deployment descriptor of the EmployeeBean:

1 <query>
2 <description/>
3 <query-method>
4 <method-name>findEmployeesByDepId</method-name>
5 <method-params>
6 <method-param>int</method-param>
7 </method-params>
8 </query-method>
9 <ejb-ql>

10 SELECT Object(e) FROM Employee AS e WHERE e.depid = ?1
11 </ejb-ql>
12 </query>

16 See the article “Get Started Developing, Debugging, and Deploying
Custom J2EE Applications Quickly and Easily with SAP NetWeaver
Developer Studio” on page 3 of this issue for a detailed example of
defining an entity bean.

SAP Professional Journal May/June 2004

132 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Example: Using JDO for Object-Relational Persistence

In this final example, we demonstrate how to use JDO to insert a new department into the database.
Assume that the persistence-capable class Department represents a department. First, we create a
new instance of the class Department (line 5). Next, we obtain a persistence manager instance from a
persistence manager factory (line 8). The persistence manager holds the connection to the database.
To insert the newly created Department object into the database, we simply invoke the makePersistent()
method on the persistence manager (line 11). Finally, we close the persistence manager to release the
associated resources (line 12).

1 int depId = ...;
2 String depName = ...;
3
4 // Create a new department instance
5 Department dep = new Department(depId, depName);
6
7 // A JDO Persistence Manager manages life cycle of persistent objects
8 javax.jdo.PersistenceManager pm = pmf.getPersistenceManager();
9

10 // Make the department persistent
11 pm.makePersistent(dep);
12 pm.close();

Next, we will determine which employees work in a specific department using a JDOQL query. Again,
we first obtain a persistence manager (line 4). In line 6, we create a new JDO Query object using the
newQuery() method of the persistence manager. It takes as arguments the candidate class Employee
and a Java-like filter expression that contains a parameter ID. We declare the existence of this parameter
(line 7) and execute the query with the value for this parameter (line 8). The result of the query is a
collection of Employee objects, which we process in a loop and then “do something” with the data.

1 int depId = ...;
2
3 // A JDO Persistence Manager manages life cycle of persistent objects
4 javax.jdo.PersistenceManager pm = pmf.getPersistenceManager();
5
6 Query query = pm.newQuery(Employee.class, "department.depId == id");
7 query.declareParameters("int id");
8 Collection col = (Collection)query.execute(new Integer(depId));
9

10 while (col.hasNext()) {
11 doSomething((Employee)col.next());
12 }
13
14 query.close(col);
15 pm.close();

In addition to the persistence-capable class, we must also provide a related identity class containing the
primary key and the XML-based metadata (not shown in this example).

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 133

programming language, adding persistence capability
to objects that live inside a Java Virtual Machine. In
addition to defining the persistence-capable class, you
create an “identity class” that contains the primary key
and, as with EJB CMP, the XML-based metadata.
After compilation, the class files are modified in a
post-processor step inside SAP NetWeaver Developer
Studio by a byte-code enhancer. It replaces all refer-
ences to the persistent attributes with method calls to
the runtime component of the SAP JDO implementa-
tion. Transparently to the application, this runtime
reflects actions performed on object instances, such as
creating or deleting instances and reading or writing
field values. The application can insert a new record
into the database simply by creating an instance of a
persistent class. As the example on the previous page
illustrates, a call to the JDO method makePersistent()
makes the particular instance persistent.

The example also shows how to query a database
using JDO. In contrast to EJB CMP, JDO comes
with a Java-like query language called “JDO Query
Language” (JDOQL) that supports both static and
dynamic queries. While queries can be created dynam-
ically at runtime, the drawback, of course, is that they
cannot be checked at design time.

Choosing between EJB CMP and JDO depends on
the nature of the application:

• JDO is a more lightweight approach, because
you implement a single persistence-capable class
instead of a set of interfaces.

• EJB CMP is more widely used than JDO. If
portability across different J2EE servers is an
issue, EJB CMP might be a better choice.

