Porting a J2EE Application to SAP Web Application Server

Gain a Real-World Understanding of How
Your Applications Will Operate on a New

Platform — Porting a J2EE Application to
SAP Web Application Server

Volker Stiehl

\olker Siehl joined Semens
in 1992, where heinitially
focused on server-side
architectures, and then on
J2EE-based integration and
the integration of SAP R/3
systems with other legacy
systems and databases.
Currently Volker isan SAP
Net\Weaver consultant with
special expertise in SAP Web
Application Server, SAP XI,
and SAP xApps.

(complete bio appears on page 92)

It is no secret that companies are cost-driven — if there is an opportunity
to optimize your organization’s efficiency, you have to seizeit. A
surefire way to reduce costs is to minimize application devel opment
time. The J2EE (Java 2 Platform, Enterprise Edition) standard was
designed to address the challenge of building complex, business-critical
applications with minimal effort. It takes over the ugly parts of
developing business software, like transaction management and security,
so that devel opers can concentrate on implementing business processes.
And, as an industry standard, applications created using the J2EE
architecture are amost universally supported, so you don’t have to
write different versions of the same application for different platforms.

While the J2EE standard can significantly reduce development time,
in the past you still needed to maintain one type of server (e.g., BEA
WebL ogic, IBM WebSphere, Oracle Application Server, or the open
source JBoss or JOnAS) for running your J2EE applications, and another
(e.g., SAPBasis 4.6C or 6.10) for running your SAP-based business
applications— until now. SAPWeb Application Server (SAPWeb AS)
6.30, and now 6.40, incorporate version 1.3 of the J2EE standard, so that
you can use a single platform for developing and running your ABAP
and J2EE applications, reducing your development and maintenance
costs and optimizing the performance of J2EE applications that are
aready connected to your SAP systems.

Thisisgreat news for developing applications going forward,
but what about the J2EE applications you' ve already developed on
other platforms? Fortunately, the inherent platform independence
of J2EE-based applications means that you can easily port them to a
new server like SAPWeb AS 6.30 or 6.40. Although this makesit

For site licenses and volume subscriptions, call 1-781-751-8799. 69

SAP Professional Journal May/June 2004

tempting to migrate al of your applications to the
new server right away, it's best to start with one so
you can accurately assess how the server will respond
to your unique real-world conditions. Using an
application migration | performed at my organization
as an example, this article shows managers, decision
makers, technical architects, and developers how to
port a J2EE-based application from BEA WebL ogic
6.1 to SAPWeb AS 6.30, and details the lessons
learned along the way. 1'll also point out some poten-
tial problem areas and provide recommendations

for ensuring a successful J2EE migration." And |

will outline the tools and best practices that will

help you ensure the future portability of your

J2EE applications.

v" Notel

While the example migration discussed in this
article focuses on SAP Web AS 6.30, the Java
capabilities are relatively unchanged in SAP \W\eb
AS 6.40, so the discussions and lessonsin this
article are valid for both releases.

And even if you have no immediate plans to
migrate to SAPWeb AS, or are currently running
your J2EE applications on a server other than BEA
WebL ogic, keep reading. By the end of thisarticle,
you will be able to evaluate whether it makes sense
to port your J2EE applicationsto SAPWeb AS,
regardless of the platform you are starting from, and
you will have a solid understanding of what to con-
sider, how to start the porting project, what stepsto
take, and which tools to use to make the migration as
cost-effective as possible.

Before we jump right into the details of porting
a J2EE application to SAPWeb AS, however, let's
take a step back and review the J2EE application
architecture.

' Note that once a customer has successfully ported a J2EE application
to SAPWeb A, the application can be “SAPWeb AS certified.”
For details, visit www.sap.com/icc or send an email to icc@sap.com.

Understanding the J2EE
Application Architecture

Companies require awide variety of applications
for day-to-day business operations, which can add
up to significant application development efforts.
While standard software like SAPR/3 can go along
way toward minimizing your application develop-
ment costs, it rarely covers 100% of your needs.
Fortunately, SAP provides tools like the ABAP
Workbench that make it easy to add functional
extensions to your applications. Over time, however,
business requirements have become more and more
complex, in turn increasing application development
time and pushing the limits of existing application
development environments. The J2EE standard was
designed to address this challenge by easing the
development of complex Java applications.

J2EE is adistributed, multi-tiered application
model. J2EE applications are generally distributed
over the front tier (which displaysinformation to the
user), the middle tier (which implements the business
logic), and the persistence tier (which houses the data
used by the application), and consist of the compo-
nents specified in the J2EE standard, in particular the
JavaServer Pages (JSP), servlet, and Enterprise
JavaBeans (EJB) technologies (see Figure 1).

The J2EE application | will use to demonstrate the
porting process in the article is a Web-based applica-
tion called Click4License (C4L) that was designed to
centrally manage software licensing information for
the entire company. Like many J2EE solutions, it
requires access to several data sources — in this case,
an LDAP server where every employee is uniquely
identified, arelational database for storing the master
data for users, computers, and licenses, a server for
scripted software, a server for unscripted software,
and a server for sending workflow emailsto users, IT
staff, heads of cost centers, etc.

CAL isatypica implementation of a multi-tiered
J2EE 1.3-based Web application. It was created with
the widely used open source framework Apache
Struts, and makes extensive use of J2EE standard
components, including JSPs, servlets, and EJBs, as

70 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

Figure 1 Data Flow in a Typical J2EE Application

Figure 2 Data Flow in the Example Application

Client
: Front
1 Tier
| Dynamic |
| HTML !
: Pages :
1 i
| I
| '—l |_| i

JavaServer
Pages

Servlets

Enterprise
JavaBeans

| 1
| 1
| 1
| 1
I |
1
! :
1
1

Persistence Tier

I
___________________ 1

Database Server

Client
______________________ 2
: Front
| . Tier!

Classical I
' HTML i
: Pages |
! l
| |
] |—| |_|

JavaServer
Servlets

Web
Services ®
©lFerrr: |l hEEEE Services
asynchronous I— _________________ |
data flow I_ _________________ I
—> Middle
! Java Message 5
sypchroness | | Seriice Tier!
=] 1
| I
] Message- Session and !
] Driven Bean Entity Beans 1
I
: Py T’A/“ I
J2EE Server i
N
I
JNDI |
0 I
I
LDAP |1
I
I
stence Tier !

Database Servers

well as the Java Message Service (JMS). Asyou can
seein Figure 2, the front tier uses classical HTML
pages generated by JSPs and servlets to represent the
user interface in aWeb browser, along with aWeb
services” interface to upload and download master
data and retrieve license information. The business
logic isimplemented in the middle tier using EJB
technology — specifically, 31 stateless session beans,
26 container-managed entity beans, and, as you can
see, 1 message-driven bean.® Access to the backend
systems in the persistence tier isrealized by the Java

? While SAPWeb AS 6.30 and 6.40 support Web services, it is not part
of the J2EE 1.3 specification itself. Web services will be part of the
J2EE 1.4 specification, however.

® There are three types of EJBs: session beans for the business logic,
entity beans for persisting business data, and message-driven beans
for asynchronous application behavior. For more on EJBs, see the
articles by Karl Kessler and by Katarzyna Fecht, Adrian Gorler, and
Jurgen G. Kissner on pages 3 and 111 of thisissue, respectively.

Naming and Directory Interface (JNDI) for the LDAP
server, the SAP Java Connector (JCo)* for the SAP
systems, and Java Database Connectivity (JDBC) for
the relational database.

To run the C4AL application, we needed a server
that would support not only all of these technologies,
but also alarge number of users (12,000), computers
(38,000), and licenses (250,000), while ensuring high
availability and scalability. At the time we developed
the CAL application (in early 2002), SAP supported
J2EE 1.2, but our application required J2EE 1.3, for
the EJB componentsin particular. For thisreason,

* See http://service.sap.com/connector s for further information on the
SAP Java Connector (JCo). In addition, SAP Professional Journal has
published an extensive set of articles regarding the effective use of JCo,
including “Repositories in the SAP Java Connector (JCo)” (March/April
2003); “ Server Programming with the SAP Java Connector (JCo)”
(September/October 2003); and “ Tips and Tricks for SAP Java
Connector (JCo) Client Programming” (January/February 2004).

For site licenses and volume subscriptions, call 1-781-751-8799.

