
Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 139

(complete bios appear on page 166)

If you are a Java programmer, then you are likely no stranger to the
following scenario: you need to persist Java objects in a relational
database, and you are facing the chore of once again writing the SQL
code for storing the objects to and loading them from the database —
a tedious and time-consuming process. Like any developer, you’d much
rather be focusing on the actual application than wallowing around in
the nitty-gritty details of accessing a database from Java.

What you are wishing for is an easy way to bind Java objects to
their persistent representations in the database in a transparent and
(mostly) automated way — a concept known as “transparent object
persistence.” There are two standard technologies available in the
Java world that provide such persistence for Java objects: entity beans
with container-managed persistence (CMP entity beans) and Java Data
Objects (JDO). CMP entity beans are a part of the Enterprise JavaBeans
(EJB) specification (itself part of the J2EE standard), and provide
transparent persistence at the EJB component level. JDO, which is
essentially a persistence enhancement to the Java language, provides
transparent persistence for ordinary Java objects.

But what about persisting Java objects in the SAP world? Usually
this means using SQLJ or JDBC to write all the necessary SQL code for
moving the object representation to and from the database — until now.
SAP Web Application Server (SAP Web AS) 6.40, the core of SAP
NetWeaver, supports both CMP entity beans and JDO as part of its
overall persistence offering. Both JDO and CMP entity beans run on
top of the Open SQL Engine in SAP Web AS, and automatically benefit
from the portability and built-in enhancements of Open SQL for Java,
including table buffering, statement pooling, and SQL tracing. This

Persist Data for Your J2EE
Applications with Less Effort Using
Entity Beans with Container-Managed
Persistence (EJB CMP)
Christian Fecht and Svetoslav Manolov

Svetoslav Manolov, Java
Server Technology Group,

SAP Labs Bulgaria

Christian Fecht, Java
Server Technology Group,

SAP AG

SAP Professional Journal July/August 2004

140 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

article is the first in a series that will provide you with
insight into these two object persistence technologies
for Java. This article introduces you to CMP entity
beans; a future article will focus on JDO.

Be aware that EJB in general, and CMP entity
beans in particular, are broad topics, and we cannot
cover all the details here. The goal of this article,
then, is to introduce you to the fundamentals of CMP
entity beans, and, using an example, give you a
feel for what it means to develop and use them. By
the end of this article, you will be able to develop
your first CMP entity beans with SAP NetWeaver
Developer Studio1 and run them in SAP Web AS 6.40,
so that you can provide transparent persistence for
the EJB components that make up your custom
J2EE applications.

�� Note!

This article assumes a solid knowledge of Java
and persistence,2 and some basic knowledge of
EJB and XML.

Before diving into the details of EJB CMP
development, we start with a gentle, but thorough
introduction to transparent object persistence and EJB
technology in general.

Transparent Object Persistence
Since Java is an object-oriented programming lan-
guage, Java programmers tend to think, and model

their application domains, in terms of objects. An
object has a “state” that is represented at any given
point in time by its instance fields and their correspon-
ding values. “Persisting” an object basically means
storing the relevant state of the object in an external
data store, typically a relational database. Later on,
the persisted state can be retrieved from the data
store — to populate a Java object, for example. With
JDBC or SQLJ alone, the Java programmer must write
all the SQL code necessary to move the state of the
object back and forth between the data store and
the Java object. For example, to save an Employee
object, you would write code to insert the employee’s
instance fields — first name, last name, salary, and so
on — into the data store. To load an Employee object
from the data store, you would have to write addi-
tional code that first fetches the stored values of the
employee’s instance fields from the data store, then
instantiates an Employee object in the Java virtual
machine (JVM), and finally populates the newly cre-
ated Employee instance with the retrieved data.

Transparent object persistence strives to automate
all the tasks necessary to persist objects in a data
store, so that binding Java objects to persistent data
in a data store is as easy, seamless, and automated as
possible. Transparent object persistence allows devel-
opers to work with persistent Java objects directly
in their code, just as they would work with any other
application objects. Keep in mind that with persis-
tence, there is a difference between the persistent
entity in the data store and the Java object represent-
ing that entity in the JVM — the persistent entity in
the data store is the real thing. It represents an entity,
such as an Employee object, from the application
domain, and it lives in the data store until it is explic-
itly removed from it. The Java object, on the other
hand, allows for an object-oriented view of the persis-
tent entity in the data store. Transparent object per-
sistence makes the persistent entity and its Java object
representation appear as a single logical object from
the application programmer’s perspective.

In the next sections, we’ll look at some of the key
features of transparent object persistence: transparent
synchronization, transparent loading, and transparent
object-relational mapping.

1 See the article “Get Started Developing, Debugging, and Deploying
Custom J2EE Applications Quickly and Easily with SAP NetWeaver
Developer Studio” in the May/June 2004 issue of SAP Professional
Journal for more on this new IDE for Java applications.

2 For a detailed introduction to SAP Web AS support for persistence, see
the article “A Guided Tour of the SAP Java Persistence Framework —
Achieving Scalable Persistence for Your Java Applications” in the
May/June 2004 issue of SAP Professional Journal.

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 141

Transparent Synchronization

During a transaction, the state of the Java object may
be different than the state of the persistent entity it
represents. This is a situation that can occur, for
example, because the value of one of the Java object’s
persistent fields has been changed in an application.
With transparent synchronization, however, once the
transaction is committed, all changes to the Java
object are automatically tracked and written back to
the persistent entity in the data store. Analogously,
when the Java object is accessed for the first time in
the transaction, its state is fetched from the persistent
entity in the data store. This means that the states of
the persistent entity and its Java object representation
are automatically kept in sync. Figure 1 is a graphical
representation of this process.

Transparent Loading

All persistent entities that an application needs are
transparently loaded from the data store and repre-
sented by Java objects in the JVM. It does not matter
if an application iterates over the result of a query or
navigates through a graph of persistent Java objects;
whenever it accesses a persistent Java object, the
object will have been instantiated by some magic
in the JVM, and will contain the current state of the
persistent entity it represents. For an application
programmer, it will appear as if all persistent entities
in the data store have been loaded into the JVM,
although only a very small subset of the persistent
entities may have been loaded and represented by
Java objects.