In addition, consider the differences in functional-
ity. As we have pointed out, only JDO supports
dynamic queries. Furthermore, JDO supports what is
referred to as “persistence by reachability.” Objects
that can be directly or indirectly reached from a per-
sistent object through a network of references are
persisted automatically. Also, only JDO offers Java
inheritance for persistent objects. In turn, EJB CMP
supports a cascade-delete, which means that deleting a
persistent object also causes the EJB CMP framework
to delete all dependent objects.

For both APIs, you do not need to deal with transac-
tion management — in other words, you do not directly
commit or rollback the database transaction. As with
relational persistence, you either delegate this task to an
EJB session bean or use the distributed Java Transaction
API (JTA) that is provided by the J2EE server.

The EJB BMP API

EJB CMP entity beans always map to a relational
database. If you need to access an alternative data
store (such as a file system or an ABAP-based appli-
cation) and prefer to use entity beans as an abstraction
of the persistent objects, you can use EJB entity beans
with bean-managed persistence (BMP). The EJB
BMP API does not come with a framework that cre-
ates the persistence code. Instead, you must explicitly
implement the code inside the bean class using JDBC,
SQLJ, or JDO. You might also need to write specific
code for accessing a proprietary system (such as an
ABAP-based application) as the data store.

The persistence type (container-managed or
bean-managed) is irrelevant to the client of an
entity bean. Therefore, the code in the EJB CMP
example on page 130 applies to working with
EJB BMP as well.

When considering EJB BMP, you must weigh
the increased effort against the achieved object-
oriented view of persistent data. As with EJB CMP,
you must learn and adhere to the EJB specification, as
well as follow J2EE design patterns.

But what if you want to use ABAP as the backend
of a Java application, and what APIs are available for
managing local and distributed transactions? We’ll
take a quick look at these issues next.

Accessing ABAP Data from Java

As previously mentioned, ABAP and Java programs
must not directly access the same database schema.
However, Java and ABAP applications do not need to
be completely isolated. You can combine ABAP and
Java technology in your Web applications as needed.

SAP Professional Journal May/June 2004

134 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

You may, for example, have a Web-based application
that combines Java-based Web user interface compo-
nents with ABAP-based business logic components.
The tools of the extensive SAP connectivity technol-
ogy suite (SAP JCo, SAP Java Resource Adapter, and
Web services) support efficient and robust data
exchange between Java and ABAP applications.

This architecture introduces an interesting alterna-
tive to JDBC-based persistence. A Java application
could use ABAP for its data backend. In this scenario,
Java components use JCo to access an ABAP function
module, instead of accessing the database using per-
sistence APIs. The function module then uses the
ABAP persistence framework to communicate with
the database. Thus a wide range of data managed
by ABAP applications is also readily available to
Java applications.

APIs for Transaction Management and Locking

Transaction management is necessary for achieving
atomic and consistent business transactions. JDBC,
SQLJ, and JDO provide standard APIs to demarcate

local transactions explicitly within the Java source
code. You use them to start, commit, and rollback
database transactions for the application using a single
transaction resource. For an isolated application that
runs entirely in a Web container, this type of transac-
tion demarcation is sufficient.

With J2EE, the recommended approach to trans-
action management is to use the Java Transaction API
(JTA). JTA, which is part of J2EE, allows applica-
tions to programmatically demarcate distributed (or
global) transactions. A distributed transaction can
combine multiple transactions on multiple data stores
and other XA (Distributed Transaction) resources such
as JMS (Java Message Service) to one logical transac-
tion. A transaction manager, which is external to the
data store, manages JTA transactions. SAP Web AS
provides a transaction manager, supporting the two-
phase commit protocol, as part of the Transaction
Service. Application components can start, rollback,
and commit distributed transactions through the sim-
ple interface javax.transaction.UserTransaction.