71

SAP Professional Journal May/June 2004

we chose to use BEA WebL ogic 6.1 as the application
server. With SAPWeb AS 6.30, however, SAP intro-
duced a J2EE 1.3-compliant Java stack. We chose to
migrate to SAPWeb AS to consolidate our system
landscape onto a single platform and to take advan-
tage of the enhancementsit offers. Let'stake a closer
look at these advantages and why it makes sense to
migrate to SAPWeb AS.

Why Port a J2EE Application to
SAP Web AS?

Until the 6.30 and 6.40 releases of SAPWeb AS/®
most SAP customers were forced to maintain a J2EE-
compatible server like BEA WebL ogic or IBM
WebSphere, or the open source JBoss or JOnAS, for
their J2EE applications, in addition to an SAP server
for their business applications, using either IBM
Access Builder or SAP JCo to connect the two — not
an ideal scenario, as the server maintenance cost is, in
effect, doubled, and the frequent connection openings
inevitably affect performance. Another issue was the
lack of support for the full J2EE application develop-
ment lifecycle — from the development environment,
to version and configuration management, to deploy-
ment — which led many developersto create their
own development environments based on the open
source framework Apache Ant, atime- and resource-
consuming endeavor.

SAPWeb AS now includes a number of useful
features and enhancements that promise to signifi-
cantly improve developer productivity through the
use of sophisticated tools and wizards, which reduce
errors, aswell as full support for the software devel-
opment lifecycle. In particular, these include:

e Support for Web services

e A database-independent abstraction layer
for persistence

° While SAPintroduced support for the Java programming language and
the J2EE 1.2 standard in SAPWeb AS 6.20, its scalability and usability
regarding J2EE applications were limited.

e The ahility to easily develop user-friendly
Web frontends

A comprehensive J2EE development process

Support for Web Services

If your application requires integration capability

that isindependent of operating systems and program-
ming languages, like our CA4L application required

for managing software licenses for all machine types
across the company, an efficient Web servicesinfra-
structure may be essential.

From a development perspective, it makes sense
to follow a bottom-up approach for the generation
of Web services to save you time and to enhance
the reusability of the application logic. With this
approach, you first implement the application’s
business logic as a stateless EJB session bean. The
statel ess session bean is then used to automatically
derive the WSDL° description file for the Web ser-
vices layer, which in turn allows the application logic
in the bean to be accessed by avariety of clients. The
SAP NetWeaver Developer Studio’ proxy generator
then uses the WSDL description file to create aclient
proxy for the Web service.

A Database-1 ndependent Abstraction Layer
for Persistence

Although the J2EE standard comprises Java Database
Connectivity (JDBC) for relational persistence and
container-managed EJB entity beans for object-
relational persistence,’ it is still achallenge to write
applications that are completely database-independent,

Web Services Description Language.

" SAP NetWeaver Developer Studio, introduced with SAPWeb AS 6.30,
is the new SAP development environment for Java applications. For
adetailed introduction, see the article by Karl Kessler on page 3 of
thisissue.

Java object persistence will be covered in a series of forthcoming SAP
Professional Journal articles, beginning with the article by Katarzyna
Fecht, Adrian Gorler, and Jirgen G Kissner on page 111 of thisissue.
See also the article “ Achieving Platform-Independent Database Access
with Open SQL/SQLJ— Embedded SQL for Javain the SAP Web
Application Server” (January/February 2004).

72 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

and thus portable. Whileit istheoretically possibleto
write fully database-independent applications if devel-
opers adhere strictly to the SQL statements supported
by all vendors, it is highly dependent on the discipline
of the developersinvolved. Every database vendor
offers proprietary enhancements to differentiate its
products, and more often than not, especially in large
teams working in distributed locations, developers
will use them, “breaking” the portability of the appli-
cation (more on thislater in the article). Thisiswhere
SAP's persistence engine, the Open SQL Engine intro-
duced with SAPWeb AS 6.30, comesinto play.

The Open SQL Engine offers a database-
independent abstraction layer to support the devel-
opment of applications that are, in truth, database-
independent. You provide the commands, which must
be Open SQL statements, for executing the database
operations, and the persistence engine handles the rest
— optimizing the statement for the particular database
in use, for example. Asaresult, you can change the
database without modifying the application code,
making the application available to a wide range of
supported databases. (The idea behind this concept is
not new: it was first introduced by SAPfor ABAP
development with the ABAP Engine.)

v" Notel

For more details on the Open SQL Engine and
Java persistence, seethe article“ A Guided Tour of
the SAP Java Persistence Framework — Achieving
Scalable Persistence for Your Java Applications’
on page 111 of thisissue.

The Ability to Easily Develop User-Friendly
Web Frontends

One of the challenges of developing applications with
J2EE is building a user-friendly Web frontend. For
instance, adding user-requested features such as
client-side input checking and inter-field dependency

checks can result in large portions of JavaScript pro-
gramming that may not be portable across browsers,
forcing you to maintain different coding for different
browsers. Multiple design and prototype cycles can
also drain your development resources. Considering
the different available browsers and their idiosyn-
crasies (Netscape Navigator and Microsoft I nternet
Explorer sometimes require different implementations
of the sasme HTML tag, for example), developing
sophisticated frontends for different implementations
of HTML and JavaScript can quickly lead to errors,
project delays, and increased costs.

But a barebones design is hot an option — users
are now accustomed to comfortable client applica
tions. The introduction of the Web Dynpro technol-
ogy with SAPWeb AS 6.30 represents a quantum leap
in developer productivity. Web Dynpro includes
development tools that allow you to design user-
friendly frontendsin aWY SIWY G format (such as
dragging and dropping user interface components
on the screen and binding them to data sources, for
example). This approach delivers comfortable GUI
controls ready for use with a minimum of program-
ming effort, and provides less opportunity for
programming error.

A Comprehensive J2EE Development Process

While J2EE application servers themselves continue
to improve almost every year, professional devel op-
ment environments for creating complex server-side
J2EE applications have not kept pace. This has
changed recently, especially with frontend develop-
ment, but many J2EE IDEs are still not as comfortable
and productive as Microsoft’s Developer Studio for
C#, for instance. Some J2EE IDEs still 1ack tools
that cover the complete development cycle, including
configuration and transport management. Asa
workaround, most developers create their own tools
and frameworks. While the open source build tool
Apache Ant is helpful, building a sophisticated devel-
opment environment on your own still means alot of
work (and alot of money). And in most cases, a
homegrown IDE will need to be re-tailored for each
new project’s requirements.

For site licenses and volume subscriptions, call 1-781-751-8799.

73

SAP Professional Journal May/June 2004

Figure 3 Overview of the Java Development Infrastructure (JDI) Delivered with SAP Web AS
SAP Java IDE Repository Build Service SAP Web AS
» S
Open b — —————
Project <]
Archive
v Pool
Develop, Build,
> and Test Locally Java
Sources L J
A
\ \
Check-In o ~
Changes > > Component
~ Build
Deploy
v Archives
OK? H-Yes >
Activate >
No

Another challenge of server-side J2EE application
development is the large number of files that make up
a J2EE application, including JavaScript files, Java
libraries and classes, HTML files, JSPfiles, and pic-
tures, each of which might be used by many develop-
ers, and all of which must be kept synchronized. Asa
result, development processes often rely on nightly
builds, where al files are recompiled to maintain syn-
chronization, which can take along time for large
projects and can result in long build-repair cycles.
The actual programming and testing of J2EE applica-
tions al so takes place on the developer’s local system,
meaning that to make changes, the relevant files must
be transferred to the developer’s seat (which must also
be configured properly), corrected, and then trans-
ferred back to the production system. This process
can lead to chaotic situations, especiadly if large devel-
opment teams in different locations are all working on
asingle project.

Using the tested ABAP Workbench concept, SAP
Web AS includes the Java Devel opment Infrastructure
(JDI), acomplete development infrastructure for pro-
fessional J2EE development, as depicted in Figure 3.
Asyou can see on the left-hand side, when a devel-
oper opens aproject, al the needed libraries and com-

ponents are automatically retrieved to the developer’s
local machine from the repository, along with the Java
sources, a step that previously was manual (and very
error-prone). The devel oper makes changes, builds,
and tests locally, and then manually “checks-in” the
changes to the repository and activates them. The
Build Service then works behind the scenes to verify
all dependencies for the changed sources and starts
an “incremental build” in which only the dependent
sources are compiled — in the past all files were
compiled, leading to long build-repair cycles. If this
build process finishes successfully, the newly created
archives are deployed on SAPWeb AS. The Build
Service makes the sources and archives available to
other developers only after a successful build, so that
the team is aways working with arunning system; if
thereisan error during the build, the developer gets
an error message and no deployments are executed
on the server.

