
Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 69

Volker Stiehl joined Siemens
in 1992, where he initially
focused on server-side
architectures, and then on
J2EE-based integration and
the integration of SAP R/3
systems with other legacy
systems and databases.
Currently Volker is an SAP
NetWeaver consultant with
special expertise in SAP Web
Application Server, SAP XI,
and SAP xApps.

(complete bio appears on page 92)

It is no secret that companies are cost-driven — if there is an opportunity
to optimize your organization’s efficiency, you have to seize it. A
surefire way to reduce costs is to minimize application development
time. The J2EE (Java 2 Platform, Enterprise Edition) standard was
designed to address the challenge of building complex, business-critical
applications with minimal effort. It takes over the ugly parts of
developing business software, like transaction management and security,
so that developers can concentrate on implementing business processes.
And, as an industry standard, applications created using the J2EE
architecture are almost universally supported, so you don’t have to
write different versions of the same application for different platforms.

While the J2EE standard can significantly reduce development time,
in the past you still needed to maintain one type of server (e.g., BEA
WebLogic, IBM WebSphere, Oracle Application Server, or the open
source JBoss or JOnAS) for running your J2EE applications, and another
(e.g., SAP Basis 4.6C or 6.10) for running your SAP-based business
applications — until now. SAP Web Application Server (SAP Web AS)
6.30, and now 6.40, incorporate version 1.3 of the J2EE standard, so that
you can use a single platform for developing and running your ABAP
and J2EE applications, reducing your development and maintenance
costs and optimizing the performance of J2EE applications that are
already connected to your SAP systems.

This is great news for developing applications going forward,
but what about the J2EE applications you’ve already developed on
other platforms? Fortunately, the inherent platform independence
of J2EE-based applications means that you can easily port them to a
new server like SAP Web AS 6.30 or 6.40. Although this makes it

Gain a Real-World Understanding of How
Your Applications Will Operate on a New
Platform — Porting a J2EE Application to
SAP Web Application Server

Volker Stiehl

SAP Professional Journal May/June 2004

70 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

tempting to migrate all of your applications to the
new server right away, it’s best to start with one so
you can accurately assess how the server will respond
to your unique real-world conditions. Using an
application migration I performed at my organization
as an example, this article shows managers, decision
makers, technical architects, and developers how to
port a J2EE-based application from BEA WebLogic
6.1 to SAP Web AS 6.30, and details the lessons
learned along the way. I’ll also point out some poten-
tial problem areas and provide recommendations
for ensuring a successful J2EE migration.1 And I
will outline the tools and best practices that will
help you ensure the future portability of your
J2EE applications.

�� Note!

While the example migration discussed in this
article focuses on SAP Web AS 6.30, the Java
capabilities are relatively unchanged in SAP Web
AS 6.40, so the discussions and lessons in this
article are valid for both releases.

And even if you have no immediate plans to
migrate to SAP Web AS, or are currently running
your J2EE applications on a server other than BEA
WebLogic, keep reading. By the end of this article,
you will be able to evaluate whether it makes sense
to port your J2EE applications to SAP Web AS,
regardless of the platform you are starting from, and
you will have a solid understanding of what to con-
sider, how to start the porting project, what steps to
take, and which tools to use to make the migration as
cost-effective as possible.

Before we jump right into the details of porting
a J2EE application to SAP Web AS, however, let’s
take a step back and review the J2EE application
architecture.

Understanding the J2EE
Application Architecture
Companies require a wide variety of applications
for day-to-day business operations, which can add
up to significant application development efforts.
While standard software like SAP R/3 can go a long
way toward minimizing your application develop-
ment costs, it rarely covers 100% of your needs.
Fortunately, SAP provides tools like the ABAP
Workbench that make it easy to add functional
extensions to your applications. Over time, however,
business requirements have become more and more
complex, in turn increasing application development
time and pushing the limits of existing application
development environments. The J2EE standard was
designed to address this challenge by easing the
development of complex Java applications.

J2EE is a distributed, multi-tiered application
model. J2EE applications are generally distributed
over the front tier (which displays information to the
user), the middle tier (which implements the business
logic), and the persistence tier (which houses the data
used by the application), and consist of the compo-
nents specified in the J2EE standard, in particular the
JavaServer Pages (JSP), servlet, and Enterprise
JavaBeans (EJB) technologies (see Figure 1).

The J2EE application I will use to demonstrate the
porting process in the article is a Web-based applica-
tion called Click4License (C4L) that was designed to
centrally manage software licensing information for
the entire company. Like many J2EE solutions, it
requires access to several data sources — in this case,
an LDAP server where every employee is uniquely
identified, a relational database for storing the master
data for users, computers, and licenses, a server for
scripted software, a server for unscripted software,
and a server for sending workflow emails to users, IT
staff, heads of cost centers, etc.

C4L is a typical implementation of a multi-tiered
J2EE 1.3-based Web application. It was created with
the widely used open source framework Apache
Struts, and makes extensive use of J2EE standard
components, including JSPs, servlets, and EJBs, as

1 Note that once a customer has successfully ported a J2EE application
to SAP Web AS, the application can be “SAP Web AS certified.”
For details, visit www.sap.com/icc or send an email to icc@sap.com.

Naming and Directory Interface (JNDI) for the LDAP
server, the SAP Java Connector (JCo)4 for the SAP
systems, and Java Database Connectivity (JDBC) for
the relational database.

To run the C4L application, we needed a server
that would support not only all of these technologies,
but also a large number of users (12,000), computers
(38,000), and licenses (250,000), while ensuring high
availability and scalability. At the time we developed
the C4L application (in early 2002), SAP supported
J2EE 1.2, but our application required J2EE 1.3, for
the EJB components in particular. For this reason,

������
����

�	
	�	��
�������

����

����

�	�	������
�	���

����
������

�	�	
����	��
�������

�������
	��
��
�
�
��	��

����	���
������
��	�

���
��������

���
��������

�����

������
����
����

���
� ! ����� "���

�#�$�������

��	����	�
%��"
�	���

�	�	
������
�

	����&����'�
�	
	
(��)

�����

����&����'�
�	
	
(��)

well as the Java Message Service (JMS). As you can
see in Figure 2, the front tier uses classical HTML
pages generated by JSPs and servlets to represent the
user interface in a Web browser, along with a Web
services2 interface to upload and download master
data and retrieve license information. The business
logic is implemented in the middle tier using EJB
technology — specifically, 31 stateless session beans,
26 container-managed entity beans, and, as you can
see, 1 message-driven bean.3 Access to the backend
systems in the persistence tier is realized by the Java

2 While SAP Web AS 6.30 and 6.40 support Web services, it is not part
of the J2EE 1.3 specification itself. Web services will be part of the
J2EE 1.4 specification, however.

3 There are three types of EJBs: session beans for the business logic,
entity beans for persisting business data, and message-driven beans
for asynchronous application behavior. For more on EJBs, see the
articles by Karl Kessler and by Katarzyna Fecht, Adrian Görler, and
Jürgen G. Kissner on pages 3 and 111 of this issue, respectively.

����
������

������
����

�	
	�	��
������

������
����
����

�	
	�	��

����

����

�	�	������
�	���

��
��*����
�	�	��	��

���	+��
%��"
�	���

�	�	
������
�

�����

Figure 1 Data Flow in a Typical J2EE Application

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 71

Figure 2 Data Flow in the Example Application

4 See http://service.sap.com/connectors for further information on the
SAP Java Connector (JCo). In addition, SAP Professional Journal has
published an extensive set of articles regarding the effective use of JCo,
including “Repositories in the SAP Java Connector (JCo)” (March/April
2003); “Server Programming with the SAP Java Connector (JCo)”
(September/October 2003); and “Tips and Tricks for SAP Java
Connector (JCo) Client Programming” (January/February 2004).