You access this interface via a JNDI lookup, as
illustrated in Figure 15. Here, we first perform a

javax.naming.Context ctx = new javax.naming.InitialContext();

// lookup the UserTransaction interface in JNDI
javax.transaction.UserTransaction ut =

(UserTransaction)ctx.lookup("java:comp/UserTransaction");

[...]

// start a new user transaction
ut.begin();

// do something transactional

// commit the user transaction
ut.commit();

Figure 15 Accessing the User Transaction Interface via a JNDI Lookup

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 135

JNDI lookup to obtain a UserTransaction object.
Then, we start a user transaction, perform some
transactional operations, and finally commit the
transaction.

To comply with the J2EE component model,
larger business applications typically encapsulate the
business logic into EJBs. An EJB is a server-side
component that runs in the J2EE Engine. It lives in an
EJB container, which manages its lifecycle and pro-
vides services for transaction management, security,
and locking. EJBs allow you to refrain from demar-
cating transactions explicitly within the Java source
code, because they support the superior concept of
container-managed transaction demarcation. For each
EJB method, you specify one of the standardized
transaction attributes inside the bean’s deployment
descriptor, indicating whether the method can partici-
pate in a transaction and if it requires a transaction of
its own. At runtime, the EJB container ensures that
the method executes in the proper context as specified
by these transaction attributes.

The Open SQL Engine only supports distributed
transactions if the underlying resource manager —
that is, the database vendor’s JDBC driver — supports
them. Until recently, not all database vendors sup-
ported by SAP Web AS supported distributed transac-
tions. This situation implies that SAP applications
cannot generally access multiple data stores in the
scope of a distributed transaction. Further, you
cannot access the ABAP Schema mediated by JCo
and the Java Schema via the Java Persistence
Framework in the same distributed transaction.
Because the ABAP Engine is not capable of a two-
phase commit, it cannot participate in a distrib-
uted transaction.

To solve the problem of concurrent access to the
same data from multiple transactions, the SQL stan-
dard specifies several transaction isolation levels to
define the required degree of isolation between con-
current transactions.17 The technical implementation

of transaction isolation levels is usually based on
database locks. The databases supported by SAP
Web AS do not offer uniform semantics for locks.
Therefore, the Java Persistence Framework uses
the proven and tested SAP concept of logical locks,
instead of physical database locks. The database oper-
ates at the lowest possible isolation level18 and appli-
cation components acquire locks on database objects
via the Table Locking API, which is part of the
Locking and Enqueue Service of SAP Web AS.

Now that you have a solid understanding of the
Open SQL Engine and the Java Persistence APIs, let’s
take a look at how SAP helps you ensure the portabil-
ity of your Java applications and persistence code
through its support of the Data Source Alias concept,
and how the SAP Java Development Infrastructure
enables you to easily deploy Java applications in your
SAP environment.

The Data Source Alias
The Open SQL access level solves the challenge of
portable persistence code. But you need other mecha-
nisms in order to achieve full platform independence
of both application and data store configuration.
The resource reference mechanism of J2EE19 allows
you to redirect servlet and EJB applications to
another database connection pool without changing
the Java sources. However, you must adjust the
deployment descriptor appropriately and redeploy
the application. Therefore, the resource reference
approach is not feasible for building a ready-to-
deploy enterprise application.

To overcome this limitation, SAP supports the
concept of a Data Source Alias. Data Source Aliases
are logical names that you assign to each configured
database connection pool. You can assign multiple
Data Source Aliases to each connection pool

17 Isolation levels provide a mechanism for protecting against unde-
sired behaviors within a transaction. For example, the isolation level
“committed read” protects a transaction from seeing uncommitted
changes performed by a concurrent transaction.

18 The lowest possible isolation level is a “consistent read” for Oracle and
a “dirty read” for all other databases.

19 For more information, refer to Section 5.5 of the J2EE 1.3 specification.

SAP Professional Journal May/June 2004

136 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

(as shown in Figure 16). Any Java-based application
component (EJBs, servlets, and other components
such as services, libraries, or Web Dynpro) can use
the Data Source Alias for referring to the required
database connection pool.