Asyou can see, there are several good arguments
for migrating your applicationsto SAPWeb AS, just
astherewerefor us. But before you start porting
them all, it's best to start with one so you can first eval-
uate how the server will behave under high load, for
example, and then estimate the amount of effort the

74 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

porting project will require. The porting effort is
highly dependent on the proprietary extensions used
to develop the existing applications. These vendor-
specific extensions are usually not supported across
platforms, so you will need to identify where they are

used and then estimate the amount of effort that will be

required to redevel op the functionality on the new plat-
form (more on thislater in the article).

You're probably thinking, “This sounds time-
consuming. Why not just use a synthetic benchmark-
ing tool?” While J2EE server vendors provide such
benchmarks, the tools and results are proprietary —
i.e., they are often not reusable across different appli-
cations and platforms — and tend to concentrate on
specific components of the application, like EJB
performance, rather than on how well the compo-
nentsinteract. Standard J2EE benchmarks, like
SPECjAppServer2002,° provide a more comprehensive
view, and can be useful for aninitial evaluation, but
by nature cannot mirror your real-world requirements.
So, in order to evaluate a new application server

like SAPWeb AS 6.30 or 6.40, it isagood ideato
migrate an actual application you intend to run on

the new platform.

So which of your applications should you migrate
to evaluate the server? That depends on the J2EE
technologies used in your application and what is
most important to you: Isit EJB or servlet perfor-
mance? Do you have alot of Web services, or isIMS
critical for you? Depending on the answers to these
questions, simply port the smallest of your applica
tions that use the required technology, or extract an
autonomous part of alarger application.

In the next sections, I'll show you how to port an
application from BEA WebL ogic 6.1 to SAPWeb AS
6.30 or 6.40 (while my own migration wasto 6.30, the
steps are essentialy the same for 6.40), and point out
some potential trouble spots based on my own migra-
tion experience, as well as ways to enhance the porta-
bility of your applications for future migrations.
While the porting project steps will look alittle differ-
ent if you are porting from a server other than BEA

° For more on the Standard Performance Evaluation Corporation (SPEC)

and supported standard benchmarks, visit www.specbench.org.

WebL ogic, like IBM WebSphere or JBoss, and their
details are highly dependent on the features you used
to implement your particular application’s functional -
ity, you will gain asolid understanding of how porting
projects are organized and the considerations to keep
in mind.

Porting a J2EE Application to
SAP Web Application Server

Porting an application to SAPWeb AS consists of a
simple eight-step process:

1. Planfor the migration.

2. Adjust the J2EE application and the target
system deployment descriptors and configure
the target system.

3. Create adeployment project.

4. Create an enterprise archive (EAR) file to contain
the application’s Web archive (WAR) and Java
archive (JAR) files.

5. Reference any required preconfigured global
libraries that already exist on the target system.

6. Deploy any required custom-built global libraries
that do not yet exist on the target system.

7. Deploy the EARfile.
8. Verify and test the deployment.

Sep 1: Plan for the Migration

From atheoretical point of view, J2EE migration proj-
ects shouldn’t be that difficult — if all vendors stick to
the J2EE standard when developing their server prod-
ucts, it should be easy to port applications with mini-
mum effort. The problem liesin differing interpreta-
tions of the J2EE specification. Itisarelatively
young specification with a broad approach that covers
difficult server-side development frameworks (like
the one for object-relational persistence), and under-
standably does not yet cover al the critical aspects

of development in complete detail.

For site licenses and volume subscriptions, call 1-781-751-8799.

75

SAP Professional Journal May/June 2004

Estimating the Migration Effort

used them.

There are a number of considerations involved in estimating porting efforts:

[v] Extentto which proprietary extensions were used to develop the application: Each extension
used will require a portable alternative (see the next bullet item). Sun Microsystems offers the Java
Application Verification Kit (AVK) for the Enterprise to help you locate proprietary extensions used in
applications (the AVK is discussed in more detail later in the article). For a rough estimation, you can
ask participating team members to identify the extensions they used and the number of times they

[v] Extent to which the application adheres to the J2EE standard: If the application departs from the
standard significantly, how much effort will be required to write a portable alternative? Sometimes
you can find open source alternatives for a given feature. If there is no alternative, estimate the
effort for implementing this feature on your own. The complexity of the application will also affect the
porting effort. For instance, someone with broad JSP/servlet/database knowledge can port a simple
JSP/servlet application in a matter of days, while porting an EJB-based application can require at
least two people with EJB knowledge and months to complete.

[v] Other ancillary conditions that may affect total porting time:

- Type of source platform: The less comprehensive the knowledge of the target platform, the more
the effort may increase. Even different Unix derivatives lead to different effort levels.

- Type of J2EE APIs used: The porting effort will increase with the number of different J2EE
technologies used in the application. Effort levels also differ between technologies. Starting with

To make up for this, vendors offer proprietary
extensions to help developers improve their productiv-
ity. However, this can cause applications to become
vendor-dependent and can increase the migration cost
if the target server does not support the extension in
use (more on this later). This makesit difficult to esti-
mate migration efforts — the time needed by the proj-
ect participants to fulfill their work and the money
required for new hardware or software — becauseit’s
hard to say which problems will crop up during the
project. However, there are some general considera-
tions | can point out for you, which are outlined in the
sidebar above (I will also outline the problems we
encountered while migrating our software licensing
application in alater section).

Sep 2: Adjust the J2EE Application and the
Target System Deployment Descriptors and
Configure the Target System

As mentioned before, J2EE vendors add proprietary
features to their application servers to enhance J2EE
programming capabilities. The J2EE specification
provides vendor-specific deployment descriptors'®
that allow developers to configure and adjust these
proprietary features.

" Deployment descriptors are required to inform containers about middle-
ware needs, and are declared in afile. (In J2EE 1.3, deployment
descriptors are written using XML.) Such descriptors define how con-
tainers perform lifecycle management, persistence, transaction control,
and security services.

76 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

the costliest, the relative effort associated with the most popular J2EE APIs are: bean-managed
entity bean > container-managed entity bean > stateful session bean > stateless session bean

> servlets > JavaServer Pages.

- Number of EJB session beans, entity beans, and message-driven beans used: The porting
effort will increase in proportion to the number of beans used.

[v] Extent to which the target server covers the application requirements: To determine this, simply
make a list of the technologies (and version numbers) used in your application and compare them
with the feature list of the target application server. If it fits, you can start the porting project right
away. If it doesn't fit, you have to decide if it makes sense to implement the missing features on your
own (thus increasing the effort) or simply stop the porting project. In the case of our migration, for
example, the following were required, all of which were provided by SAP Web AS:

- JavaServer Pages (JSP) 1.2

- Java Servlets 2.3

- Enterprise JavaBeans (EJB) 2.0, including stateless session beans, container-managed entity
beans, a message-driven bean, and container-managed relations

- Java Naming and Directory Interface (JNDI)
- JavaMalil
- Java Message Service (JMS)

- Web services

Each application server hasits own set of features
for addressing issues specific to that particular appli-
cation server (like the primary key generation feature
of BEA WebL ogic; more on this later) as well as more
common issues like load balancing, clustering, and
monitoring. The specific steps for adjusting the fea-
tures will depend on the particular feature and plat-
form, so you will need to consult the relevant
documentation. For our software licensing applica-
tion, we needed to adjust the deployment descriptors
for the application in order to use container-managed
persistence. In addition to the standard ejb-jar.xml
deployment descriptor specified by the EJB standard,
SAP Web A S includes the vendor-specific deployment
descriptors persistent.xml and gjb-j2ee-engine.xml.

The SAP-specific descriptor file persistent.xml is

used to specify which entity bean fields map to which
columns of which tablesin the database. The EJB con-
tainer uses this mapping when storing or retrieving
container-managed fields from the database. Since the
deployment descriptors are XML files, they can be
adjusted using asimple text editor. Manually editing
these XML files can be difficult, however, so vendors
provide tools for handling them, such as the SAPWeb
AS Deploy Tool (more on thisin an upcoming sec-
tion). We also needed to configure a message queue
for the Java Message Service (JMS) and data sources
for object-relational persistence inside the target appli-
cation server (SAPWeb AS). Thiswas done by using
the SAP J2EE Engine Administrator of SAPWeb AS.

For site licenses and volume subscriptions, call 1-781-751-8799.