SAP Professional Journal May/June 2004

72 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

we chose to use BEA WebLogic 6.1 as the application
server. With SAP Web AS 6.30, however, SAP intro-
duced a J2EE 1.3-compliant Java stack. We chose to
migrate to SAP Web AS to consolidate our system
landscape onto a single platform and to take advan-
tage of the enhancements it offers. Let’s take a closer
look at these advantages and why it makes sense to
migrate to SAP Web AS.

Why Port a J2EE Application to
SAP Web AS?
Until the 6.30 and 6.40 releases of SAP Web AS,5

most SAP customers were forced to maintain a J2EE-
compatible server like BEA WebLogic or IBM
WebSphere, or the open source JBoss or JOnAS, for
their J2EE applications, in addition to an SAP server
for their business applications, using either IBM
Access Builder or SAP JCo to connect the two — not
an ideal scenario, as the server maintenance cost is, in
effect, doubled, and the frequent connection openings
inevitably affect performance. Another issue was the
lack of support for the full J2EE application develop-
ment lifecycle — from the development environment,
to version and configuration management, to deploy-
ment — which led many developers to create their
own development environments based on the open
source framework Apache Ant, a time- and resource-
consuming endeavor.

SAP Web AS now includes a number of useful
features and enhancements that promise to signifi-
cantly improve developer productivity through the
use of sophisticated tools and wizards, which reduce
errors, as well as full support for the software devel-
opment lifecycle. In particular, these include:

• Support for Web services

• A database-independent abstraction layer
for persistence

• The ability to easily develop user-friendly
Web frontends

• A comprehensive J2EE development process

Support for Web Services

If your application requires integration capability
that is independent of operating systems and program-
ming languages, like our C4L application required
for managing software licenses for all machine types
across the company, an efficient Web services infra-
structure may be essential.

From a development perspective, it makes sense
to follow a bottom-up approach for the generation
of Web services to save you time and to enhance
the reusability of the application logic. With this
approach, you first implement the application’s
business logic as a stateless EJB session bean. The
stateless session bean is then used to automatically
derive the WSDL6 description file for the Web ser-
vices layer, which in turn allows the application logic
in the bean to be accessed by a variety of clients. The
SAP NetWeaver Developer Studio7 proxy generator
then uses the WSDL description file to create a client
proxy for the Web service.

A Database-Independent Abstraction Layer
for Persistence

Although the J2EE standard comprises Java Database
Connectivity (JDBC) for relational persistence and
container-managed EJB entity beans for object-
relational persistence,8 it is still a challenge to write
applications that are completely database-independent,

5 While SAP introduced support for the Java programming language and
the J2EE 1.2 standard in SAP Web AS 6.20, its scalability and usability
regarding J2EE applications were limited.

6 Web Services Description Language.

7 SAP NetWeaver Developer Studio, introduced with SAP Web AS 6.30,
is the new SAP development environment for Java applications. For
a detailed introduction, see the article by Karl Kessler on page 3 of
this issue.

8 Java object persistence will be covered in a series of forthcoming SAP
Professional Journal articles, beginning with the article by Katarzyna
Fecht, Adrian Görler, and Jürgen G. Kissner on page 111 of this issue.
See also the article “Achieving Platform-Independent Database Access
with Open SQL/SQLJ — Embedded SQL for Java in the SAP Web
Application Server” (January/February 2004).

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 73

and thus portable. While it is theoretically possible to
write fully database-independent applications if devel-
opers adhere strictly to the SQL statements supported
by all vendors, it is highly dependent on the discipline
of the developers involved. Every database vendor
offers proprietary enhancements to differentiate its
products, and more often than not, especially in large
teams working in distributed locations, developers
will use them, “breaking” the portability of the appli-
cation (more on this later in the article). This is where
SAP’s persistence engine, the Open SQL Engine intro-
duced with SAP Web AS 6.30, comes into play.

The Open SQL Engine offers a database-
independent abstraction layer to support the devel-
opment of applications that are, in truth, database-
independent. You provide the commands, which must
be Open SQL statements, for executing the database
operations, and the persistence engine handles the rest
— optimizing the statement for the particular database
in use, for example. As a result, you can change the
database without modifying the application code,
making the application available to a wide range of
supported databases. (The idea behind this concept is
not new: it was first introduced by SAP for ABAP
development with the ABAP Engine.)

�� Note!

For more details on the Open SQL Engine and
Java persistence, see the article “A Guided Tour of
the SAP Java Persistence Framework — Achieving
Scalable Persistence for Your Java Applications”
on page 111 of this issue.

The Ability to Easily Develop User-Friendly
Web Frontends

One of the challenges of developing applications with
J2EE is building a user-friendly Web frontend. For
instance, adding user-requested features such as
client-side input checking and inter-field dependency

checks can result in large portions of JavaScript pro-
gramming that may not be portable across browsers,
forcing you to maintain different coding for different
browsers. Multiple design and prototype cycles can
also drain your development resources. Considering
the different available browsers and their idiosyn-
crasies (Netscape Navigator and Microsoft Internet
Explorer sometimes require different implementations
of the same HTML tag, for example), developing
sophisticated frontends for different implementations
of HTML and JavaScript can quickly lead to errors,
project delays, and increased costs.

But a barebones design is not an option — users
are now accustomed to comfortable client applica-
tions. The introduction of the Web Dynpro technol-
ogy with SAP Web AS 6.30 represents a quantum leap
in developer productivity. Web Dynpro includes
development tools that allow you to design user-
friendly frontends in a WYSIWYG format (such as
dragging and dropping user interface components
on the screen and binding them to data sources, for
example). This approach delivers comfortable GUI
controls ready for use with a minimum of program-
ming effort, and provides less opportunity for
programming error.

A Comprehensive J2EE Development Process

While J2EE application servers themselves continue
to improve almost every year, professional develop-
ment environments for creating complex server-side
J2EE applications have not kept pace. This has
changed recently, especially with frontend develop-
ment, but many J2EE IDEs are still not as comfortable
and productive as Microsoft’s Developer Studio for
C#, for instance. Some J2EE IDEs still lack tools
that cover the complete development cycle, including
configuration and transport management. As a
workaround, most developers create their own tools
and frameworks. While the open source build tool
Apache Ant is helpful, building a sophisticated devel-
opment environment on your own still means a lot of
work (and a lot of money). And in most cases, a
homegrown IDE will need to be re-tailored for each
new project’s requirements.

SAP Professional Journal May/June 2004

74 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Another challenge of server-side J2EE application
development is the large number of files that make up
a J2EE application, including JavaScript files, Java
libraries and classes, HTML files, JSP files, and pic-
tures, each of which might be used by many develop-
ers, and all of which must be kept synchronized. As a
result, development processes often rely on nightly
builds, where all files are recompiled to maintain syn-
chronization, which can take a long time for large
projects and can result in long build-repair cycles.
The actual programming and testing of J2EE applica-
tions also takes place on the developer’s local system,
meaning that to make changes, the relevant files must
be transferred to the developer’s seat (which must also
be configured properly), corrected, and then trans-
ferred back to the production system. This process
can lead to chaotic situations, especially if large devel-
opment teams in different locations are all working on
a single project.