With Data Source Aliases, moving an application
to another database connection pool is a straightfor-
ward task. The system administrator simply reassigns
the Data Source Alias to the new target connection
pool in the SAP J2EE Engine Administrator. This
reassignment is fully decoupled from application
development and deployment, and the application
code remains untouched. You do not even need to
redeploy it. Data Source Aliases are also unique and
application-specific. You use the Name Reservation
Service to allocate them, which we will explain later.
Therefore, the system administrator can easily
identify which application is accessing a particular
connection pool.

You create a Data Source Alias in the J2EE
Explorer view of SAP NetWeaver Developer
Studio (see Figure 17). Select new →
META_INF/datasourcealias.xml. As discussed
previously, all applications should store data in the
same Java Schema and access it via the default
preconfigured connection pool. Therefore, all defined
Data Source Aliases are automatically assigned to this
default connection pool (as shown in Figure 18).

��	
���

	��
�
�
��

�
�
���$���
�	�
��/

���	��
���
�/ ���	��
���
�!

�
�
���$���
�	�
��7

���	��
���
�7

�
�

�����

�����

!

�
�
���$���
�	�
��!

Figure 16 Data Source Aliases Mapped
to Different Schemas

Figure 17 Defining a Data Source Alias

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 137

SAP Java Development
Infrastructure
As SAP learned with ABAP, efficient mechanisms for
deploying and transporting applications, application
metadata, and dictionary data are indispensable.
To accommodate these needs for Java applications,
SAP Web AS includes the extensive SAP Java
Development Infrastructure (JDI), which enables the
SAP Software Logistics concepts for Java. The bene-
fits of the JDI become particularly evident with com-
plex business applications that require large developer
teams, because it ensures well-structured and consis-
tent software development and maintainability.

The JDI consists of a set of closely interacting
tools and services for offline design, implementation,
and development on a local PC, as well as online
deployment and testing on a central server. In order
to support offline development on a local PC, a major
design goal was to shift as many decisions as possible
to design time. While it is beyond the scope of this
article to cover the JDI in detail, here we focus on
what the JDI offers in support of persistence. Two
tools are of particular importance:

• SAP NetWeaver Developer Studio is the common

frontend that connects you to the JDI services.
You can develop, build, configure, deploy, exe-
cute, and remotely debug entire applications cen-
trally from SAP NetWeaver Developer Studio.20

• The Software Deployment Manager resides inside
the target SAP Web AS instance. It installs and
updates a consistent set of software components in
the target environment.

The Java Dictionary

The J2EE Engine comes with a global metadata repos-
itory called the “Java Dictionary.” It contains defini-
tions of two fundamental types of dictionary objects
— data types and database tables. It provides the vari-
ous design-time and runtime components (such as the
table editor and the Open SQL Engine) with a uniform
description of data types and database tables (the logi-
cal catalog).

As an abstraction of the proprietary database-
specific data types, the Java Dictionary offers “build-in
types” upon which all data types are ultimately based.
You use these build-in types to assemble self-defined
semantic data types — “simple types” and “struc-
tures.” They may additionally contain a description
and a value range to be used for validity checks on the
user interface. For consistency, you can also use these
self-defined semantic data types in table definitions.

Regardless of which API is used, you must
create and maintain all database tables in the Java
Dictionary. It enables you to create and alter
database tables, columns, and indexes in a database-
independent manner. You must specify column types
as Java Dictionary types (either build-in types or sim-
ple types) that have corresponding JDBC types.

Dictionary objects are organized into “dictionary
projects” or “dictionary components.” You create
and edit them in SAP NetWeaver Developer Studio

��	
���

	��
�
�
��

�
�
������

�
�
���$���
�	�
��/

���	��
���
�/

�
�
���$���
�	�
��!

���	��
���
�!