Transparent Object-Relational Mapping

In SAP Web AS, the data store is a relational database.
Therefore, persistent Java objects must be mapped to
relational structures (hence the term “object-relational
mapping”). Typically, an object is mapped to a table
row, as shown in Figure 1. The persistent fields of the
object are mapped to table columns, and references
between objects are represented by foreign key rela-
tionships in the database. With transparent object per-
sistence, the programmer doesn’t need to write the
code that implements the object-relational mapping,
but must specify the mapping in a declarative way
(more on this later in the article).

With transparent object persistence, there is a
clean separation between the persistence logic and
the actual business logic. Although the business
logic deals with persistence-specific code (transaction
demarcation, creation/deletion of persistent Java
objects, etc.), the business logic is not mixed up with
persistence implementation code. Moreover, the busi-
ness logic works with persistent Java objects without
having to know where and how they are stored.

Now that you have a solid understanding of how
transparent object persistence works, we’ll turn our
attention to Enterprise JavaBeans. The next section
provides you with a brief overview of the Enterprise
JavaBeans technology and how it works.

����������
	���
���

����������������	
���
���������

��
���
����

��
�����������������������

�
�������
�	�������������

���
�����

��

Figure 1 The Transparent Synchronization
Process

SAP Professional Journal July/August 2004

142 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

A Quick and Gentle Introduction
to Enterprise JavaBeans (EJB)
Enterprise JavaBeans (EJB) comprises the standard
technology for building business components in the
Java world. EJBs are part of the Java 2 Platform,
Enterprise Edition (J2EE), which includes more than
10 other technologies3 and over 4,000 APIs that sup-
plement the 5,000 classes included in the main Java
platform, J2SE (Java 2 Platform, Standard Edition).
The richness of J2EE provides an excellent infrastruc-
ture for the development of business applications, and
its benefits derive not only from its variety of tech-
nologies, but mainly from the integration and compat-
ibility between them.

EJBs are reusable binary software components
that consist of code (Java class files) and declarative
descriptions (XML deployment descriptors). By
changing the deployment descriptors (more on this
later in the article), it is possible to customize an EJB
component without having to touch and recompile the
code. Furthermore, EJBs address a number of specific
needs of distributed business applications: (1) they
provide persistence capabilities, as well as the transac-
tion management and security services needed by
almost all business applications; (2) the EJB compo-
nents that make up the actual application can reside
on different servers, and are accessed remotely in a
transparent way.

Types of EJBs: Entity, Session, and
Message-Driven

EJB components come in three flavors: entity, session,
and message-driven. Entity beans (the type of bean
we’ll focus on in this article) are fine-grained objects
that represent persistent data in a data store (typically
a relational database). For example, an entity bean
EmployeeBean could be used to represent an
employee of a company. Session beans are more
coarse-grained objects that implement behavior and
processes. A session bean HRSesBean could imple-

ment typical HR processes, such as the hiring or pro-
moting of employees. While session beans do not rep-
resent persistent data themselves, they can manipulate
persistent data. Message-driven beans serve as asyn-
chronous message “consumers” and provide the inte-
gration between the EJB architecture and messaging
systems like Java Message Service (JMS) providers.

How EJBs Work

The software life of a bean starts with the “enterprise
bean provider,” an application developer who pro-
duces beans that implement business logic. Individual
beans are then assembled into an “EJB module,”
which will constitute the actual EJB application that
is finally deployed to a server. Next, the “EJB con-
tainer,” which not only provides the tools for deploy-
ing the EJB application, but also manages and controls
all aspects of a bean’s life once the bean has been
deployed, enters the scene. The container provides a
runtime environment for the bean, informs the bean
about important lifecycle events, and, last but not
least, makes the bean available to clients. An “EJB
client” makes use of the bean and the functionality
provided by the bean. In most cases, the client is a
Web component (a Web Dynpro4 or servlet/JSP com-
ponent) or another bean (e.g., a session bean when
using the session façade design pattern; more on this
later). The client looks up the bean from the Java
Naming and Directory Interface (JNDI) context in
which it was stored by the EJB container.

A bean exposes its functionality to clients via
Java interfaces (more on these in a moment). How-
ever, when a client calls a method on these interfaces,
it does not talk to the bean directly — all client calls
are intercepted and mediated by the EJB container.
This interception allows the EJB container to “hook
into” the client call and provide services such as per-
sistence, transaction management, and security to
both the bean provider and the client in a transparent
way. The classes used for interception are generated
at application deployment by the EJB container’s

3 JavaServer Pages (JSP), Java Message Service (JMS), Java Transaction
API (JTA), etc.

4 Web Dynpro is SAP’s development environment for creating profes-
sional Web user interfaces for business applications. It is model-driven
and consists of a powerful toolset and a sophisticated runtime.

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 143

deployment tools. At runtime, the interceptor object
acts as a “bodyguard” between the client and the
actual bean instance, as shown in Figure 2.

The Structure of an EJB

A bean consists of:

• Home and component interfaces, through
which it is accessed by its clients

• A bean class containing the business logic
implementation

• A deployment descriptor containing the
metadata that describes the component

A bean exposes its business methods to the client
through its component interface. The business meth-
ods in the component interface are implemented by
the bean class. The instances of the bean class are
called “bean instances.” Bean instances are managed
by the EJB container and cannot be directly accessed
by the client.

Each deployed bean has a “home” that is repre-

sented by a home object and accessed by clients
through the home interface. The home object’s job is
to hand out references to that bean’s component inter-
face via the home interface. When a bean is deployed,
the EJB container instantiates the bean’s home object
and registers it with JNDI. A client that wants to use a
bean first performs a JNDI lookup of the bean’s home
object using its JNDI-registered name, and then asks
the home object for a reference to the bean’s compo-
nent interface. Through this reference, the client can
now do what it really wants to do — call business
methods on the bean.

There are two different kinds of clients: remote
and local. A local client is located in the same JVM as
the beans used by the client. In this case, method calls
on the beans are just ordinary Java method calls. A
remote client, on the other hand, may reside in a dif-
ferent JVM, or even on a server other than the one
hosting the beans it wants to use. In this case, the
client communicates with the beans via Remote
Method Invocation (RMI) method calls — objects
are passed by value, arguments and the return value
must be serializable, etc. Accordingly, there are two
versions of the component and home interfaces: local
and remote.