Using the tested ABAP Workbench concept, SAP
Web AS includes the Java Development Infrastructure
(JDI), a complete development infrastructure for pro-
fessional J2EE development, as depicted in Figure 3.
As you can see on the left-hand side, when a devel-
oper opens a project, all the needed libraries and com-

ponents are automatically retrieved to the developer’s
local machine from the repository, along with the Java
sources, a step that previously was manual (and very
error-prone). The developer makes changes, builds,
and tests locally, and then manually “checks-in” the
changes to the repository and activates them. The
Build Service then works behind the scenes to verify
all dependencies for the changed sources and starts
an “incremental build” in which only the dependent
sources are compiled — in the past all files were
compiled, leading to long build-repair cycles. If this
build process finishes successfully, the newly created
archives are deployed on SAP Web AS. The Build
Service makes the sources and archives available to
other developers only after a successful build, so that
the team is always working with a running system; if
there is an error during the build, the developer gets
an error message and no deployments are executed
on the server.

As you can see, there are several good arguments
for migrating your applications to SAP Web AS, just
as there were for us. But before you start porting
them all, it’s best to start with one so you can first eval-
uate how the server will behave under high load, for
example, and then estimate the amount of effort the

,*��
���-��

���
�	�	
$�� ��*���
���

��+*����

�'���

�'���
�������

��*���
���&����

���
���
��

��
��	
�

������*.
�'���.
	��
���

"��	���

�&��/�$�
�&	����

���&���
����

�	�	
��'����

,01 2��

#�

Figure 3 Overview of the Java Development Infrastructure (JDI) Delivered with SAP Web AS

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 75

porting project will require. The porting effort is
highly dependent on the proprietary extensions used
to develop the existing applications. These vendor-
specific extensions are usually not supported across
platforms, so you will need to identify where they are
used and then estimate the amount of effort that will be
required to redevelop the functionality on the new plat-
form (more on this later in the article).

You’re probably thinking, “This sounds time-
consuming. Why not just use a synthetic benchmark-
ing tool?” While J2EE server vendors provide such
benchmarks, the tools and results are proprietary —
i.e., they are often not reusable across different appli-
cations and platforms — and tend to concentrate on
specific components of the application, like EJB
performance, rather than on how well the compo-
nents interact. Standard J2EE benchmarks, like
SPECjAppServer2002,9 provide a more comprehensive
view, and can be useful for an initial evaluation, but
by nature cannot mirror your real-world requirements.
So, in order to evaluate a new application server
like SAP Web AS 6.30 or 6.40, it is a good idea to
migrate an actual application you intend to run on
the new platform.

So which of your applications should you migrate
to evaluate the server? That depends on the J2EE
technologies used in your application and what is
most important to you: Is it EJB or servlet perfor-
mance? Do you have a lot of Web services, or is JMS
critical for you? Depending on the answers to these
questions, simply port the smallest of your applica-
tions that use the required technology, or extract an
autonomous part of a larger application.

In the next sections, I’ll show you how to port an
application from BEA WebLogic 6.1 to SAP Web AS
6.30 or 6.40 (while my own migration was to 6.30, the
steps are essentially the same for 6.40), and point out
some potential trouble spots based on my own migra-
tion experience, as well as ways to enhance the porta-
bility of your applications for future migrations.
While the porting project steps will look a little differ-
ent if you are porting from a server other than BEA

WebLogic, like IBM WebSphere or JBoss, and their
details are highly dependent on the features you used
to implement your particular application’s functional-
ity, you will gain a solid understanding of how porting
projects are organized and the considerations to keep
in mind.

Porting a J2EE Application to
SAP Web Application Server
Porting an application to SAP Web AS consists of a
simple eight-step process:

1. Plan for the migration.

2. Adjust the J2EE application and the target
system deployment descriptors and configure
the target system.

3. Create a deployment project.

4. Create an enterprise archive (EAR) file to contain
the application’s Web archive (WAR) and Java
archive (JAR) files.

5. Reference any required preconfigured global
libraries that already exist on the target system.

6. Deploy any required custom-built global libraries
that do not yet exist on the target system.

7. Deploy the EAR file.

8. Verify and test the deployment.

Step 1: Plan for the Migration

From a theoretical point of view, J2EE migration proj-
ects shouldn’t be that difficult — if all vendors stick to
the J2EE standard when developing their server prod-
ucts, it should be easy to port applications with mini-
mum effort. The problem lies in differing interpreta-
tions of the J2EE specification. It is a relatively
young specification with a broad approach that covers
difficult server-side development frameworks (like
the one for object-relational persistence), and under-
standably does not yet cover all the critical aspects
of development in complete detail.

9 For more on the Standard Performance Evaluation Corporation (SPEC)
and supported standard benchmarks, visit www.specbench.org.

SAP Professional Journal May/June 2004

76 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

To make up for this, vendors offer proprietary
extensions to help developers improve their productiv-
ity. However, this can cause applications to become
vendor-dependent and can increase the migration cost
if the target server does not support the extension in
use (more on this later). This makes it difficult to esti-
mate migration efforts — the time needed by the proj-
ect participants to fulfill their work and the money
required for new hardware or software — because it’s
hard to say which problems will crop up during the
project. However, there are some general considera-
tions I can point out for you, which are outlined in the
sidebar above (I will also outline the problems we
encountered while migrating our software licensing
application in a later section).

Step 2: Adjust the J2EE Application and the
Target System Deployment Descriptors and
Configure the Target System

As mentioned before, J2EE vendors add proprietary
features to their application servers to enhance J2EE
programming capabilities. The J2EE specification
provides vendor-specific deployment descriptors10

that allow developers to configure and adjust these
proprietary features.

Estimating the Migration Effort

There are a number of considerations involved in estimating porting efforts:

Extent to which proprietary extensions were used to develop the application: Each extension
used will require a portable alternative (see the next bullet item). Sun Microsystems offers the Java
Application Verification Kit (AVK) for the Enterprise to help you locate proprietary extensions used in
applications (the AVK is discussed in more detail later in the article). For a rough estimation, you can
ask participating team members to identify the extensions they used and the number of times they
used them.

Extent to which the application adheres to the J2EE standard: If the application departs from the
standard significantly, how much effort will be required to write a portable alternative? Sometimes
you can find open source alternatives for a given feature. If there is no alternative, estimate the
effort for implementing this feature on your own. The complexity of the application will also affect the
porting effort. For instance, someone with broad JSP/servlet/database knowledge can port a simple
JSP/servlet application in a matter of days, while porting an EJB-based application can require at
least two people with EJB knowledge and months to complete.

Other ancillary conditions that may affect total porting time:

- Type of source platform: The less comprehensive the knowledge of the target platform, the more
the effort may increase. Even different Unix derivatives lead to different effort levels.

- Type of J2EE APIs used: The porting effort will increase with the number of different J2EE
technologies used in the application. Effort levels also differ between technologies. Starting with

�

�

�

10 Deployment descriptors are required to inform containers about middle-
ware needs, and are declared in a file. (In J2EE 1.3, deployment
descriptors are written using XML.) Such descriptors define how con-
tainers perform lifecycle management, persistence, transaction control,
and security services.