�
�
���$���
�	�
��7

���	��
���
�7

Figure 18 Data Source Aliases Mapped
to the Same Schema

20 See the article by Karl Kessler on page 3 of this issue for a detailed
introduction to SAP NetWeaver Developer Studio.

SAP Professional Journal May/June 2004

138 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

using the table editor of the Dictionary Explorer view.
The table editor does not create or alter the database
tables directly. Instead, it generates schema archives
that contain XML-based database table descriptions.
In order to apply the table descriptions to the database,
you must deploy them to SAP Web AS. During
deployment (which can be initiated from within
SAP NetWeaver Developer Studio), the Software
Deployment Manager reads the table descriptions and
creates or alters the target database appropriately.

The Name Registration Service

The JDI supports distributed development, allowing
you to develop and test different applications inde-
pendently. To avoid naming conflicts once applica-
tions are installed on a common system, the JDI
includes a central Name Registration Service to ensure
the worldwide conflict-free naming of database
objects such as database tables, indexes, and SAP
Data Source Aliases.

When you create a database object, the appro-
priate editor automatically contacts the Name
Registration Service. It guarantees that the allocated
names comply with a simple naming convention for
database objects, which provides for hierarchical,
company-specific, and business-area-specific names.
Remember to use the same prefix for all names that
are associated with a business area or for your com-
pany’s data store.

Benefits of Using the Java
Persistence Framework
Although somewhat complex, the Java Persistence
Framework is designed to make life easier for Java
developers in many ways:

Java standards compliance: If you are familiar
with one of the supported Java APIs, you can
start developing or extending applications imme-
diately. You don’t need to spend time learning
proprietary interfaces.

�

Object-relational persistence: While possible,
object-relational persistence (via JDO or EJB
CMP) is not compulsory. Plus, object-relational
persistence works seamlessly with relational per-
sistence. For example, an application that typi-
cally uses JDO can also incorporate JDBC calls
for database requests that cannot be expressed by
the JDO query language.

Flexibility: A technique or technology that is per-
fect for a simple servlet could be terribly wrong
for a large-scale J2EE application. Therefore,
the framework supports a wide spectrum of
approaches to persistence in both the underlying
technology and the development environment.
You can base application design and implementa-
tion solely on requirements, rather than lack of
support for certain solutions. The framework
also enables a smooth transition from one
programming model to another, allowing the
coexistence of different APIs.

Consistent behavior of persistence components:
You should be able to expect that a particular
database query implemented in different persis-
tence approaches will be equally valid and lead to
the same results. You can, of course, safely use
your SQLJ SQL statement inside a JDBC call,
because the syntactical and semantic checks are
the same. But consistency and interoperability go
far beyond validity checking. For example, any
persistence API can reuse a prepared statement
created in SQLJ. Likewise, any modification of
a buffered table will be visible to all persistence
APIs, independent of how the table was modified.

Portability: The challenge of portability might
not be immediately obvious, because Java (with
its standards for persistence) seems to promise
independence from database systems and vendors.
Unfortunately, this premise is not completely
valid. To bridge this gap, the Java Persistence
Framework enables you to detect dangerous code
at development time, instead of discovering
discrepancies between database systems in a
production system.

�

�

�

�

A Guided Tour of the SAP Java Persistence Framework — Achieving Scalable Persistence for Your Java Applications

For site licenses and volume subscriptions, call 1-781-751-8799. 139

Scalability: The Open SQL Engine provides
enhancements that improve the scalability of busi-
ness applications, most of which are largely invis-
ible to application developers. Applications will
continue to benefit from SAP improvements in
this area, without requiring explicit code to
implement them.

Tight integration with the JDI: The develop-
ment cycle of a persistent application — from
development to testing, and then through packag-
ing, delivery, and maintenance — is part of
the SAP Java Development Infrastructure.
Development support ranges from integrated
editors (such as those for SQLJ applications)
to the final packaging of a deliverable soft-
ware component.