Figure 2 The EJB Container Intercepts the Client Call to the Bean

����

�������������
������
���������������

����

����

����������

������������������������

SAP Professional Journal July/August 2004

144 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Since the EJB container intercepts all client calls
on the component interface, the bean class cannot
implement the component interface in the way a Java
class implements a Java interface. So how, then, are
component interfaces implemented? The actual
implementation of a component interface is provided
by a class that the EJB container generates at deploy-
ment time. The instances of this container-generated
class, called “EJB objects,” intercept the client calls,
provide transaction and security management, and
delegate the calls to the bean instances. An EJB
object acts as the “bodyguard” between the client
and the actual bean instance. The home interface is
implemented analogously by “EJB home objects,”
which are similarly generated by the EJB container
during deployment. Figure 3 shows the relationships
between the client, the component and home inter-
faces, the bean instances, and the container-generated
EJB objects and EJB home objects.

So how does the EJB container know what to do
when its container-generated class intercepts a method
call on a bean? This information is conveyed to the
EJB container through the deployment descriptor. The
standard deployment descriptor (according to the EJB
specification) is an XML file called ejb-jar.xml. It
contains some basic information needed to define
EJB components and several optional properties that
describe special features (e.g., transaction and security
management), the use of external resources, and so on.
EJB container vendors also provide vendor-specific
deployment descriptors containing metadata specific
either to the application or to the EJB container. The
EJB container uses the information from the deploy-
ment descriptors to provide the environment for the
EJB components.

As we mentioned earlier in the EJB discussion,
there are three types of Enterprise JavaBeans: entity,

Figure 3 Implementing the Home and Component Interfaces

����
��������

�������������
����������������������

����
��������

����
��������������

������������ �!
������ �
�����"���

����
��������

����������!
������ ������
�����"���

����
�
������������

�������
���������
���������

����
�
������
�����

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 145

session, and message-driven. In the next section, we
will take a closer look at the type of EJB that enables
you to persist data for your J2EE applications —
entity beans.

EJB Entity Beans for Persisting
Java Objects
Entity beans are an object-oriented way of looking
into a data store. In the world of EJB components,
their task is to represent data in a persistent data store
— i.e., they provide object persistence to application
programmers in a component-based form. Almost
always, as is the case with SAP Web AS 6.40, the
persistent data store is a relational database, and,
consequently, entity beans map to relational database
rows (refer back to Figure 1). With object persistence,
you have to distinguish between the real thing in the
database — the “persistent entity” — and its Java
object representation in the JVM. The persistent
entity is represented in the JVM by a bean instance,
that is, by an instance of the entity bean’s bean class.
A bean instance is essentially a pure data object,
representing the current state of a persistent entity
using its instance fields. The fields of the bean
class that actually represent the persistent entity
attributes are called “persistent fields.” The business
methods implemented in the bean class manipulate
the state of that persistent entity by modifying its
persistent fields.

In this article, we will call the EJB objects of
entity beans “entity objects,” since they represent
the client view of a persistent entity. When a client
invokes a business method on a particular entity
object, this will affect the entity represented by
the object.

Entity objects are uniquely identified by a special
object called the “primary key,” which consists of one
or more persistent fields corresponding to the primary
key columns in the database table.

Types of Persistence: Container-Managed
and Bean-Managed

Entity beans can have bean-managed persistence
(BMP) or container-managed persistence (CMP).
The difference between the two types lies in the
responsibility for the persistent data synchronization.

With BMP entity beans, the bean provider (i.e.,
the application developer) implements the database
access and writes the SQL code required to load and
store the persistent state of the entity object, usually
with either JDBC or SQLJ. The only benefits the
developer gains from using BMP entity beans is an
object-oriented view of the persistent data, and the
advantage that the bean is notified by the container
when it is time to load and store the persistent state
of the entity.

CMP entity beans, on the other hand, provide real
transparent object persistence, and are the type of
entity bean we will develop in this article. The entire
persistence management mechanism is provided by
the EJB container, and is transparent to the application
developer. Using CMP entity beans requires less cus-
tom code development than BMP entity beans, and no
SQL coding at all, further reducing the potential for
code-induced problems.

Using a Session Façade Bean with Entity Beans

In well-defined EJB applications, entity beans are usu-
ally combined with session beans. The session bean
implements a business process, and when it needs to
access data in the database, it uses entity beans. The
client of the application never interacts directly with
the entity beans; it interacts only with the session
bean, which in turn accesses the entity beans through
their local home/component interfaces.

You’re probably thinking, “What about the remote
interfaces?” There is a consensus in the J2EE com-
munity that you should never access an entity bean
through its remote interfaces. The rationale behind
this recommendation is efficiency, or, in other words,
the negative effect on performance caused by the

SAP Professional Journal July/August 2004

146 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

fine-grained remote access of the entity bean’s persis-
tent attributes. The idea of only using local interfaces
of entity beans is captured by the “session façade
design pattern” (see Figure 4), which is one of the
most important design patterns for dealing with entity
beans. Therefore, for the rest of this article we will
ignore remote home/component interfaces and con-
sider only local home/component interfaces.

�� Tip

Never provide remote home or remote component
interfaces for your entity beans.

We’re now ready to put our background knowl-
edge to work and turn our attention to the actual bean
development tasks. Over the course of the rest of this
article, we will show you how and to what extent EJB
entity beans with container-managed persistence pro-
vide transparent object persistence to Java program-
mers. In the next section, we’ll get started by defining
an example CMP entity bean.

Defining CMP Entity Beans
When you start developing CMP entity beans, you

first must have a well-defined database model that
your entity components will represent. Usually
each database entity is represented by a separate
entity bean, and relationships between persistent
entities are represented as relationships between the
corresponding entity beans. For this reason, an entity-
relationship model of the persistent data is very useful
when designing a CMP entity bean application.

To illustrate the CMP entity bean development
process, we will describe the implementation of a sim-
ple example J2EE enterprise application consisting of
two entities — Employee and Department — that con-
tain a number of attributes. Figure 5 shows a data-
base model for the example, with the primary key
fields EMPID and DEPID highlighted.