77

SAP Professional Journal May/June 2004

Figure 4 The SAP J2EE Engine Administrator Screen

" SAP J2EE Engine Administrator - [12€\Server 0 0_36330)Services', JDBC Connector] =10] x|

Connect View Tools Help

QT ETEES

=% 4@ [alofala/ale]tl@l+] «[Qn
Cluster | Global Configuration | Runtime | Properties Additional Info |

=) DataSources and JDBC Drivers | Main | Additional | DB Initialization | Mnitoring |
0. Dispatcher 0 0_36330 (deb1 Ff—ﬁssnurces

? eg Server 0 0_36330 (deb1105 @ (5 DataSources Application Name: sap comiJDBCConnector_C4L_DBxml
o gl;ﬁ:as;es @ ﬁ] sap.comiJDBCCaonnector_C4L_|
@ C4L_DB
&=
M Libraries & SAPJIEDE

@ 4 Senvices @ 4 Drivers
Y *Name: C4L_DB
%@ ABAP Communicator & 3 Oracle 8.1.7 e

4 Administration Adapt [classest 2zip Description: DB for C4L

4 application Client ® 4 SYSTEM_DRIVER

4 ppplication Locking ;]
1] The systermn driver of the engi
4 application Tracing = i .

4 Basic Administration
4 ClassLoader Viewer
4 Classpath Resolver
4 Configuration Adapte
£ Connector Container
@'Dep!w

4 Destinations

¥ EJB Container

£ File Transfer

4 HTTP Provider :) i
5 110P Pravider ; Driver Name: | SYSTEM_DRIVER =
44 JCo RFC Provider
4™ JDBC Connector
£ JMS Connector
44 IMS Provider : i
L] M Adapter 2 JDBC 1.x Compliant

@'JM}(Notification : * Driver Class: com.sap.dbtech.jdbc.DriverSapDE
£ INDI Reaistry :
4 Java Mail Client ; * Database URL: jdbc sapdbiilocalhosti)2E

4% Key Slorage *User: SAPJIEDE * Password: ~
4 Licensing Adapter 2

% Locking Adapter

DataSource

Aliases

Alias Deplayer i Add Alias i

JDBC Version: | 1.% (no XA support) v'|

& Login to deb11g5¢ ~ @)

1. Select the JDBC Connector service from the tree

v Notel on the Cluster tab in the left pane of the SAP

J2EE Engine Administrator. On the Runtime tab
The SAP J2EE Engine Administrator is started via in the right pane, choose the DataSources node
go.bat, which can be found in the SAP Web AS under Resources.
installation directory \usr\sap\< S D>\JC<instance
number>\j2ee\admin\. 2. Choose the toolbar button Create New Driver

or DataSource ().

3. Specify aunique name for the data source
in the Name field, which will be used to look

Figure 4 shows the SAP J2EE Engine up the data source in the naming service of the

Administrator screen. Here, you can see a data source J2EE Engine (CAL_DB in our case).
entry for the database connection C4L_DB, which was -
created asfollows: 4. Choose a 1.x-compatible JDBC driver from the

78 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

9.

Driver Name dropdown list of registered drivers.
The drivers available for selection here are those
listed in the Drivers subtree on the Runtime tab.
You can add any vendor-specific JDBC driver to
thislist. Simply copy the ZIP or Java archive
(JAR) file containing the driver to your file sys-
tem, and then select the Drivers node on the SAP
J2EE Engine Administrator Runtime tab, choose
the Create New Driver or DataSource toolbar
button (), enter aname for the driver (e.g.,
Oracle 8.1.7 in Figure 4), and select the copied
ZIPor JAR file from the pop-up that appears.

Choose 1.x from the JDBC Version dropdown
list of supported JDBC versions.

Enter the fully qualified Java name of the driver’'s
main classin the Driver Classfield — e.g.,
com.sap.dbtech.jdbc.Driver SapDB.

Enter the database URL, which consists of a
protocol identifier (always JDBC), adriver
identifier (SAP DB, IDB, Oracle, etc.), and a
database identifier (the format is driver-specific)
— e.g., jdbc: sapdb://localhost/J2E.

Specify the user name for logging in to the
database server.

Specify the password for the database user.

10. On the Additional tab, set the SQL type support.

11. Saveyour entries.

Sep 3: Create a Deployment Project

When you are porting applicationsto SAPWeb AS
without adding code (which is the case when you sim-
ply want to evaluate an application server, aswe are
doing here), you can use the SAPWeb AS Deploy
Tool asthe center of your deployment activities. (To
add code, you would use SAP NetWeaver Devel oper
Studio," which is the SAPWeb AS I DE introduced
with SAPWeb AS 6.30.)

un

For a detailed introduction to SAP NetWeaver Developer Studio, along
with a brief discussion of how to useit for deployments, see the article
by Karl Kessler on page 3 of thisissue.

Figure 5 The Deploy Tool Initial Screen

[=E
Project Help
0o & B |

JZEE Components [AsEEmmeT | |}h-‘]|||'i“,l’l‘l I Server {:l]IFI|I\IIIP1|T.¢i.

The Deploy Tool is agraphical user interface tool
that generates and assembles archive components
based on the J2EE application and deploys them on
the J2EE Engine included with SAPWeb AS 6.30 and
higher. The Deploy Tool can be used to create J2EE
components from the class files and deployment
descriptors of an existing J2EE application, to assem-
ble these components in an application enterprise
archive (EAR), to edit its deployment properties, and
to deploy the EAR on the specified J2EE Engine
cluster elements.

When the Deploy Tool isfirst started, the screen
shown in Figure 5 appears, showing four tabs
where the necessary information for deployment
must be entered.

v’ Notel

The J2EE deployment tool is started via
DeployTool.bat, which can be found in the

SAP Web ASinstallation directory under \usr\sap\
<3S D>\JC<instance number>\j2ee\deploying\.

But before you specify the details of the deploy-
ment, you need to create a “ deployment project,”
which isthe basis of all deployment activities. Select
Project — New Project on the Deploy Tool initial
screen, which creates a deployment project file ending
with the extension .dlp.

For site licenses and volume subscriptions, call 1-781-751-8799.

79

SAP Professional Journal May/June 2004

Figure 6

Server Libraries Delivered with SAP Web AS

Connect View Tools Help

ACIEEE

“»SAP J2EE Engine Administrator - [J2E\Server 0 0_36330\Services]

Sii=lkd)

m %

Cluster Global Configuration |
wi J2E 5
& B* Dispatcher 0 0_36330 (deb11g5cww301.5| ||
9 & Server 0 0_36330 (deb11g5c.wwID1 sieme.

& B3 iernel :
© [Interfaces
@ M Libraries

B, Activation

¥ Compilation Library

B, Cool APl for Java

B Cool Runtime for Java
B DTR Versioned File System
B EJE2D

¥, Exception Framework
B GUID Generator

I 118 Codepage Checker
B |AIKSecurity

B DL

¥ Internal EJB Client JAR
¥, JZEE Standard

B JZEECA

B JARM

B JCert

B JMS

B JNet

B JSS5E

B JTS

¥, Java Monitoring AP

]“Lnuhtndehﬂuﬁc

[o |

Sep 4. Create an EAR Fileto Contain the
Application WAR and JAR Files

You can only deploy complete enterprise archive
(EAR) filesto SAPWeb AS. EAR files consist of
Web archive (WAR) files for Web applications and
Javaarchive (JAR) files for Enterprise JavaBeans
(EJB) development. The J2EE Components tab of
the Deploy Tool provides for the creation of WARS
and JARs, which contain simple Java class files and
deployment descriptors that must be added explicitly
out of the directory where the application was devel-
oped. Sincewe are porting an existing J2EE applica-
tion, the necessary JAR and WAR files already exist,
so we don’t need to use this tab.*

1

K5

For more details on creating WAR and JAR files with the Deploy Tool,
go to the SAPWeb AS 6.30 or 6.40 help at http://help.sap.com and
navigate to SAP NetWeaver Components — SAP Web Application
Server — J2EE Technology in SAP Web Application Server —
Development Manual — Deployment: Putting It All Together — Deploy
Tool. Note that once you have migrated to SAPWeb AS 6.30 or 6.40,
you would use SAP NetWeaver Developer Studio instead.

The Assembler tab of the Deploy Tool is used to
create the EAR file that deploys the components of the
J2EE application on the target SAP Web AS system.
Add the archives that make up the EAR file —
the WAR and JAR files— viathe menu path
Assemble — Add Archive.