�

� Simplified database object creation: Creating
or changing database tables or indices for your
application is almost trivial with the integrated
table editor. All the work, such as assuring
database independence, happens transparently
behind the scenes.

Faster development: You test J2EE applications
by deploying them to a J2EE application server,
where the application is executed. This process
can be tedious, especially for large applications.
The Java Persistence Framework accelerates
development by detecting incorrect or non-
portable coding at the earliest possible stage.
For example, the SQLJ editor can detect that a
SQL statement accesses a nonexistent table col-
umn immediately after you enter the statement.

�

�

Further Reading

For more information about the Java Persistence Framework, refer to the following offline
documentation included with SAP NetWeaver Developer Studio:

Open SQL Grammar and data types:

Navigate to SAP Web AS for J2EE Applications → Reference Manual → Java Persistence
Reference → Open SQL Reference

Open SQL/JDBC methods:

Navigate to SAP Web AS for J2EE Applications → Reference Manual → Java Persistence
Reference → Overview of the JDBC API

Java persistence:

Navigate to SAP Web AS for J2EE Applications → Development Manual → Developing
Business Logic → Java Persistence

�

�

�

SAP Professional Journal May/June 2004

140 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Summary
The Java Persistence Framework is an essential part
of the technological foundation of SAP Web AS 6.30.
It complies with established Java standards, and at the
same time offers software developers the flexibility to
choose the type of persistence that best suits their pur-
poses. Rather than enforcing any particular program-
ming paradigm (such as object-relational persistence),
the Java Persistence Framework supports combining
different approaches. Interoperability is achieved via
a core central component, the Open SQL Engine,
which is the foundation of all exposed Java persis-
tence APIs. This engine ensures the consistent behav-
ior of all persistence components and approaches, and
includes enhancements that enable the portability and
scalability of business applications.

The Java Persistence Framework is firmly embed-
ded in the Java Development Infrastructure, resulting
in efficient software design and development. With
just a few mouse clicks, you can create and deploy
database objects (such as tables and indices) in a
database-independent manner. Programming errors
and nonportable code are recognized well before
the application is deployed. Regardless of the scale
or scope of your application, simple servlets and
complex J2EE applications alike will benefit from
the Java Persistence Framework.

Katarzyna Fecht studied computer science and
mathematics at the Warsaw University in Poland.
In 2001, she joined SAP as a member of the J2EE
Server group, where she coauthored and taught the
internal classroom training for the J2EE and EJB
technologies. Katarzyna currently belongs to the
SAP Web Application Server product management
team, where she focuses on information rollout for
the Java Persistence and J2EE technologies. You
can contact her at katarzyna.fecht@sap.com.

Adrian Görler studied physics at the Ruprecht-
Karls-University in Heidelberg, Germany, where
he specialized in computational biophysics. He
received his doctorate at the Max-Planck-Institute
for Medical Research, Heidelberg, and did post-
doctoral research work in various international
laboratories. In 1999, Adrian joined SAP and
became a member of the Business Programming
Languages group, where he worked as a kernel
developer responsible for the implementation and
maintenance of Open SQL as well as Native SQL
in ABAP. Since 2001, Adrian has been a member
of the Java Server Technology group, where he has
been working on the implementation of Open SQL
for Java, especially Open SQL/SQLJ. He can be
reached at adrian.goerler@sap.com.

Jürgen G. Kissner received his doctorate in
theoretical physics at the University of Manchester
(UK). In 1996, he joined the SAP Server
Technology development team as a member of the
Database Interface group, where he worked on
high availability, in particular database reconnect
and switchover, and the integration of parallel
database systems with R/3. Jürgen is currently
responsible for the connection and transaction
handling aspects of SAP Web Application Server,
including multiple database connections in a
heterogeneous database landscape. His second
development focus is the ABAP and Java table
buffer, especially the buffer manager and the SQL
statement processor, and the Native SQL layer of
the Open SQL engine. He can be contacted at
juergen.kissner@sap.com.