The relationship between the Department and
Employee entities is “one-to-many” — that is, each
employee can work in a single department, although
a department may comprise an arbitrary number of
employees. This custom J2EE application will allow
the creation, removal, and update of employees and
departments. A client of the application will also be
able to view all existing departments, all employees,
and all employees from a certain department.

To implement this model, we are going to develop
two CMP entity beans in a one-to-many relationship.
Then, we will create a session bean that accesses the
CMP entity beans. Here are the tasks we will need to
complete to create our example:

Figure 4 The Session Façade Design Pattern

���������
����

������
������	

��������
#������

���

�����$

���

�����$

���

�����$

���

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 147

• Implement the bean classes for the entity beans.

• Define the component and home interfaces for
the entity beans.

• Edit the XML deployment descriptors needed
to build the application.

• Create a session bean that will access the
entity beans to implement the application’s
business logic.

Since the standard ejb-jar.xml deployment
descriptor does not provide information for the
object-relational mapping of the CMP entity beans,
this information must be provided by an auxiliary
deployment descriptor. The SAP-specific object-
relational mapping descriptor is called persistent.xml.
We will specify how our persistent data should
be represented in the database using the SAP
NetWeaver Developer Studio object-relational map-

ping wizard, which will store all information in a
persistent.xml descriptor and pack it into the applica-
tion’s archive.

Implement the Bean Classes
for the Entity Beans
What makes a simple Java class a bean class is the
implementation of the javax.ejb.EntityBean interface.
Figure 6 shows the declaration of the bean class for
the Employee entity bean. Follow these steps to
implement a bean class:

1. Create a new entity bean.

2. Define persistent fields in the bean class.

3. Define the persistent relationship fields in the
bean class.

Figure 5 An Example Database Model with Two Entities

%��&������'�!(�� 	�')�*��+*

��',	 #)�)�(-,�#*+)�� �)#*+)�� 	�',	 +)��

public abstract EmployeeBean implements javax.ejb.EntityBean {
…
}

Figure 6 Declaring a Bean Class for the Employee Bean

SAP Professional Journal July/August 2004

148 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

4. Implement the EntityBean interface callback
methods.

Step 1: Create a New Entity Bean

SAP NetWeaver Developer Studio provides a wizard
for creating a new entity bean:

1. From the SAP NetWeaver Developer Studio main
screen, choose File → New → Other....

2. On the left pane of the first wizard page, choose
J2EE → EJB.

3. Choose Next.

4. Enter a name for the new entity bean and select
the project in which it should be added.5

5. In the Bean Type dropdown list, select
Entity Bean.

6. Choose Finish.

Step 2: Define Persistent Fields in the
Bean Class

Bearing in mind the attributes of the persistent
entity your component is to represent (refer back to
Figure 5), you will be able to define the persistent
fields of your component. Usually each attribute is
represented by a persistent field of the CMP entity
bean. Be careful with the types of the persistent
fields, which must match the domain of the correspon-
ding attributes of the persistent entity. The persistent
fields of a CMP entity bean (CMP fields) are virtual
fields — in the bean class they are defined by pairs of
abstract get and set accessor methods, as shown in the
snippet of code for the Employee bean in Figure 7.

�� Tip

Do not define persistent fields as instance
variables in your bean class. Instead, use the
abstract get and set methods to access and
manipulate the persistent fields.

If you use SAP NetWeaver Developer Studio, you
do not need to write Java code — you simply specify
the names and types of your persistent fields, and the

/* CMP field employeeId */
public abstract Integer getEmployeeId();
public abstract void setEmployeeId(Integer employeeId);

/* CMP field firstName */
public abstract String getFirstName();
public abstract void setFirstName(String firstName);

/* CMP field lastName */
public abstract String getLastName();
public abstract void setLastName(String lastName);

/* CMP field salary */
public abstract BigDecimal getSalary();
public abstract void setSalary(BigDecimal salary);

Figure 7 Defining Persistent Fields for the Employee Bean Class

5 In SAP NetWeaver Developer Studio, the application source code
and its components are housed in a “project.” For a detailed introduc-
tion to SAP NetWeaver Developer Studio, and using its wizards to
create applications and EJBs, see the article “Get Started Developing,
Debugging, and Deploying Custom J2EE Applications Quickly and
Easily with SAP NetWeaver Developer Studio” in the May/June 2004
issue of SAP Professional Journal.

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 149

corresponding get and set accessor methods will be
automatically generated. Here is the procedure:

1. From the J2EE Explorer pane, choose the
CMP entity bean whose persistent fields you
want to create.

2. Choose the Fields tab.

3. Add, remove, or edit the persistent fields of
your CMP entity bean (see Figure 8).

4. Choose the persistent field that will be the
primary key field of your component.

Note that the type of the employeeId field, which
is the primary key field for the Employee bean, is the

class java.lang.Integer. Using the Java primitive type
int would result in an error, because the EJB specifica-
tion requires that the primary key type for an entity
bean be a serializable Java class.

Step 3: Define the Persistent Relationship Fields
in the Bean Class

Once the persistent fields are ready, you can create
relationships between your entity components. The
CMP entity bean model allows the use of binary rela-
tionships; that is, relationships between two entity
beans. If you want to declare such a relationship,
the only thing you need to do in your bean class is
define a virtual container-managed relationship
(CMR) field — the code in Figure 9 shows the

Figure 8 Defining Persistent Fields Using SAP NetWeaver Developer Studio

// CMR field department
public abstract DepartmentLocal getDepartment();
public abstract void setDepartment(DepartmentLocal department);

Figure 9 Defining the Relationship Between Entity Beans

SAP Professional Journal July/August 2004

150 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

CMR field defined in the Employee bean for the
relationship between the Employee and Department
entity beans. The return type of the get method and
the parameter of the set method must be the local
component interface of the CMP entity bean con-
nected to your bean.

With SAP NetWeaver Developer Studio, choose
the Relationships tab, where you can add, remove, and
edit the container-managed relationships of your bean
(see the sidebar below for more on what’s happening
behind the scenes).