You can also add existing archives from other
sources to ease the deployment of simple Web appli-
cations delivered in WAR files. For example, the
Apache Struts framework provides an infrastructure
that allows developersto plug in their business logic
and Web pages — the flow from one Web page to the
next is described inside preconfigured XML configu-
ration files, with no additional programming required.
The accompanying library that assembles these files
can be easily deployed with the application using the
Server Components tab of the Deploy Tool (see step 6
on page 82).

Finally, the menu selection Assemble — Make

80 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

Figure 7

Accessing the Library Information

Connect View Tools Help

o||=]|[%)|[@]

/" SAP J2EE Engine Administrator - [12E\Server 0 0_36330'Libraries'sapxn

==l

1Y

Cluster | Global Configuration |

B com.sap.aiiutil.rb -
B com.sap.aii.utilxml

B, com.sapip basecomps

B, com.gaplernamealloc

B com.sap.mdi

B, com.gap.mohbile.clientinfo

B, com.sap.util. monitor.grmg

B, com.gap.util.monitorjarm j2ee
B, com.sapportals.htmib

B care_lib

o

Library Hame:
Display Name:
Library Version:

‘| Provider Name:

Library References

sapxmitoolkit
sapxmitoolkit
6.30.0

engine.sap.com

B ejbglparser

Mame | Type | Strength |

P ios

jsse
B jdbdictionary

activation

weak
weak

library
library

i

B opensal

B, opensglextensions
B sapjco

P, sapxmitoolkit

B security.class

B sglmapper

<]

Description

JARs Contained
DusrisaplLZELWICODjZeecluster

[« BB I»]

| & Login to deh11g5c

~ @l |

EAR creates the EAR file. If you don't need to refer-
ence or deploy any preconfigured or custom-built
global libraries, the EAR fileis now ready for deploy-
ment on the target application server, and you can skip
to step 7. Otherwise, you must complete steps 5 and 6
before deploying the EAR file.

Sep 5: Reference Any Required Preconfigured
Global Libraries That Already Exist on the
Target System

Some libraries required by your application may
already exist as part of SAPWeb AS. SAPWeb AS
6.30 and 6.40 deliver a number of preconfigured
libraries, such asan XML library, ready for use with
different applications. To avoid redeploying these
libraries for each application over and over again, itis
agood ideato reference them. For example, amost
every application needs away to handle XML files, so
it makes sense to reuse asingle XML library for every
application that requires XML access instead of main-
taining a separate library for each application. For an

overview of these server libraries, go to the SAP J2EE
Engine Administrator, and in the tree on the | eft select
Server — Libraries (see Figure 6). You can select
these libraries directly, rather than having to deploy
them (more on thisin step 6). The question is: How
do wetell the application server during deployment
that our application wants to reuse an already-existing
server library? In other words. How do we reference
alibrary we seein the Libraries subtree of the SAP
J2EE Engine Administrator?

L et us examine this question by using as an exam-
plethe XML library sapxmitoolkit, which is reused
in nearly every modern enterprise application. The
Deploy Tool needs the library name and the library
provider name for every library to be reused, which
can be found by selecting the library node in the | eft
pane of the SAP J2EE Engine Administrator, as shown
in Figure 7. Theinformation will then appear in the
Info tab on theright, in the fields Library Name and
Provider Name — sapxmitoolkit and engine.sap.com,
respectively. On the Deployer tab of the Deploy Tool,
select the EAR file (C4L.ear in the example), follow

For site licenses and volume subscriptions, call 1-781-751-8799. 81

SAP Professional Journal May/June 2004

Figure 8

Adding Library Reference Information to the Deployer Settings

uDeploy Tool - D\ Deploy-Projects',c4l.dip

Project Deploy Help

INMECI=NEED

FIAE]

@@

10l x|

JZEE Components | Assembler | Deployer | Server Components |

Al caLear

| Descriptor | Log Configuration | JMS Connectivity | DataSource | DataSource Aliases

© i CAL.war
@ glf C4L jar

[Context | SecurityView | Extralnformation | Additional |

‘| | Reference

Reference | Property | Distribution |

i, sapxmitoolkit

Target Type: |Iihrary i |

Target: [sapxmitoolkit |

Provider: [gngine.sap.com |

Type: |weak '|
| Modify || Remaove || Clear |

the tab hierarchy Descriptor — Extra Information —
Reference, and add the target and the library provider
names, as shown in Figure 8.

You can then verify the success of this referencing
step by opening the automatically generated descriptor
file for the application using the Deploy Tool — in
this case, application-j2ee-engine.xml — to seeif the
reference was included. Figure 9 shows the deploy-
ment descriptor code for the example, which includes
the reference we just added (shown in bold).

By referencing existing server librariesin this
way, you can easily reuse global general-purpose
libraries and avoid redundant deployment, saving you
from redeploying them or writing similar libraries for
each application.

Sep 6: Deploy Any Required Custom-Built
Global Libraries That Do Not Yet Exist on the
Target System

The Server Components tab of the Deploy Tool is

used to deploy any global libraries that were custom-
built by the devel oper to the target application server,
so you can reference them the way you reference the

preconfigured libraries that already exist on the target
system. For example, if a collection of industry-
specific calculationsis often used by several enter-
prise applications, it makes sense to pack them in one
library and deploy the library as a shared resource.
There are no custom-built global libraries used by
our application, so we do not use this tab.

Sep 7: Deploy the EAR File

The EAR file is deployed using the Deployer tab. You
can specify the administration port of the application
server (e.g., the default value is 50004) and then
deploy the EAR by following menu path Deploy —
Deployment — EAR, by selecting Deployment —
Deploy EAR from the context menu of the EAR file,
or by selecting the deploy button (#/). No other set-
tings are necessary on this tab; simply accept the
remaining defaults.

Sep 8: Verify and Test the Deployment

You can verify the success of the deployment (i.e.,
whether the application and any deployed libraries
are properly installed and running) viathe SAP J2EE

82 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

Figure 9

The Library Reference Added to the Application’s Descriptor File

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE application-j2ee-engine SYSTEM

'application-j2ee-engine.dtd'>

<application-j2ee-engine>

<reference reference-type="weak">
<reference-target provider-name="engine.sap.com" target-type="library">

sapxmltoolkit
</reference-target>
</reference>

<fail-over-enable mode="disable">

</fail-over-enable>
</application-j2ee-engine>

Figure 10

A Successfully Deployed J2EE Web Application

Connect View Tools Help

o |w]|[=]|[][©]

SAP JZEE Engine Administrator - [J2E\Server 0 0_36330"5ervic

=10] x|

&k * O
[Cluster | Global Configuration | '|[Runtime | Properties | Additional Info
=l | 7E :| Deployed Components
& B* Dispatcher 0 0_36330 (dek11gs 4 Deploy Service Deploy
? ﬁé’?;ﬁnﬂfasgu (Heh11gSC & || local WebDynpro_Emailivs
& [Interfaces @ |v/| local\velcome
& b Libraries @ || sap.comiC4L Update
| % 4 Server 0 0_36330
9 #% Senices ; @ % EJBContainer
A ABAP Communicator @ 44 JDBCConnector Get Client Jar
‘5.?‘ Adm.|n|s.trat|ur? Adapter o a& sendet_jsp ||
% Application Clignt @ |v'| sap.com/CalculatorEar
% Application Locking @ |v'| sap.comicom.sap.engine.class.dow Remove
QAppl}catmn.T_ramn.g @ |v'| sap.comicom.sap.engine.docs.exa
% Basic adminielration o sap.cumIcum.sap.engine.senﬂces.:i
% ClassLoader Viewer @ |v'| sap.comicom.sap.ip.me.wehconsol
S ||| s
43 Connector Container i ZaComEnin ander - Stop Application |
4 Deploy « [v]
M Destinations
43 EJE Container 4| | ' Server (® Application) Container Single File Update
£ File Transfer L
4 HTTR Pro:rllder - IL || appiications

| Remaove

v @l

Engine Administrator — if the deployment was
successful, new entries will appear when you select
Server — Services — Deploy for Web and enter-
prise applications or Server — Librariesfor

server components.

Figure 10 shows that the CAL application has
been successfully deployed — the node sap.con/CA4L
appears in the Runtime tab display for the Deploy
node. (Note that the radio button Application must be
checked to display the application in the Runtime tab.)

For site licenses and volume subscriptions, call 1-781-751-8799.