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 77

Each application server has its own set of features
for addressing issues specific to that particular appli-
cation server (like the primary key generation feature
of BEA WebLogic; more on this later) as well as more
common issues like load balancing, clustering, and
monitoring. The specific steps for adjusting the fea-
tures will depend on the particular feature and plat-
form, so you will need to consult the relevant
documentation. For our software licensing applica-
tion, we needed to adjust the deployment descriptors
for the application in order to use container-managed
persistence. In addition to the standard ejb-jar.xml
deployment descriptor specified by the EJB standard,
SAP Web AS includes the vendor-specific deployment
descriptors persistent.xml and ejb-j2ee-engine.xml.

The SAP-specific descriptor file persistent.xml is
used to specify which entity bean fields map to which
columns of which tables in the database. The EJB con-
tainer uses this mapping when storing or retrieving
container-managed fields from the database. Since the
deployment descriptors are XML files, they can be
adjusted using a simple text editor. Manually editing
these XML files can be difficult, however, so vendors
provide tools for handling them, such as the SAP Web
AS Deploy Tool (more on this in an upcoming sec-
tion). We also needed to configure a message queue
for the Java Message Service (JMS) and data sources
for object-relational persistence inside the target appli-
cation server (SAP Web AS). This was done by using
the SAP J2EE Engine Administrator of SAP Web AS.

the costliest, the relative effort associated with the most popular J2EE APIs are: bean-managed
entity bean > container-managed entity bean > stateful session bean > stateless session bean
≥ servlets > JavaServer Pages.

- Number of EJB session beans, entity beans, and message-driven beans used: The porting
effort will increase in proportion to the number of beans used.

Extent to which the target server covers the application requirements: To determine this, simply
make a list of the technologies (and version numbers) used in your application and compare them
with the feature list of the target application server. If it fits, you can start the porting project right
away. If it doesn’t fit, you have to decide if it makes sense to implement the missing features on your
own (thus increasing the effort) or simply stop the porting project. In the case of our migration, for
example, the following were required, all of which were provided by SAP Web AS:

- JavaServer Pages (JSP) 1.2

- Java Servlets 2.3

- Enterprise JavaBeans (EJB) 2.0, including stateless session beans, container-managed entity
beans, a message-driven bean, and container-managed relations

- Java Naming and Directory Interface (JNDI)

- JavaMail

- Java Message Service (JMS)

- Web services

�

SAP Professional Journal May/June 2004

78 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

�� Note!

The SAP J2EE Engine Administrator is started via
go.bat, which can be found in the SAP Web AS
installation directory \usr\sap\<SID>\JC<instance
number>\j2ee\admin\.

Figure 4 shows the SAP J2EE Engine
Administrator screen. Here, you can see a data source
entry for the database connection C4L_DB, which was
created as follows:

1. Select the JDBC Connector service from the tree
on the Cluster tab in the left pane of the SAP
J2EE Engine Administrator. On the Runtime tab
in the right pane, choose the DataSources node
under Resources.

2. Choose the toolbar button Create New Driver
or DataSource ().

3. Specify a unique name for the data source
in the Name field, which will be used to look
up the data source in the naming service of the
J2EE Engine (C4L_DB in our case).

4. Choose a 1.x-compatible JDBC driver from the

Figure 4 The SAP J2EE Engine Administrator Screen

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 79

Driver Name dropdown list of registered drivers.
The drivers available for selection here are those
listed in the Drivers subtree on the Runtime tab.
You can add any vendor-specific JDBC driver to
this list. Simply copy the ZIP or Java archive
(JAR) file containing the driver to your file sys-
tem, and then select the Drivers node on the SAP
J2EE Engine Administrator Runtime tab, choose
the Create New Driver or DataSource toolbar
button (), enter a name for the driver (e.g.,
Oracle 8.1.7 in Figure 4), and select the copied
ZIP or JAR file from the pop-up that appears.

5. Choose 1.x from the JDBC Version dropdown
list of supported JDBC versions.

6. Enter the fully qualified Java name of the driver’s
main class in the Driver Class field — e.g.,
com.sap.dbtech.jdbc.DriverSapDB.

7. Enter the database URL, which consists of a
protocol identifier (always JDBC), a driver
identifier (SAP DB, IDB, Oracle, etc.), and a
database identifier (the format is driver-specific)
— e.g., jdbc:sapdb://localhost/J2E.

8. Specify the user name for logging in to the
database server.

9. Specify the password for the database user.

10. On the Additional tab, set the SQL type support.

11. Save your entries.

Step 3: Create a Deployment Project

When you are porting applications to SAP Web AS
without adding code (which is the case when you sim-
ply want to evaluate an application server, as we are
doing here), you can use the SAP Web AS Deploy
Tool as the center of your deployment activities. (To
add code, you would use SAP NetWeaver Developer
Studio,11 which is the SAP Web AS IDE introduced
with SAP Web AS 6.30.)

The Deploy Tool is a graphical user interface tool
that generates and assembles archive components
based on the J2EE application and deploys them on
the J2EE Engine included with SAP Web AS 6.30 and
higher. The Deploy Tool can be used to create J2EE
components from the class files and deployment
descriptors of an existing J2EE application, to assem-
ble these components in an application enterprise
archive (EAR), to edit its deployment properties, and
to deploy the EAR on the specified J2EE Engine
cluster elements.

When the Deploy Tool is first started, the screen
shown in Figure 5 appears, showing four tabs
where the necessary information for deployment
must be entered.

11 For a detailed introduction to SAP NetWeaver Developer Studio, along
with a brief discussion of how to use it for deployments, see the article
by Karl Kessler on page 3 of this issue.

Figure 5 The Deploy Tool Initial Screen

�� Note!

The J2EE deployment tool is started via
DeployTool.bat, which can be found in the
SAP Web AS installation directory under \usr\sap\
<SID>\JC<instance number>\j2ee\deploying\.

But before you specify the details of the deploy-
ment, you need to create a “deployment project,”
which is the basis of all deployment activities. Select
Project → New Project on the Deploy Tool initial
screen, which creates a deployment project file ending
with the extension .dlp.

SAP Professional Journal May/June 2004

80 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Step 4: Create an EAR File to Contain the
Application WAR and JAR Files

You can only deploy complete enterprise archive
(EAR) files to SAP Web AS. EAR files consist of
Web archive (WAR) files for Web applications and
Java archive (JAR) files for Enterprise JavaBeans
(EJB) development. The J2EE Components tab of
the Deploy Tool provides for the creation of WARs
and JARs, which contain simple Java class files and
deployment descriptors that must be added explicitly
out of the directory where the application was devel-
oped. Since we are porting an existing J2EE applica-
tion, the necessary JAR and WAR files already exist,
so we don’t need to use this tab.12

The Assembler tab of the Deploy Tool is used to
create the EAR file that deploys the components of the
J2EE application on the target SAP Web AS system.
Add the archives that make up the EAR file —
the WAR and JAR files — via the menu path
Assemble → Add Archive.

You can also add existing archives from other
sources to ease the deployment of simple Web appli-
cations delivered in WAR files. For example, the
Apache Struts framework provides an infrastructure
that allows developers to plug in their business logic
and Web pages — the flow from one Web page to the
next is described inside preconfigured XML configu-
ration files, with no additional programming required.
The accompanying library that assembles these files
can be easily deployed with the application using the
Server Components tab of the Deploy Tool (see step 6
on page 82).