The implementation of the get and set methods for
accessing the persistent fields (both CMP and CMR
fields) is done by the EJB container in a subclass of
the bean class, which is generated at deployment time.
By implementing the abstract get and set methods, the
EJB container controls any accesses (reads or writes)
to the persistent fields and thus manages the synchro-
nization of the persistent entities. Synchronization is
accomplished by the automatic loading of entities
from the database the first time they are accessed by a
transaction, and the automatic storing back at the end
of the transaction if they have been changed.

Managing the Relationships Between CMP Entity Beans:
Behind the Scenes

While SAP NetWeaver Developer Studio makes defining relationships quite easy and natural, we know
that behind the curtain, the EJB container is doing a lot of work to make our lives easier. Here, we will
explore in detail what the EJB container does in order to manage the entity bean relationships. This
will help you to choose the most suitable relationships when you design and develop your CMP entity
bean applications.

Multiplicity Constraints and Cascading Deletes

“Managing relationships” means adhering to several rules that comprise the concept of “referential
integrity.” These rules are always observed by the EJB container, no matter what type of operations
the application performs on its container-managed relationships. When an operation is executed with a
container-managed relationship (CMR) field, the EJB container implicitly does all the subsequent work
to complete the operation and make it logically correct. A single operation can trigger an implicit update
to all entities related to the modified one. The most important rules — the ones that provoke the EJB
container to execute the implicit operations — are maintaining multiplicity constraints and automatic
cascading deletes:

• Multiplicity constraints: Binary relationships used in the entity-relationship model can be one-to-one,
one-to-many, and many-to-many. The same separation is used in the object model of CMP entity
beans. The one-to-one and one-to-many CMP entity relationships require constraints that correspond
to the foreign key constraints managed by the databases. These multiplicity constraints are maintained
by assignment rules. According to these rules, assigning a CMR field
triggers additional changes to the related entity objects. The goal is to
preserve the multiplicity of the relationship.

Let’s suppose we have a one-to-one relationship between
entity beans A and B and the entities a1 and a2 are related to
the entities b1 and b2 (see the diagram to the right).

�.
.

�/
/

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 151

Step 4: Implement the EntityBean Interface
Callback Methods

The entity bean class must also implement or inherit
from its superclasses the implementation of the
EntityBean interface methods. The EntityBean inter-
face methods are callback methods that the EJB con-
tainer invokes on the bean instance at specific points
in time. The EJB container creates and manages
bean instances according to a special component
“contract,” which is called “the lifecycle of the bean
instance.” Implementing these callback methods

enables the EJB container to notify you at critical
points during the lifecycle of the bean instance6 and
to perform certain operations. For example, you
might have fields that are not persistent themselves,
but contain data that is calculated from persistent
fields. You must initialize these calculated fields
using the ejbLoad() method, which is invoked by the
EJB container just after it loads the persistent fields
from the database.

Assigning the CMR field of a1 by the a1.setB(b2) operation also
affects the other entities. That single operation results in updating
the CMR fields of the four entities (see the diagram to the right).

To maintain the multiplicity constraints, there are rules not only
for assignment, but also for the removal of entity objects. After
removing an entity object, all entities that refer to it are implicitly
affected. For example, when a department is removed, all employees working in that department are
updated. Their department CMR fields are set to null, since they cannot work in a department that
does not exist (see the screenshots below).

Suppose that in your use case you did not want to have an existing employee without a department.
Then you would expect all employees that belong to a removed department to also be removed. In
this situation, you need cascading deletes.

• Cascading deletes: A cascading delete removes all entity objects that refer to a removed entity

�.
.

�/
/

(continued on next page)

6 Right after the state is loaded from the database; just before the state is
written to the database; and just before the persistent entity is deleted.

SAP Professional Journal July/August 2004

152 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

�� Tip

In most cases, EntityBean interface methods can
safely be ignored using an empty implementation:

public void ejbLoad() {}

public void ejbStore() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void

setEntityContext(EntityContext

context) {}

public void unsetEntityContext() {}

Define the Component and Home
Interfaces for the Entity Beans
We next need to define the component interfaces

and the home interfaces for the entity beans, which
clients will use to access the beans.

Recall that a bean exposes its business logic to its
clients through the component interface, so you can
include almost any method you want in the compo-
nent interface. In most cases, the component interface
of a CMP entity bean will contain an assortment of get
and set methods for the bean’s CMP and CMR fields.
The home interface typically contains methods that
are needed for creating and finding CMP entity beans.

Defining the Component Interface

The main consideration in designing a CMP entity
bean application is which persistent data manipula-
tions are to be encapsulated in entity bean business
methods, and which are to be moved to the session
bean that accesses the entity bean (according to the
session façade design pattern). You can encapsulate
several accesses to the persistent data in a single
business method of your entity bean. For example,

object; the cascading delete is an automatic operation performed by the EJB container. Such
functionality is useful when the lifetime of one or more entity objects depends on the lifetime of
another entity object.

To switch the cascading delete option on, you need to specify the cascade-delete element, which
is part of the relationship definition in the ejb-jar.xml deployment descriptor:

<ejb-relationship-role>

<ejb-relationship-role-name>Employee works in Department

</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<cascade-delete/>

<relationship-role-source>

<ejb-name>EmployeeBean</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>department</cmr-field-name>

</cmr-field>

(continued from previous page)

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 153

you can define an increaseSalary business method
that first reads the employee’s salary, and then
updates it.

In our example (see Figure 10), we choose to
expose only the accessor methods of the persistent
fields in the component interface and to manipulate

public interface EmployeeLocal extends EJBLocalObject {

public Integer getEmployeeId();

public String getFirstName();
public void setFirstName(String firstName);

public String getLastName();
public void setLastName(String lastName);

public BigDecimal getSalary();
public void setSalary(BigDecimal salary);

public DepartmentLocal getDepartment();
public void setDepartment(DepartmentLocal department);

}

Figure 10 Exposing the Accessor Methods of the Persistent Fields in the Component Interface

Navigating Relationships — Unidirectional vs. Bidirectional

The relationships between CMP entity beans are either bidirectional or unidirectional. Bidirectional
relationships can be navigated in both directions if both CMP beans have get and set accessor methods
for manipulating the relationship. Unidirectional relationships can be navigated in one direction only, that
is, only one side of the relationship has get and set accessor methods. These relationships are typically
used to restrict the visibility of a relationship and allow only one of the participants to manage it. The
navigability of relationships is independent from the representation of the persistent entities. You can
choose the navigability of a relationship according to the object-oriented design of your application.