83

SAP Professional Journal May/June 2004

At this point, your next steps depend on the errors
identified by the Java stack traces that are triggered
by exceptions thrown during testing. For J2EE appli-
cations, | recommend test tools such as JUnit or
HttpUnit for Web applications, or Apache Cactus as
an overall test framework for server-side Java code
(servlets, EJBs, etc.). All of these tools can automate
unit testing for large parts of the application.®

v" Note!

The following Web sites provide additional
information about J2EE and the depl oyment
process:

* http://java.sun.com/devel oper/
technical Articles/J2EE/I ntro/index.html

* http://java.sun.com/j2ee/learning/tutorial/

While testing our ported software licensing
management application, we did experience some
problems, which we will look at next. While our par-
ticular problems were specific to porting from BEA
WebL ogic 6.1 to SAPWeb AS 6.30, the discussion
will serve as a good starting point for identifying
potential trouble spotsin your own porting project.

Potential Porting Problems

The problems we encountered in our porting project
fell into three distinct categories:

o Differing interpretations of the J2EE specification
e Theuse of proprietary extensions

e The use of specia design patterns

¥ Details about these tools can be found at:
e http://junit.org
 http://httpunit.sourcefor ge.net/
 http://jakarta.apache.or g/cactus

In the next sections, I’ describe the particular
problems we encountered in detail, to give you a
feeling for the direction you might want to take your
own investigations.

Differing I nterpretations of the J2EE
Specification

Most of the problems we encountered when porting
our software licensing application were caused by dif-
fering interpretations of the J2EE specification:

* BEA WebLogic does not check for certain manda-
tory exception declarations. SAPWeb ASismuch
more exact in following the specification. For
example, chapter 10.6.4 of the EJB 2.0 specifica-
tion requires the enterprise lifecycle method
gjbCreate for contai ner-managed entity beansto
throw ajavax.ejb.CreateException. The
€jbCreate method in our application was origi-
nally declared as depicted in Figure 11 — asyou
can see, it throws a RuntimeAccessor Exception
instead of ajavax.ejb.CreateException.

Be sure to check the deployment descriptors
before deploying your application. The Java
Application Verification Kit (AVK) for the
Enterprise from Sun Microsystems (more on

the AVK in an upcoming section) is a useful

tool for detecting errors like this one because it
checks the deployment descriptor for correctness.
Using atool like the AVK will save you from
having to resort to the time-consuming trial-
and-error method.

* BEA WebL ogic does not check for incorrect
transaction configurations (see chapter 15.4.8 of
the EJB 2.0 specification). For example, with
message-driven beans, the container handles the
acknowledgement of received messages; therefore
programmers should never use the IMSAPI* to

¥ JMSis part of the J2EE standard and comprises the asynchronous send-
ing and receiving of messages. It's generally used for connecting sys-
temsin aloosely coupled fashion.

84 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

Figure 11

The Example Application’s ejbCreate Method Exception Declaration

public abstract class ComputerBean

{

extends GenericAttributeAccessDefaultImpl implements EntityBean

public Integer ejbCreate(Map values) throws RuntimeAccessorException

{

this.setValuesForSpecifiedAttributes (values) ;

return null;

acknowledge messages. Programmers can, how-
ever, tell the container how to acknowledge
received messages using the “ acknowledge-mode”
deployment descriptor. But this special descriptor
can only be set for message-driven beans with
bean-managed transaction demarcation, and the
message-driven bean used by our software licens-
ing application has container-managed transaction
demarcation, so the acknowledge-mode deploy-
ment descriptor cannot be used. Although the
descriptor was incorrectly set for the ported appli-
cation, BEA WebL ogic accepted the setting
whereas SAPWeb AS returned an error.

Again, use atool like the AVK to check the
deployment descriptors, which will save you alot
of time and effort.

BEA WebL ogic does not check the case-sensitivity
of descriptor names, SAPWeb AS, on the other
hand, will refuse the deployment if the capitaliza-
tionisincorrect. Chapter 22.5 of the EJB 2.0
specification states that the content of an XML
element of the deployment descriptor is, in gen-
eral, case-sensitive. The ported application used
an incorrect descriptor name (the error isin bold):

<acknowledge-mode>auto-
acknowledge</acknowledge-mode >

The name should have been:

<acknowledge-mode>Auto-
acknowledge</acknowledge-mode >

Thisis also something that the AVK could easily
have detected.

BEA WebL ogic does not check for correct param-
etersin EJB Query Language (EJBQL) expres-
sions,” while SAPWeb AS does. It ispossibleto
formulate EJBQL expressions with subselects,
which are represented using the keyword IN(X),
where x stands for a set of objects. Since x must
be a set to search in, and you can’'t search inside a
simple value, x cannot be asimple value (see
chapter 11.2.6 of the EJB 2.0 specification), but
thisis exactly what happened in our software
licensing application, so SAPWeb AS did not
accept the expressions during deployment.

To address this problem, we had to correct the
EJBQL inside the deployment descriptor. Once
again, the AVK can detect such incorrect expres-
sions for you.

* EJBQL uses a SQL-like syntax to select, update, or delete objects

or values out of adatabase.

For site licenses and volume subscriptions, call 1-781-751-8799.

85

SAP Professional Journal May/June 2004

Figure 12 Accessing Entity Bean Members in the Example Application via Java Reflection

{

Field[] fieldsInBaseClass = baseClassRef.getDeclaredFields() ;

for (int i=0;i<fieldsInBaseClass.length;i++)

String attributeName = (String)fieldsInBaseClass[i] .get (null) ;
this.addMapEntry (attributeName,

classRef, classInstance) ;

The Use of Proprietary Extensions

As| have mentioned before, vendors offer proprietary
extensions to help J2EE application devel opers
improve their productivity, but if an extension is not
supported by the target server, this means the applica-
tion is not portable! You cannot run it on the target
machine, and you have to develop an alternative on
your own. Depending on the proprietary extension in
use, this can add a significant amount of effort to the
porting project.

For example, the BEA WebL ogic primary key
generation extension saves developers from having
to worry about creating extra database tables to store
the last assigned primary key for a certain entity.
SAPWeb AS does not support this extension, how-
ever, so we had to write a new, application-server-
independent component for primary key generation.
Since the component works on a new database
table, where the last assigned primary key for
each entity bean is stored, we had to adjust each
€jbCreate method of each entity bean so that it
used the new generated component for retrieving
the next primary key.

The lesson here is to stay away from proprietary
extensions. If you use them already, keep in mind that
you will have to implement a portable alternative so
that your application will be able to run on SAPWeb
AS. Every proprietary extension means additional
effort for the migration project that must be consid-
ered. (1 will discuss proprietary extensions and how
to ensure portability in more detail shortly.)

The Use of Special Design Patterns

We also used a special design pattern in our software
licensing application to access members of an entity
bean directly via Javareflection instead of using
accessor methods (see Figure 12). Unlike BEA

WebL ogic, SAPWeb AS doesn’'t alow this kind of
member access, so we had to completely rearrange
the code. The lesson hereisto follow the J2EE speci-
fication and don’t deviate fromit! SAPWeb AS will
detect any deviations and force you to rewrite the
erroneous code to achieve complete 2EE compliance.

Implications for the Porting Project

We were able to fix all of the problems we encoun-
tered relatively easily and found that similar migration
projects can be handled in atime frame of two to four
weeks, assuming some J2EE knowledge. The elapsed
time can become even shorter if the J2EE solution to
be ported consists only of servlets and JSPs, which are
older, and therefore simpler and more stable specifica
tions. Migration of our servlet/JSP-based applications
required almost no additional work: simply take the
WAR file, wrap it in an EAR file, and deploy it to
SAPWeb AS viathe Deploy Tool. These larger appli-
cations consisted of several hundred JSPfiles and
used the Apache Struts framework for implementing
the Model-View-Controller (MVC) design pattern'®

* For more on the MV C design pattern, see the SAP Professional Journal
articles “Build More Powerful Web Applicationsin Less Time with BSP
Extensions and the MV C Model” (March/April 2003) and “Develop
More Extensible and Maintainable Web Applications with the Model -
View-Controller (MVC) Design Pattern” (January/February 2004).

86 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

and the Apache Cocoon framework for generating
PDF files on the fly. However, even for these more
simply structured applications, to avoid problems like
the ones we encountered, the application has to stick
strictly to the servlet/JSP standard as described in the
Servlet 2.3 and JSP 1.2*° specifications, respectively.
This cannot be stressed enough.