Finally, the menu selection Assemble → Make

Figure 6 Server Libraries Delivered with SAP Web AS

12 For more details on creating WAR and JAR files with the Deploy Tool,
go to the SAP Web AS 6.30 or 6.40 help at http://help.sap.com and
navigate to SAP NetWeaver Components → SAP Web Application
Server → J2EE Technology in SAP Web Application Server →
Development Manual → Deployment: Putting It All Together → Deploy
Tool. Note that once you have migrated to SAP Web AS 6.30 or 6.40,
you would use SAP NetWeaver Developer Studio instead.

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 81

EAR creates the EAR file. If you don’t need to refer-
ence or deploy any preconfigured or custom-built
global libraries, the EAR file is now ready for deploy-
ment on the target application server, and you can skip
to step 7. Otherwise, you must complete steps 5 and 6
before deploying the EAR file.

Step 5: Reference Any Required Preconfigured
Global Libraries That Already Exist on the
Target System

Some libraries required by your application may
already exist as part of SAP Web AS. SAP Web AS
6.30 and 6.40 deliver a number of preconfigured
libraries, such as an XML library, ready for use with
different applications. To avoid redeploying these
libraries for each application over and over again, it is
a good idea to reference them. For example, almost
every application needs a way to handle XML files, so
it makes sense to reuse a single XML library for every
application that requires XML access instead of main-
taining a separate library for each application. For an

overview of these server libraries, go to the SAP J2EE
Engine Administrator, and in the tree on the left select
Server → Libraries (see Figure 6). You can select
these libraries directly, rather than having to deploy
them (more on this in step 6). The question is: How
do we tell the application server during deployment
that our application wants to reuse an already-existing
server library? In other words: How do we reference
a library we see in the Libraries subtree of the SAP
J2EE Engine Administrator?

Let us examine this question by using as an exam-
ple the XML library sapxmltoolkit, which is reused
in nearly every modern enterprise application. The
Deploy Tool needs the library name and the library
provider name for every library to be reused, which
can be found by selecting the library node in the left
pane of the SAP J2EE Engine Administrator, as shown
in Figure 7. The information will then appear in the
Info tab on the right, in the fields Library Name and
Provider Name — sapxmltoolkit and engine.sap.com,
respectively. On the Deployer tab of the Deploy Tool,
select the EAR file (C4L.ear in the example), follow

Figure 7 Accessing the Library Information

SAP Professional Journal May/June 2004

82 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

the tab hierarchy Descriptor → Extra Information →
Reference, and add the target and the library provider
names, as shown in Figure 8.

You can then verify the success of this referencing
step by opening the automatically generated descriptor
file for the application using the Deploy Tool — in
this case, application-j2ee-engine.xml — to see if the
reference was included. Figure 9 shows the deploy-
ment descriptor code for the example, which includes
the reference we just added (shown in bold).

By referencing existing server libraries in this
way, you can easily reuse global general-purpose
libraries and avoid redundant deployment, saving you
from redeploying them or writing similar libraries for
each application.

Step 6: Deploy Any Required Custom-Built
Global Libraries That Do Not Yet Exist on the
Target System

The Server Components tab of the Deploy Tool is
used to deploy any global libraries that were custom-
built by the developer to the target application server,
so you can reference them the way you reference the

preconfigured libraries that already exist on the target
system. For example, if a collection of industry-
specific calculations is often used by several enter-
prise applications, it makes sense to pack them in one
library and deploy the library as a shared resource.
There are no custom-built global libraries used by
our application, so we do not use this tab.

Step 7: Deploy the EAR File

The EAR file is deployed using the Deployer tab. You
can specify the administration port of the application
server (e.g., the default value is 50004) and then
deploy the EAR by following menu path Deploy →
Deployment → EAR, by selecting Deployment →
Deploy EAR from the context menu of the EAR file,
or by selecting the deploy button (). No other set-
tings are necessary on this tab; simply accept the
remaining defaults.

Step 8: Verify and Test the Deployment

You can verify the success of the deployment (i.e.,
whether the application and any deployed libraries
are properly installed and running) via the SAP J2EE

Figure 8 Adding Library Reference Information to the Deployer Settings

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 83

Engine Administrator — if the deployment was
successful, new entries will appear when you select
Server → Services → Deploy for Web and enter-
prise applications or Server → Libraries for
server components.

Figure 10 shows that the C4L application has
been successfully deployed — the node sap.com/C4L
appears in the Runtime tab display for the Deploy
node. (Note that the radio button Application must be
checked to display the application in the Runtime tab.)

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE application-j2ee-engine SYSTEM 'application-j2ee-engine.dtd'>

<application-j2ee-engine>
<reference reference-type="weak">

<reference-target provider-name="engine.sap.com" target-type="library">
sapxmltoolkit

</reference-target>
</reference>
<fail-over-enable mode="disable">
</fail-over-enable>

</application-j2ee-engine>

Figure 9 The Library Reference Added to the Application’s Descriptor File

Figure 10 A Successfully Deployed J2EE Web Application

SAP Professional Journal May/June 2004

84 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

At this point, your next steps depend on the errors
identified by the Java stack traces that are triggered
by exceptions thrown during testing. For J2EE appli-
cations, I recommend test tools such as JUnit or
HttpUnit for Web applications, or Apache Cactus as
an overall test framework for server-side Java code
(servlets, EJBs, etc.). All of these tools can automate
unit testing for large parts of the application.13

�� Note!

The following Web sites provide additional
information about J2EE and the deployment
process:

• http://java.sun.com/developer/
technicalArticles/J2EE/Intro/index.html

• http://java.sun.com/j2ee/learning/tutorial/

While testing our ported software licensing
management application, we did experience some
problems, which we will look at next. While our par-
ticular problems were specific to porting from BEA
WebLogic 6.1 to SAP Web AS 6.30, the discussion
will serve as a good starting point for identifying
potential trouble spots in your own porting project.

Potential Porting Problems
The problems we encountered in our porting project
fell into three distinct categories:

• Differing interpretations of the J2EE specification

• The use of proprietary extensions

• The use of special design patterns

In the next sections, I’ll describe the particular
problems we encountered in detail, to give you a
feeling for the direction you might want to take your
own investigations.

Differing Interpretations of the J2EE
Specification

Most of the problems we encountered when porting
our software licensing application were caused by dif-
fering interpretations of the J2EE specification:

• BEA WebLogic does not check for certain manda-
tory exception declarations. SAP Web AS is much
more exact in following the specification. For
example, chapter 10.6.4 of the EJB 2.0 specifica-
tion requires the enterprise lifecycle method
ejbCreate for container-managed entity beans to
throw a javax.ejb.CreateException. The
ejbCreate method in our application was origi-
nally declared as depicted in Figure 11 — as you
can see, it throws a RuntimeAccessorException
instead of a javax.ejb.CreateException.

Be sure to check the deployment descriptors
before deploying your application. The Java
Application Verification Kit (AVK) for the
Enterprise from Sun Microsystems (more on
the AVK in an upcoming section) is a useful
tool for detecting errors like this one because it
checks the deployment descriptor for correctness.
Using a tool like the AVK will save you from
having to resort to the time-consuming trial-
and-error method.

• BEA WebLogic does not check for incorrect
transaction configurations (see chapter 15.4.8 of
the EJB 2.0 specification). For example, with
message-driven beans, the container handles the
acknowledgement of received messages; therefore
programmers should never use the JMS API14 to

13 Details about these tools can be found at:

• http://junit.org

• http://httpunit.sourceforge.net/

• http://jakarta.apache.org/cactus

14 JMS is part of the J2EE standard and comprises the asynchronous send-
ing and receiving of messages. It’s generally used for connecting sys-
tems in a loosely coupled fashion.