Relationships vs. Dependent Value Objects

The EJB specification allows you to have a simple persistent field mapped to several attributes of the
corresponding persistent entity. A dependent value class is a concrete class that contains persistent
fields that are usually used together. For example, it is more convenient to have an encapsulated Address
object containing country, town, street, etc., when the application’s use cases always manipulate whole
addresses rather than accessing separate fields from the address. The Address object should be defined
as a dependent value class and should be accessed as a single persistent field, instead of developing a
separate CMP entity bean component for it.

SAP Professional Journal July/August 2004

154 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

the persistent data in those fields via fine-grained calls
from the session bean.

�� Tip

Do not forget that methods declared in the
component interface are related to a single entity.

�� Tip

You cannot expose the set accessor methods for the
primary key CMP fields in the component interface
of the entity bean. Once initialized, the primary
key for an entity bean cannot be changed.

You’re probably wondering what will happen to
the application’s performance as the session bean,
implementing the application’s business logic, exe-
cutes multiple method calls for retrieving the persis-
tent attributes of a single employee. Don’t worry —
using local interfaces for your CMP entity beans
makes the business method calls very efficient.

Defining the Home Interface

The bean’s local home interface serves as a “factory”
for entity objects of a concrete type. For example, the

EmployeeLocalHome interface defines methods for
the client to create, remove, and find Employee entity
objects (we’ll look at these methods in action later in
the article):

• Create methods: Create methods are used to cre-
ate new CMP entity bean objects and their persis-
tent representations; that is, they insert new
records in the data store (the relational database).
The return type of a create method is the entity
bean’s component interface. At runtime, the result
of a create method is an EJBLocalObject repre-
senting the newly created persistent entity. The
arguments of the create methods are typically used
to initialize the state of the created persistent
entity, as shown in Figure 11.

• Finder methods: Finder methods are used by
clients to locate entity objects (see Figure 12).
They search persistent entities that fulfill a
certain criterion. Their return type is either
the entity bean’s component interface or a
java.util.Collection object. At runtime, they
return either a single EJBLocalObject or a collec-
tion of EJBLocalObjects that represent the found
persistent entities.

• Remove methods: Clients can remove a CMP
entity bean and its persistent representation by
calling the remove method of the local home
interface and passing the identity object of
the entity they want to remove, as shown in
Figure 13. As a result, the corresponding
database record will be removed from the
persistent data store.

public EmployeeLocal create(
int empId,
String firstName,
String lastName,
BigDecimal salary,
DepartmentLocal department)
throws CreateException;

Figure 11 Initializing the State of an Entity Object

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 155

�� Tip

There is no need to define a remove method in
your home interface. The remove method is
defined in the javax.ejb.EJBLocalHome interface,
which is a superinterface for all local home
interfaces.

In the local home interface of your CMP entity
bean, you can also define methods that supply busi-
ness logic that is not specific to a single CMP entity
bean. This is useful when you want to have business
methods that execute queries involving more than one
entity. These methods are called “home methods,”
and usually deal with a group of entities rather than a
single entity. The home methods can also serve as
utility methods; that is, they may provide auxiliary
functionality other than manipulation of the
persistent data.

We’re now ready with the Java code of our CMP
entity beans.

Edit the XML Deployment
Descriptors
We next need to describe the CMP entity beans in
XML deployment descriptors (the standard ejb-jar.xml
file and the SAP-specific persistent.xml file), which
will be used to assemble the application.

The Standard Deployment Descriptor
(ejb-jar.xml)

The ejb-jar.xml file contains two basic types of infor-
mation. The first describes the structure of the beans;
the second describes how those beans are assembled
into the application. The metadata describing the
structure of the CMP entity beans is automatically
generated by SAP NetWeaver Developer Studio.
When you use the SAP NetWeaver Developer Studio
wizards to define the name of your bean, its interfaces
and bean class, its primary key, and its CMP and CMR
fields, it automatically generates not only the Java
code, but the XML descriptor as well.7

public EmployeeLocal findByPrimaryKey(Integer primKey)
throws FinderException;

public Collection findAllEmployees() throws FinderException;

public Collection findEmployeesByMinSalary(BigDecimal minSalary)
throws FinderException;

Figure 12 Locating an Entity Object

void remove(Object primaryKey) throws RemoveException, EJBException;

Figure 13 Removing an Entity Object

7 The XML source in a deployment descriptor file can be changed manu-
ally. The download available at www.SAPpro.com explains the seman-
tics of the essential ejb-jar.xml elements in detail.

SAP Professional Journal July/August 2004

156 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

The next step is to define transactional support for
the CMP entity beans, which is the most important
metadata needed for assembling the beans into an
application.

Entity beans always use container-managed trans-
action (CMT) demarcation. That is, the EJB container
starts and completes all transactions, and the bean
provider (the application developer) just chooses the
most suitable behavior for each business method. The
container-transaction element from the ejb-jar.xml file
specifies how the container must manage the transac-
tion scopes for the bean methods. You can choose a
transaction attribute and a list of methods to which
this attribute will be applied. You can also choose a
“whole bean,” which is a convenient way of selecting
all of its business methods. This is what we do with
DepartmentBean and EmployeeBean. In SAP
NetWeaver Developer Studio:

1. Open the ejb-jar.xml editor (Figure 14).

2. From the right-hand pane, choose the
Assembly tab.

3. Select the container-transaction node.

4. Choose Add. From the dialog box that appears,
choose the enterprise beans for which you want to
specify a transaction attribute.

The transaction attribute for the selected beans
and methods can be chosen from the dropdown list at
the lower right of Figure 14. Since entity beans deal
with persistent data from a transactional data store,
their business methods should be executed in a trans-
actional context. For such purposes, Required is the
most useful transaction attribute, and it means that the
methods require execution in a transaction context. If
the caller has such a context, the EJB container propa-
gates this context to the invoked method. Otherwise,
the EJB container automatically starts a new transac-
tion prior to delegating the call to the actual imple-
mentation in the bean instance.