Every project will face its own unique problems,
so the ones I’ ve outlined here can only give you a
rough idea of the sources of possible errors. These
issues are typical for these kinds of porting projects,
however, and the discussion should lead you in the
right direction when you encounter problems during
your own projects. Nevertheless, it's always a good
idea to have the J2EE 1.3 specifications at hand in
case of ambiguities.

So what steps might we have taken from the out-
set of our application development to anticipate future
porting activities? How portable is J2EE, really, and
how can you ensure future portability? We'll look at
these questions in the next sections.

How Portable, Really, Is J2EE,
and How Can You Ensure Future
Application Portability?

It should be clear that the problems we encountered
during our migration were not showstoppers. While it
was not possible to run the code immediately, the
porting was a lot easier than in the old C or C++ days.
(Remember the never-ending sequences of #l FDEF
macro definitions for making code portable, starting
with trivia issues such as the length of an integer on a
given platform?) The only code changes we had to
make were the alternatives to the proprietary exten-
sions and special design patterns used. J2EE compo-
nents such as servlets, JSPs, and statel ess session
beans are all portable without changing code or
deployment descriptors — we only had to adjust the
deployment descriptors for the entity beans.

" See http://java.sun.com/products/ser vlet/download.html.
* See http://java.sun.com/products/j sp/download.html.

While the implementation of the J2EE specifica-
tion by different vendorsis stable, and has gained
broad acceptance and adoption by major server ven-
dors, asignificant challenge that remains to J2EE
application portability is that vendors offer many pro-
prietary add-ons to ease J2EE programming efforts, as
I’ve mentioned before. While this might seem like a
good thing, if you use these add-ons — such as the
BEA WebL ogic primary key generation facility we
used for CAL, or itstimer facility for regularly sched-
uling activities on the application server* — your
application will loseits portability.

You' re probably thinking, “But | want and need
these extensions because they save me lots of time!”
If aproject gets into trouble because of atight sched-
ule, portability becomes less important than speed,
and you will most likely use these features. It’'sthe
same with writing portable JDBC applicationsin
which you use pure SQL statements — it's very
likely that you will use proprietary SQL extensions
of the database in use as soon as your project enters
acritical phase. Whether an application remains
portable or not, then, becomes dependent on program-
mer discipline.

v Tip

While programmer disciplineis largely up

to the programmers themselves, it is a good
idea to create a “ developer handbook” that
summarizes key “ dos and don'ts.” See
www.ambysoft.com/javaCodingStandards.html
for a useful example of a Java coding guide.

If you know for certain that you are relying on a
single vendor’s products for developing and running
your applications, perhaps because your company is
the vendor, then it may be advantageous to use propri-
etary extensions, and portability may not be an issue.
(Keep in mind, however, that most frameworksin the

¥ Note that these particular extensions are supported officialy in the new
J2EE 1.4 specification.

For site licenses and volume subscriptions, call 1-781-751-8799.

87

SAP Professional Journal May/June 2004

open source world are comparable to vendor exten-
sions without sacrificing portability, since open
source solutions are, in most cases, usable on all
J2EE-compliant servers.) Or perhaps your company’s
IT strategy is based on “ best-of-breed” products, and
the application server in use may change overnight,
or you may be writing J2EE-compliant applications
for amass market. Inthese cases, J2EE portability
isof great importance, because you have to ensure
that your solution can run on awide range of J2EE-
compliant application servers, which leads usto the
next question: How do you ensure the portability of
a J2EE application?

There are at |east two techniques you can use to
enhance the portability of your J2EE applications:

* TheJavaApplication Verification Kit (AVK) for
the Enterprise

» J2EE design patterns and best practices

The Java Application Verification Kit (AVK)
for the Enterprise

The JavaApplication Verification Kit (AVK) for the
Enterprise from Sun Microsystems hel ps devel opers:

e Test their applications for correct use of the
J2EE APIs

e Test their applications for portability across
J2EE-compatible application servers

e Avoid writing code that undermines the portability
of their applications

To achieve true portability, your code must not
use vendor-specific extensions to the J2EE platform,
and your application must meet the requirements
described in the J2EE specification. The Java
BluePrints program (see http://java.sun.com/
blueprintsfor details) provides an extensive set of
guidelines, design patterns, and sample applications for
building portable J2EE-based applications. However,
itisstill possible to inadvertently write nonportable
applications. The JavaAVK for the Enterpriseis
designed to help devel opers avoid such situations.

If an application passes the tests provided by the
AVK, it isportable or easily portable to other J2EE-
compliant platforms.

The AVK comprises the following tools:

* J2EE Reference Implementation (RI): TheRl
isafull-blown J2EE-compliant application server
with certain extensions that allow logging of pub-
lic API invocations at runtime. By correctly
implementing the J2EE specification, the RI
serves as an example of what a J2EE-compliant
server should look like.

v" Notel

Although Sun attempts to implement the J2EE
specification as closely and completely as possible
initsRI, it should be noted that the RI is not a
server for productive use — it was devel oped to
test for J2EE compliance, and so performance,
reliability, availability, and scalability issues are
out of its scope.

The RI isresponsible for the execution of
“dynamic tests.” The developer deploys and runs
an application on the RI. After deployment, the
developer uses the application as usual (manually
or viaautomatic test tools), trying to cover as
much of the code as possible. Asthe application
runs on the RI, the Rl logs any API invocations
and exceptions using its extensions. The dynamic
verification process itself consists of two steps:

- Thefirst step, called “introspection,” gener-
ates alist of public APIs of the J2EE applica-
tion (EJBs, servlets, JSPs) that should be
called when the application runs on the server.

- The second step, called “instrumentation,”
logs the calls that were actually executed dur-
ing runtime.

By comparing the list gathered by the “introspec-
tion” step with the list generated during the

88 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

“instrumentation” step, it is possible to generate
API coverage metrics for the application.

e Verifier: The Verifier executes “static tests.” It
comprises over 2,000 test cases based on the J2EE
specification and checks them against all the EAR
files and deployment descriptors of an application.
For example, the Verifier checks that:

- All components named in the deployment
descriptor are available

- Statements expressed using EJBQL are
semantically correct

- JAR/WAR/EAR files are packed correctly
- Method names and signatures are correct

- Return values defined in the remote and local
interfaces are exactly the same

e Report Tool: Thistool summarizes the results
from the static and dynamic checks. It compares
the instrumentation list against the introspection
list, calculates average numbers for the methods
and Web components, and produces static as well
as dynamic reports from the static checking and
dynamic checking coverage results, respectively.
From the information in these reports, you can
derive the percentage of method calls passing the
check and display alist of methods that did not
pass the test.

An application is verified as portable if it fulfills
the following criteria

» EJBsand Web components pass al Verifier tests

* EJB components run in the RI and 80% of the
methods are called without system exceptions

e All servlets and JSP pages can be called without
compilation and runtime errors

If portability is an issue and you want to start
developing a new J2EE-based application with porta-
bility in mind, it isagood ideato integrate the AVK
verification process into your build process right from
the beginning. On the other hand, if the J2EE applica-

tion already exists and you want to find out how
portableit is, start with the Verifier and analyze its
output. After correcting the issues reported by the
Verifier, you can port the application to the Rl and run
your tests on the RI server to get the coverage num-
bers. These numbers will guide you to the portions of
code that require additional testing.

v Notel

Using the AVK is no guarantee that your
application can be installed on the J2EE server of
another vendor and that it will run immediately
and under all circumstances:

e TheAVK doesn’t currently scan source code to
find sequences that use vendor-proprietary
APIs or that do not conformto the J2EE
specification.

e The AVK will throw an exception if vendor-
specific code is called; since you cannot
expect that all possible paths through your
code will execute, thereis still some degree of
uncertainty about whether there is still a code
path containing vendor-specific code.

Although the AVK will aid in assessing and
implementing true portability, you can expect to
have some work left (such as integration testing)
even after its use.

One final note regarding the use of proprietary
extensions. the AVK accepts the use of proprietary
features, but only if you provide the featuresin a
portable way for other application servers. What
does thismean? | previously mentioned BEA
WebL ogic’s proprietary primary key generation tech-
nique and how we solved the problems presented by
itsuse. By providing server-specific solutionsin the
appropriate method, | can run this feature on both a
BEA WebL ogic server and on application servers that
don’t support it. This method of solving portability
issuesis called “ code branching,” where the same fea-
ture is developed twice — one version for a particular
application server by using its proprietary extension,
and a portable version for al other application servers.