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 85

acknowledge messages. Programmers can, how-
ever, tell the container how to acknowledge
received messages using the “acknowledge-mode”
deployment descriptor. But this special descriptor
can only be set for message-driven beans with
bean-managed transaction demarcation, and the
message-driven bean used by our software licens-
ing application has container-managed transaction
demarcation, so the acknowledge-mode deploy-
ment descriptor cannot be used. Although the
descriptor was incorrectly set for the ported appli-
cation, BEA WebLogic accepted the setting
whereas SAP Web AS returned an error.

Again, use a tool like the AVK to check the
deployment descriptors, which will save you a lot
of time and effort.

• BEA WebLogic does not check the case-sensitivity
of descriptor names; SAP Web AS, on the other
hand, will refuse the deployment if the capitaliza-
tion is incorrect. Chapter 22.5 of the EJB 2.0
specification states that the content of an XML
element of the deployment descriptor is, in gen-
eral, case-sensitive. The ported application used
an incorrect descriptor name (the error is in bold):

<acknowledge-mode>auto-
acknowledge</acknowledge-mode>

The name should have been:

<acknowledge-mode>Auto-
acknowledge</acknowledge-mode>

This is also something that the AVK could easily
have detected.

• BEA WebLogic does not check for correct param-
eters in EJB Query Language (EJBQL) expres-
sions,15 while SAP Web AS does. It is possible to
formulate EJBQL expressions with subselects,
which are represented using the keyword IN(x),
where x stands for a set of objects. Since x must
be a set to search in, and you can’t search inside a
simple value, x cannot be a simple value (see
chapter 11.2.6 of the EJB 2.0 specification), but
this is exactly what happened in our software
licensing application, so SAP Web AS did not
accept the expressions during deployment.

To address this problem, we had to correct the
EJBQL inside the deployment descriptor. Once
again, the AVK can detect such incorrect expres-
sions for you.

public abstract class ComputerBean
extends GenericAttributeAccessDefaultImpl implements EntityBean

{
...

public Integer ejbCreate(Map values) throws RuntimeAccessorException
{

this.setValuesForSpecifiedAttributes(values);
return null;

}
...

}

Figure 11 The Example Application’s ejbCreate Method Exception Declaration

15 EJBQL uses a SQL-like syntax to select, update, or delete objects
or values out of a database.

SAP Professional Journal May/June 2004

86 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

The Use of Proprietary Extensions

As I have mentioned before, vendors offer proprietary
extensions to help J2EE application developers
improve their productivity, but if an extension is not
supported by the target server, this means the applica-
tion is not portable! You cannot run it on the target
machine, and you have to develop an alternative on
your own. Depending on the proprietary extension in
use, this can add a significant amount of effort to the
porting project.

For example, the BEA WebLogic primary key
generation extension saves developers from having
to worry about creating extra database tables to store
the last assigned primary key for a certain entity.
SAP Web AS does not support this extension, how-
ever, so we had to write a new, application-server-
independent component for primary key generation.
Since the component works on a new database
table, where the last assigned primary key for
each entity bean is stored, we had to adjust each
ejbCreate method of each entity bean so that it
used the new generated component for retrieving
the next primary key.

The lesson here is to stay away from proprietary
extensions. If you use them already, keep in mind that
you will have to implement a portable alternative so
that your application will be able to run on SAP Web
AS. Every proprietary extension means additional
effort for the migration project that must be consid-
ered. (I will discuss proprietary extensions and how
to ensure portability in more detail shortly.)

The Use of Special Design Patterns

We also used a special design pattern in our software
licensing application to access members of an entity
bean directly via Java reflection instead of using
accessor methods (see Figure 12). Unlike BEA
WebLogic, SAP Web AS doesn’t allow this kind of
member access, so we had to completely rearrange
the code. The lesson here is to follow the J2EE speci-
fication and don’t deviate from it! SAP Web AS will
detect any deviations and force you to rewrite the
erroneous code to achieve complete J2EE compliance.

Implications for the Porting Project

We were able to fix all of the problems we encoun-
tered relatively easily and found that similar migration
projects can be handled in a time frame of two to four
weeks, assuming some J2EE knowledge. The elapsed
time can become even shorter if the J2EE solution to
be ported consists only of servlets and JSPs, which are
older, and therefore simpler and more stable specifica-
tions. Migration of our servlet/JSP-based applications
required almost no additional work: simply take the
WAR file, wrap it in an EAR file, and deploy it to
SAP Web AS via the Deploy Tool. These larger appli-
cations consisted of several hundred JSP files and
used the Apache Struts framework for implementing
the Model-View-Controller (MVC) design pattern16

Field[] fieldsInBaseClass = baseClassRef.getDeclaredFields();

for (int i=0;i<fieldsInBaseClass.length;i++)
{

String attributeName = (String)fieldsInBaseClass[i].get(null);
this.addMapEntry(attributeName, classRef, classInstance);

}

Figure 12 Accessing Entity Bean Members in the Example Application via Java Reflection

16 For more on the MVC design pattern, see the SAP Professional Journal
articles “Build More Powerful Web Applications in Less Time with BSP
Extensions and the MVC Model” (March/April 2003) and “Develop
More Extensible and Maintainable Web Applications with the Model-
View-Controller (MVC) Design Pattern” (January/February 2004).

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 87

and the Apache Cocoon framework for generating
PDF files on the fly. However, even for these more
simply structured applications, to avoid problems like
the ones we encountered, the application has to stick
strictly to the servlet/JSP standard as described in the
Servlet 2.317 and JSP 1.218 specifications, respectively.
This cannot be stressed enough.

Every project will face its own unique problems,
so the ones I’ve outlined here can only give you a
rough idea of the sources of possible errors. These
issues are typical for these kinds of porting projects,
however, and the discussion should lead you in the
right direction when you encounter problems during
your own projects. Nevertheless, it’s always a good
idea to have the J2EE 1.3 specifications at hand in
case of ambiguities.

So what steps might we have taken from the out-
set of our application development to anticipate future
porting activities? How portable is J2EE, really, and
how can you ensure future portability? We’ll look at
these questions in the next sections.

How Portable, Really, Is J2EE,
and How Can You Ensure Future
Application Portability?
It should be clear that the problems we encountered
during our migration were not showstoppers. While it
was not possible to run the code immediately, the
porting was a lot easier than in the old C or C++ days.
(Remember the never-ending sequences of #IFDEF
macro definitions for making code portable, starting
with trivial issues such as the length of an integer on a
given platform?) The only code changes we had to
make were the alternatives to the proprietary exten-
sions and special design patterns used. J2EE compo-
nents such as servlets, JSPs, and stateless session
beans are all portable without changing code or
deployment descriptors — we only had to adjust the
deployment descriptors for the entity beans.

While the implementation of the J2EE specifica-
tion by different vendors is stable, and has gained
broad acceptance and adoption by major server ven-
dors, a significant challenge that remains to J2EE
application portability is that vendors offer many pro-
prietary add-ons to ease J2EE programming efforts, as
I’ve mentioned before. While this might seem like a
good thing, if you use these add-ons — such as the
BEA WebLogic primary key generation facility we
used for C4L, or its timer facility for regularly sched-
uling activities on the application server19 — your
application will lose its portability.