The SAP-Specific Object-Relational Mapping
Descriptor (persistent.xml)

Our example relational database schema consists of
two database tables: TMP_EMPLOYEE, represented
by EmployeeBean, and TMP_DEPARTMENT, repre-
sented by DepartmentBean (see Figure 15).

Figure 14 Defining Transactional Support for the Entity Beans

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 157

When assembling your CMP entity beans in an
application, you must specify their object-relational

mapping, as shown in Figure 16 for the Employee
entity bean. This information is stored in the

Figure 15 The Database Tables of the Example Relational Database Schema
Field Name Type Primary Key Nullable Foreign Key

TMP_DEPARTMENT
DEPID INTEGER Yes No No
NAME CHAR(30) No No No

TMP_ EMPLOYEE
EMPID INTEGER Yes No No

FIRSTNAME VARCHAR(30) No No No

LASTNAME VARCHAR(30) No No No
SALARY DECIMAL(10, 2) No No No
DEPID INTEGER No Yes Yes

<ejb-name>EmployeeBean</ejb-name>
<table-name>TMP_EMPLOYEE</table-name>
<field-map

key-type="PrimaryKey">
<field-name>employeeId</field-name>
<column>

<column-name>EMPID</column-name>
</column>

</field-map>
<field-map

key-type="NoKey">
<field-name>firstName</field-name>
<column>

<column-name>FIRSTNAME</column-name>
</column>

</field-map>
<field-map

key-type="NoKey">
<field-name>lastName</field-name>
<column>

<column-name>LASTNAME</column-name>
</column>

</field-map>
<field-map

key-type="NoKey">
<field-name>salary</field-name>
<column>

<column-name>SALARY</column-name>
</column>

</field-map>

Figure 16 Specifying the Object-Relational Mapping

SAP Professional Journal July/August 2004

158 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

SAP-specific object-relational mapping descriptor
persistent.xml. This descriptor contains all the infor-
mation needed by the EJB container to manage the
automatic synchronization of your persistent data:
the mapping between entity beans and database
tables, between persistent fields and database
columns, and between entity relationships and data-
base table relationships.

The object-relational mapping can easily be
created using the SAP NetWeaver Developer Studio
persistent.xml editor. This editor allows you to
browse the database tables already defined in data dic-
tionary projects and to map your entity beans and their
persistent fields to the corresponding database tables
and columns.8

Create a Session Bean That Will
Access the Entity Beans
Before an application can work with an entity bean,
it first needs to get a reference to the entity bean’s
component interface via its home interface. Accord-
ing to the session façade design pattern, entity beans
should be accessed solely through a session bean.
Here, we’ll examine what a session façade bean for
our EmployeeBean and DepartmentBean entity beans
could look like, and what has to be done to use the
entity beans from within it. Let’s assume that we’ve
followed the previously outlined steps and created a
stateless session bean HRSesBean that provides
(through its own home/component interfaces) all
the functionality a client needs to work with employ-
ees and departments: creating new employees and
new departments, listing all employees, deleting
an employee, moving an employee from one depart-
ment to another, and so on. The session bean
HRSesBean is part of the same J2EE enterprise appli-
cation as the EmployeeBean and the DepartmentBean
entity beans.

The session bean needs to declare that it’s going
to make use of the two entity beans. Since it will
access the entity beans through their local home/
component interfaces, the session bean has to declare
local EJB references to both EmployeeBean and
DepartmentBean.

�� Tip

When you define the session bean façade, don’t
forget to declare local EJB references to all the
entity beans you are going to use from within the
session bean. It’s good practice to prefix the
locally declared JNDI names for the entity beans
with “ejb/”.

Technically, the reference is declared in
ejb-jar.xml by including <ejb-local-ref> declarations
in the declaration of HRSesBean (see Figure 17).

Of course, you don’t have to edit the ejb-jar.xml
file manually in order to declare a reference to another
bean. The ejb-jar.xml editor in SAP NetWeaver
Developer Studio provides a convenient way to
declare such references. Just add a new ejb-local-ref
entry to HRSesBean, as shown in Figure 18. From
the dialog showing all available beans, choose
EmployeeBean and DepartmentBean, and declare the
local name of the reference as ejb/EmployeeBean and
ejb/DepartmentBean, respectively.

What is the purpose of declaring a local EJB
reference ejb/EmployeeBean? Remember that the
session bean HRSesBean needs to get a reference
to the local home interface of the EmployeeBean
before it can access its local component interface
and start working with it. Recall further that each
bean has its own local JNDI context. By declaring a
local EJB reference to EmployeeBean with the name
ejb/EmployeeBean, a reference to the local home
interface of the entity bean EmployeeBean is put into
the JNDI context java:comp/env under the full name

8 For further discussion of this topic, see the article “A Guided Tour
of the SAP Java Persistence Framework — Achieving Scalable
Persistence for Your Java Applications” in the May/June 2004 issue
of SAP Professional Journal.

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 159

java:comp/env/ejb/EmployeeBean. The bottom line is
that the session bean HRSesBean can simply look up

the entity bean EmployeeBean under the name
java:comp/env/ejb/EmployeeBean.

<enterprise-beans>
<session>

<ejb-name>HRSesBean</ejb-name>
…
<ejb-local-ref>

<ejb-ref-name>ejb/EmployeeBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>package.EmployeeLocalHome</local-home>
<local>package.EmployeeLocal</local>
<ejb-link>EmployeeBean</ejb-link>

</ejb-local-ref>
…

</session>

Figure 17 Declaring Local EJB References to the Entity Beans in ejb-jar.xml

Figure 18 Declaring a Local Bean Reference Using SAP NetWeaver Developer Studio

SAP Professional Journal July/August 2004

160 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

The session bean HRSesBean should acquire the
references to the home interfaces of EmployeeBean
and DepartmentBean in the lifecycle method
setSessionContext and store them for later use in
private attributes. The lifecycle method
setSessionContext is invoked automatically by the
EJB container at the very beginning of a bean’s life.
It is invoked immediately after the bean instance has
been instantiated, and allows the bean to acquire
resources that it needs for the rest of its bean life and
that are independent from the client the bean will be
serving. The bean class for HRSesBean will typically
start as shown in Figure 19.