For site licenses and volume subscriptions, call 1-781-751-8799.

89

SAP Professional Journal May/June 2004

v" Notel

The AVK can be downloaded from
http://java.sun.com/j2ee/avk/. The download is
free of charge if you simply want to check your
programsinternally. If you wish to reference a
tested application as “ Java Verified,” then you
will need to apply for the Java Verified Trademark
License. Details about writing portable programs,
aswell as prerequisites, license costs, how to
install the AVK, and so on, can also be found at
this site, especially on the FAQ page
(http://java.sun.com/j2ee/verified/fag.html).

J2EE Design Patterns and Best Practices

During our porting project, we also learned that devel-
oper productivity can be optimized through the proper
use of J2EE design patterns and best practices.
Although these are broad and well-covered topics, let
me point out some of the more important aspects and
how they pertain to J2EE portability.

While | have scratched only the surface of some
of the difficulties presented by J2EE programming, it
should be clear that the development of large J2EE-
based applicationsis very complex, and even pro-
grammers with deep Java knowledge may have
difficulty with J2EE programming. For example, to
cover the complete spectrum of J2EE programming,
you will need experts in multiple domains — object-
relational mapping, transaction handling, security,
messaging, parallelism, legacy integration, and
resource management, just to name afew, each of
which comes with its own set of pitfalls. And keepin
mind that the J2EE specification is still evolving —
while this article focuses on J2EE 1.3, J2EE 1.4 has
been released with even more extensions. Thisis
where design patterns can help your porting efforts.

Design patterns are practical, proven solutions for
challenges that every programmer faces during soft-
ware development, especially during the development
of J2EE-based applications. They can saveyou alot

of time, money, and frustration — you can take advan-
tage of the experiences of others and use solutions that
have already been successful in real-world applica-
tions. Another advantage is that design patterns are
constructed to fit any J2EE-compliant application
server, so they are highly portable.

Let’'slook at the “ Session Facade,” which isthe
most widely used EJB design pattern.”® The Session
Facade design pattern addresses the issue of how to
properly partition the business logic between session
and entity beansin order to execute the business logic
in one bulk network call instead of multiple fine-
grained invocations. The problem that this pattern
addresses is depicted in Figure 13, which shows a
direct entity bean access by remote clients.

Callsto session or entity beans are required to
execute business logic on the server. Asyou can see
in Figure 13, every fine-grained invocation of the
deployed session/entity beans adds multiple network
calls. What does “fine-grained” invocation mean in
thisregard? Let’'s take an online banking scenario as
an example. To transfer money from one account to
another, the following “fine-grained” steps must be
called from aremote client:

1. Find the entity bean of the user who initiates
the transfer.

2. Determine whether the user is authorized to
transfer money.

3. If so, find the entity bean of the account from
which money will be withdrawn.

4. Find the entity bean of the account to which
money will be deposited.

5. Withdraw money from the account found
instep 3.

6. Deposit money in the account found in step 4.
This simple scenario requires at least six

bandwidth-draining network calls. The Session
Facade pattern optimizes this situation. It simply

* The example shown hereis an abbreviated version of one discussed in
more depth in the book EJB Design Patterns by Floyd Marinescu.

90 www.SAPpro.com

©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Porting a J2EE Application to SAP Web Application Server

Figure 13 Executing Business Logic Without
the Session Facade Design Pattern

Figure 14 Executing Business Logic with
the Session Facade Design Pattern

Client

Client

Client

r Y

Application Server

Client

Client

Client

Sessnon Fagade

AT

Application Server

states that clients should never have access to entity
beans explicitly. Entity beans should be wrapped in a
layer of session beans (i.e., the Session Facade) as
depicted in Figure 14.

The Session Fagade enforces the execution of
business|ogic in one network call and provides a
clean layer for placing the business scenario in asin-
gleclass. For our previous online banking scenario,
this means that the logic for transferring money from
one account to another will be encapsulated in a ses-
sion bean with a method called transferMoney(user,
accountl, account2, amount). Thissession beanis
provided with all necessary parametersin asingle net-
work call (that’swhy it is called a* coarse-grained”
call in comparison to the “fine-grained” calls of the
first implementation). This not only optimizes net-
work traffic, it's also good J2EE design practice to
separate business logic from database access. This
separation allows specialized teams to develop differ-
ent parts of the application, and optimizes mainte-
nance costs — for example, if you changed your
database, you would only have to adjust the code in
the database layer instead of modifying code in your
businesslogic.

Design patterns are an important resource for
saving development time and money. | won't delve
any deeper into patterns here, since there are so
many, but starting points for further research are
the J2EE patterns home page (http://java.sun.com/
blueprints/cor g 2eepatter ngindex.html) or the
home page for server-side application development at
http://theserverside.com. You can also find books
by searching for “design pattern,” “EJB design pat-
tern,” “ J2EE design pattern,” or “best practices’ on
bookseller sites.

Recommendations for Ensuring
a Successful J2EE Application
Migration

Based on my experiences, hereis a checklist of rec-

ommendations you can use to help ensure a successful
J2EE application migration:

M Test your application using the AVK and correct
the errorsit reports. Ideally, you should integrate

For site licenses and volume subscriptions, call 1-781-751-8799.

91

SAP Professional Journal May/June 2004

this verification process into your developers JUnit, HttpUnit, or Apache Cactus. (If you've
build process right from the beginning. developed automated tests for use with the AVK
verification process, you can reuse those same
tests here.) Follow the stack traces that pop up
and repeat deployment and test steps after each

v Use automatic test tools, which ensure test result
reproducibility and maximum code coverage.

M When designing complex J2EE applications, correction. You don’'t have to repeat the AVK
make use of established design patterns. Portable verification in each cycle (unless you have
implementations of design patterns by companies introduced the step in your normal development
or open source communities can often be used to process), but you should reactivate it if the
save time and money. correction shows ambiguous behavior.

M Check the deployment descriptors of your applica
tion for the original application server against pro-

prietary extensions. If some are found, develop Conclusion
portable alternatives that don’t use vendor-specific
extensions to the J2EE specification. With its support of the J2EE 1.3 standard, SAP Web

AS6.30, and now 6.40, offer you the opportunity to
harmonize your I T landscape by running your J2EE
and business applications on the same platform —
simultaneously reducing your maintenance and devel-
opment costs, and leading to an optimized total cost of
ownership. My hopeisthat with the lessons you've
learned in this article, including why it might make
sense to port your applicationsto SAPWeb AS, the
considerations involved, the potential pitfalls, and
how to ensure application portability in the future,
you won't have to let this opportunity pass you by.

M Usethe SAPWeb AS Deploy Tool to generate the
EAR files. It's up to you to start with basic class
files, pack them together in JAR and WAR files or
with existing JAR and WAR files, and zip them
into an EAR file. The Deploy Tool will then
guide you through the individual deployment
steps. For adetailed description of the Deploy
Tool, go to the online help for SAPWeb AS 6.30
or 6.40 at http://help.sap.com and navigate to
SAP Net\Weaver Components — SAP Web
Application Server — J2EE Technology in SAP
Web Application Server — Development Manual

— Deployment: Putting It All Together — : : :
Deploy Tool. Remember that once you've MOLGT Bl EssiizelE e 2 17 ERinFLE

migrated to SAPWeb AS 6.30 or 6.40, you will science from the University of Erlangen, Germany,
use SAP NetWeaver Developer Studio instead. in 1988. After working for a small company that
specialized in computer process control, in 1992

Before deploying th lication, identify th -
¥ ore ceP aying e apprieeion, ICertity the he joined Semens, where he initially worked on

global libraries upon which the application

depends; you can reuse libraries that already exist server-side architectures. Wth the advent of the
on the target application server by referencing Java programming language, Volker focused on
them in the Deploy Tool. If aspecial global J2EE-based integration and the integration of
library doesn’'t yet exist on the target system, but SAP R/3 systems with other legacy systems and

you know that it will be widely used by other
applications, deploy thislibrary viathe Deploy
Tool prior to deploying the application itself, so

databases. Currently Volker isworking as an SAP
NetWeaver consultant with special expertise in the

that you can reference it like the already-existing SAP W\eb Application Server gnd SAP Exchange
libraries. Existing libraries can be examined via Infrastructure (XI) technologies, as well asthe
the SAP J2EE Engine Administrator. SAP cross applications (xApps) architecture.

¥ Following deployment, test your application \olker can be reached at vstiehl @t-online.de.

manually or by using an automated test tool like

92 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