You’re probably thinking, “But I want and need
these extensions because they save me lots of time!”
If a project gets into trouble because of a tight sched-
ule, portability becomes less important than speed,
and you will most likely use these features. It’s the
same with writing portable JDBC applications in
which you use pure SQL statements — it’s very
likely that you will use proprietary SQL extensions
of the database in use as soon as your project enters
a critical phase. Whether an application remains
portable or not, then, becomes dependent on program-
mer discipline.

�� Tip

While programmer discipline is largely up
to the programmers themselves, it is a good
idea to create a “developer handbook” that
summarizes key “dos and don’ts.” See
www.ambysoft.com/javaCodingStandards.html
for a useful example of a Java coding guide.

If you know for certain that you are relying on a
single vendor’s products for developing and running
your applications, perhaps because your company is
the vendor, then it may be advantageous to use propri-
etary extensions, and portability may not be an issue.
(Keep in mind, however, that most frameworks in the

17 See http://java.sun.com/products/servlet/download.html.
18 See http://java.sun.com/products/jsp/download.html.

19 Note that these particular extensions are supported officially in the new
J2EE 1.4 specification.

SAP Professional Journal May/June 2004

88 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

open source world are comparable to vendor exten-
sions without sacrificing portability, since open
source solutions are, in most cases, usable on all
J2EE-compliant servers.) Or perhaps your company’s
IT strategy is based on “best-of-breed” products, and
the application server in use may change overnight,
or you may be writing J2EE-compliant applications
for a mass market. In these cases, J2EE portability
is of great importance, because you have to ensure
that your solution can run on a wide range of J2EE-
compliant application servers, which leads us to the
next question: How do you ensure the portability of
a J2EE application?

There are at least two techniques you can use to
enhance the portability of your J2EE applications:

• The Java Application Verification Kit (AVK) for
the Enterprise

• J2EE design patterns and best practices

The Java Application Verification Kit (AVK)
for the Enterprise

The Java Application Verification Kit (AVK) for the
Enterprise from Sun Microsystems helps developers:

• Test their applications for correct use of the
J2EE APIs

• Test their applications for portability across
J2EE-compatible application servers

• Avoid writing code that undermines the portability
of their applications

To achieve true portability, your code must not
use vendor-specific extensions to the J2EE platform,
and your application must meet the requirements
described in the J2EE specification. The Java
BluePrints program (see http://java.sun.com/
blueprints for details) provides an extensive set of
guidelines, design patterns, and sample applications for
building portable J2EE-based applications. However,
it is still possible to inadvertently write nonportable
applications. The Java AVK for the Enterprise is
designed to help developers avoid such situations.

If an application passes the tests provided by the
AVK, it is portable or easily portable to other J2EE-
compliant platforms.

The AVK comprises the following tools:

• J2EE Reference Implementation (RI): The RI
is a full-blown J2EE-compliant application server
with certain extensions that allow logging of pub-
lic API invocations at runtime. By correctly
implementing the J2EE specification, the RI
serves as an example of what a J2EE-compliant
server should look like.

�� Note!

Although Sun attempts to implement the J2EE
specification as closely and completely as possible
in its RI, it should be noted that the RI is not a
server for productive use — it was developed to
test for J2EE compliance, and so performance,
reliability, availability, and scalability issues are
out of its scope.

The RI is responsible for the execution of
“dynamic tests.” The developer deploys and runs
an application on the RI. After deployment, the
developer uses the application as usual (manually
or via automatic test tools), trying to cover as
much of the code as possible. As the application
runs on the RI, the RI logs any API invocations
and exceptions using its extensions. The dynamic
verification process itself consists of two steps:

- The first step, called “introspection,” gener-
ates a list of public APIs of the J2EE applica-
tion (EJBs, servlets, JSPs) that should be
called when the application runs on the server.

- The second step, called “instrumentation,”
logs the calls that were actually executed dur-
ing runtime.

By comparing the list gathered by the “introspec-
tion” step with the list generated during the

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 89

“instrumentation” step, it is possible to generate
API coverage metrics for the application.

• Verifier: The Verifier executes “static tests.” It
comprises over 2,000 test cases based on the J2EE
specification and checks them against all the EAR
files and deployment descriptors of an application.
For example, the Verifier checks that:

- All components named in the deployment
descriptor are available

- Statements expressed using EJBQL are
semantically correct

- JAR/WAR/EAR files are packed correctly

- Method names and signatures are correct

- Return values defined in the remote and local
interfaces are exactly the same

• Report Tool: This tool summarizes the results
from the static and dynamic checks. It compares
the instrumentation list against the introspection
list, calculates average numbers for the methods
and Web components, and produces static as well
as dynamic reports from the static checking and
dynamic checking coverage results, respectively.
From the information in these reports, you can
derive the percentage of method calls passing the
check and display a list of methods that did not
pass the test.

An application is verified as portable if it fulfills
the following criteria:

• EJBs and Web components pass all Verifier tests

• EJB components run in the RI and 80% of the
methods are called without system exceptions

• All servlets and JSP pages can be called without
compilation and runtime errors

If portability is an issue and you want to start
developing a new J2EE-based application with porta-
bility in mind, it is a good idea to integrate the AVK
verification process into your build process right from
the beginning. On the other hand, if the J2EE applica-

tion already exists and you want to find out how
portable it is, start with the Verifier and analyze its
output. After correcting the issues reported by the
Verifier, you can port the application to the RI and run
your tests on the RI server to get the coverage num-
bers. These numbers will guide you to the portions of
code that require additional testing.

�� Note!

Using the AVK is no guarantee that your
application can be installed on the J2EE server of
another vendor and that it will run immediately
and under all circumstances:

• The AVK doesn’t currently scan source code to
find sequences that use vendor-proprietary
APIs or that do not conform to the J2EE
specification.

• The AVK will throw an exception if vendor-
specific code is called; since you cannot
expect that all possible paths through your
code will execute, there is still some degree of
uncertainty about whether there is still a code
path containing vendor-specific code.

Although the AVK will aid in assessing and
implementing true portability, you can expect to
have some work left (such as integration testing)
even after its use.

One final note regarding the use of proprietary
extensions: the AVK accepts the use of proprietary
features, but only if you provide the features in a
portable way for other application servers. What
does this mean? I previously mentioned BEA
WebLogic’s proprietary primary key generation tech-
nique and how we solved the problems presented by
its use. By providing server-specific solutions in the
appropriate method, I can run this feature on both a
BEA WebLogic server and on application servers that
don’t support it. This method of solving portability
issues is called “code branching,” where the same fea-
ture is developed twice — one version for a particular
application server by using its proprietary extension,
and a portable version for all other application servers.

SAP Professional Journal May/June 2004

90 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

�� Note!

The AVK can be downloaded from
http://java.sun.com/j2ee/avk/. The download is
free of charge if you simply want to check your
programs internally. If you wish to reference a
tested application as “Java Verified,” then you
will need to apply for the Java Verified Trademark
License. Details about writing portable programs,
as well as prerequisites, license costs, how to
install the AVK, and so on, can also be found at
this site, especially on the FAQ page
(http://java.sun.com/j2ee/verified/faq.html).

J2EE Design Patterns and Best Practices

During our porting project, we also learned that devel-
oper productivity can be optimized through the proper
use of J2EE design patterns and best practices.
Although these are broad and well-covered topics, let
me point out some of the more important aspects and
how they pertain to J2EE portability.

While I have scratched only the surface of some
of the difficulties presented by J2EE programming, it
should be clear that the development of large J2EE-
based applications is very complex, and even pro-
grammers with deep Java knowledge may have
difficulty with J2EE programming. For example, to
cover the complete spectrum of J2EE programming,
you will need experts in multiple domains — object-
relational mapping, transaction handling, security,
messaging, parallelism, legacy integration, and
resource management, just to name a few, each of
which comes with its own set of pitfalls. And keep in
mind that the J2EE specification is still evolving —
while this article focuses on J2EE 1.3, J2EE 1.4 has
been released with even more extensions. This is
where design patterns can help your porting efforts.

Design patterns are practical, proven solutions for
challenges that every programmer faces during soft-
ware development, especially during the development
of J2EE-based applications. They can save you a lot

of time, money, and frustration — you can take advan-
tage of the experiences of others and use solutions that
have already been successful in real-world applica-
tions. Another advantage is that design patterns are
constructed to fit any J2EE-compliant application
server, so they are highly portable.

Let’s look at the “Session Façade,” which is the
most widely used EJB design pattern.20 The Session
Façade design pattern addresses the issue of how to
properly partition the business logic between session
and entity beans in order to execute the business logic
in one bulk network call instead of multiple fine-
grained invocations. The problem that this pattern
addresses is depicted in Figure 13, which shows a
direct entity bean access by remote clients.

Calls to session or entity beans are required to
execute business logic on the server. As you can see
in Figure 13, every fine-grained invocation of the
deployed session/entity beans adds multiple network
calls. What does “fine-grained” invocation mean in
this regard? Let’s take an online banking scenario as
an example. To transfer money from one account to
another, the following “fine-grained” steps must be
called from a remote client:

1. Find the entity bean of the user who initiates
the transfer.

2. Determine whether the user is authorized to
transfer money.

3. If so, find the entity bean of the account from
which money will be withdrawn.

4. Find the entity bean of the account to which
money will be deposited.

5. Withdraw money from the account found
in step 3.

6. Deposit money in the account found in step 4.

This simple scenario requires at least six
bandwidth-draining network calls. The Session
Façade pattern optimizes this situation. It simply

20 The example shown here is an abbreviated version of one discussed in
more depth in the book EJB Design Patterns by Floyd Marinescu.

Porting a J2EE Application to SAP Web Application Server

For site licenses and volume subscriptions, call 1-781-751-8799. 91

states that clients should never have access to entity
beans explicitly. Entity beans should be wrapped in a
layer of session beans (i.e., the Session Façade) as
depicted in Figure 14.

The Session Façade enforces the execution of
business logic in one network call and provides a
clean layer for placing the business scenario in a sin-
gle class. For our previous online banking scenario,
this means that the logic for transferring money from
one account to another will be encapsulated in a ses-
sion bean with a method called transferMoney(user,
account1, account2, amount). This session bean is
provided with all necessary parameters in a single net-
work call (that’s why it is called a “coarse-grained”
call in comparison to the “fine-grained” calls of the
first implementation). This not only optimizes net-
work traffic, it’s also good J2EE design practice to
separate business logic from database access. This
separation allows specialized teams to develop differ-
ent parts of the application, and optimizes mainte-
nance costs — for example, if you changed your
database, you would only have to adjust the code in
the database layer instead of modifying code in your
business logic.

Design patterns are an important resource for
saving development time and money. I won’t delve
any deeper into patterns here, since there are so
many, but starting points for further research are
the J2EE patterns home page (http://java.sun.com/
blueprints/corej2eepatterns/index.html) or the
home page for server-side application development at
http://theserverside.com. You can also find books
by searching for “design pattern,” “EJB design pat-
tern,” “J2EE design pattern,” or “best practices” on
bookseller sites.

Recommendations for Ensuring
a Successful J2EE Application
Migration
Based on my experiences, here is a checklist of rec-
ommendations you can use to help ensure a successful
J2EE application migration:

Test your application using the AVK and correct
the errors it reports. Ideally, you should integrate

�

�**���	
���
������

�����
 �����

�����

#�
)��/

Figure 13 Executing Business Logic Without
the Session Façade Design Pattern

�������
�	3	��

#�
)��/

�����
 �����

�����

�**���	
���
������

Figure 14 Executing Business Logic with
the Session Façade Design Pattern

SAP Professional Journal May/June 2004

92 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

this verification process into your developers’
build process right from the beginning.

Use automatic test tools, which ensure test result
reproducibility and maximum code coverage.

When designing complex J2EE applications,
make use of established design patterns. Portable
implementations of design patterns by companies
or open source communities can often be used to
save time and money.

Check the deployment descriptors of your applica-
tion for the original application server against pro-
prietary extensions. If some are found, develop
portable alternatives that don’t use vendor-specific
extensions to the J2EE specification.

Use the SAP Web AS Deploy Tool to generate the
EAR files. It’s up to you to start with basic class
files, pack them together in JAR and WAR files or
with existing JAR and WAR files, and zip them
into an EAR file. The Deploy Tool will then
guide you through the individual deployment
steps. For a detailed description of the Deploy
Tool, go to the online help for SAP Web AS 6.30
or 6.40 at http://help.sap.com and navigate to
SAP NetWeaver Components → SAP Web
Application Server → J2EE Technology in SAP
Web Application Server → Development Manual
→ Deployment: Putting It All Together →
Deploy Tool. Remember that once you’ve
migrated to SAP Web AS 6.30 or 6.40, you will
use SAP NetWeaver Developer Studio instead.

Before deploying the application, identify the
global libraries upon which the application
depends; you can reuse libraries that already exist
on the target application server by referencing
them in the Deploy Tool. If a special global
library doesn’t yet exist on the target system, but
you know that it will be widely used by other
applications, deploy this library via the Deploy
Tool prior to deploying the application itself, so
that you can reference it like the already-existing
libraries. Existing libraries can be examined via
the SAP J2EE Engine Administrator.

Following deployment, test your application
manually or by using an automated test tool like

�

�

�

�

�

�

JUnit, HttpUnit, or Apache Cactus. (If you’ve
developed automated tests for use with the AVK
verification process, you can reuse those same
tests here.) Follow the stack traces that pop up
and repeat deployment and test steps after each
correction. You don’t have to repeat the AVK
verification in each cycle (unless you have
introduced the step in your normal development
process), but you should reactivate it if the
correction shows ambiguous behavior.

Conclusion
With its support of the J2EE 1.3 standard, SAP Web
AS 6.30, and now 6.40, offer you the opportunity to
harmonize your IT landscape by running your J2EE
and business applications on the same platform —
simultaneously reducing your maintenance and devel-
opment costs, and leading to an optimized total cost of
ownership. My hope is that with the lessons you’ve
learned in this article, including why it might make
sense to port your applications to SAP Web AS, the
considerations involved, the potential pitfalls, and
how to ensure application portability in the future,
you won’t have to let this opportunity pass you by.

Volker Stiehl received a degree in computer
science from the University of Erlangen, Germany,
in 1988. After working for a small company that
specialized in computer process control, in 1992
he joined Siemens, where he initially worked on
server-side architectures. With the advent of the
Java programming language, Volker focused on
J2EE-based integration and the integration of
SAP R/3 systems with other legacy systems and
databases. Currently Volker is working as an SAP
NetWeaver consultant with special expertise in the
SAP Web Application Server and SAP Exchange
Infrastructure (XI) technologies, as well as the
SAP cross applications (xApps) architecture.
Volker can be reached at vstiehl@t-online.de.