The class HRSesBean has to implement the inter-
face SessionBean that declares (among other methods)
the lifecycle method setSessionContext. Furthermore,
it declares two private fields employeeHome and
departmentHome that hold references to the home
interface of EmployeeBean and DepartmentBean,

respectively. The implementation of the
setSessionContext method is shown in Figure 20.
It looks up the EmployeeBean’s home in the session
bean’s local JNDI context and stores a reference
to it in the instance field employeeHome.

Our session bean HRSesBean is ready to work
with the entity beans in one of its business methods.
Since the business methods access a transactional data
store through the entity beans, the business methods
should be executed in a well-defined transactional con-
text. This is best achieved by simply using container-
managed transactions (CMTs) for the session bean
HRSesBean and declaring all business methods to
have the transaction attribute Required (see Figure 14).
This can be readily done with the SAP NetWeaver
Developer Studio ejb-jar.xml editor. The advantage of
required CMTs is that the EJB container will ensure
that the business method always executes within the
context of an active server-controlled transaction.

public class HRSesBean implements SessionBean {
private EmployeeLocalHome employeeHome;
private DepartmentLocalHome departmentHome;

…
}

Figure 19 Starting the Bean Class for the Session Bean

public void setSessionContext(SessionContext context) {
try {

Context ctx = new InitialContext();
employeeHome = (EmployeeLocalHome)

ctx.lookup(java:comp/env/ejb/EmployeeBean");
} catch (NamingException ex) {

throw new EJBException("Could not find
java:comp/env/ejb/EmployeeBean");

}
…

}

Figure 20 Implementing the setSessionContext Method

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 161

With the entity and session beans created, and the
necessary edits made to the XML deployment descrip-
tors, we can now assemble the J2EE application using
the SAP NetWeaver Developer Studio deployment
wizards. For details on the specific steps involved,
see the article “Get Started Developing, Debugging,
and Deploying Custom J2EE Applications Quickly
and Easily with SAP NetWeaver Developer Studio” in
the May/June 2004 issue of SAP Professional Journal.
Over the remaining sections of this article, we will
look at what happens behind the scenes when a client
accesses our example application and our previous
development work springs into action.

Manipulating Entity Beans and
Their Persistent Entities
When a client accesses our HR session bean — for
example, to hire a new employee — the session bean
in turn uses the methods in the DepartmentBean and
EmployeeBean entity bean component and home
interfaces to manipulate the underlying persistent enti-
ties in the relational database — i.e., to create, update,
and delete persistent entities and to search for entities
that fulfill a given search criterion.

Creating New Entity Beans and Their
Persistent Entities

The session bean creates an entity bean — together
with its corresponding persistent entity in the data
store — by calling one of the create methods in the
bean’s home interface, which returns a reference to

the bean’s component interface. The parameters
passed to the create method are typically used to ini-
tialize the newly created entity bean (see Figure 21).

DepartmentBean has one create method that takes
the ID and the name of the department to be created as
parameters and returns a reference to the component
interface of the newly created department. In the
example in Figure 21, we first create a new depart-
ment with an ID of 0 and the name R&D. We then
create a new employee who works in this department.
The create method for employees takes several param-
eters: the employee’s ID (0), first name (John), last
name (Smith), salary (variable salary), and department
(variable department). Note that the persistent repre-
sentations of the newly created department and of the
newly created employee are not immediately created
in the data store. The actual creation of the persistent
objects in the data store is delayed until the commit
time of the current transaction.

Let’s take a moment and look in more detail at
what happens when a bean is created. Recall that a
bean consists of the bean instance and the EJB entity
object that is inseparably associated with an object
that represents the bean’s object identity. Upon invo-
cation of a create method in the home interface, the
EJB container either takes a bean instance from the
pool or instantiates a new bean instance, and then
invokes the corresponding ejbCreate method on that
bean instance. The purpose of the ejbCreate method
is to initialize the CMP fields of the bean, and to (at
least) initialize the primary key CMP fields. For
each create method in the bean’s home interface, there
must be corresponding ejbCreate and ejbPostCreate
methods in the bean class (that is, methods that have

DepartmentLocal department = departmentHome.create(0, "R&D");
EmployeeLocal employee = employeeHome.create(0,

"John", "Smith",
salary,
department);

Figure 21 Initializing the Newly Created Entity Bean

SAP Professional Journal July/August 2004

162 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

the same parameter signature). These ejbCreate and
ejbPostCreate methods have to be implemented by
the bean provider (i.e., the application developer).
In Figure 22, you see the ejbCreate method from
EmployeeBean, which initializes the CMP fields of
EmployeeBean by calling the abstract set methods.

�� Tip

Always return null in ejbCreate methods.

After the ejbCreate method has been invoked, the
EJB container can retrieve the values of the primary
key CMP fields, construct the identity object, and
associate it with the bean’s EJB object. It should be
clear by now that during the execution of ejbCreate,
no identity is available, so the ejbCreate methods
should only be used for the initialization of CMP
fields; CMP fields, as opposed to CMR fields, don’t
rely on the object identity. CMR fields have to be ini-
tialized in ejbPostCreate methods. The ejbPostCreate

method is called after the corresponding ejbCreate
method has been called. The identity of the bean is
available within the ejbPostCreate method. The code
in Figure 23 shows the ejbPostCreate method of
EmployeeBean. EmployeeBean has only one CMR
field (department), which is initialized by calling its
abstract set method setDepartment.

�� Tip

Never initialize CMR fields in ejbCreate methods.
Always initialize them in ejbPostCreate methods.

Updating Entity Beans and Their
Persistent Entities

The session bean updates an entity bean by calling the
abstract set methods of its CMP and CMR fields. In
the code in Figure 24, we change the last name of an
employee to Miller and change the department she
works in to some “other department.”

Updates are actually triggered by clients invoking
methods in the bean’s component interface. All
updates performed on entity beans are automatically
tracked by the EJB container and written back to the
database at commit time.

public Integer
ejbCreate(

int empId,
String firstName,
String lastName,
BigDecimal salary,
DepartmentLocal

department)
throws

CreateException {

// Initialize the CMP fields
setEmployeeId(new

Integer(empId));
setFirstName(firstName);
setLastName(lastName);
setSalary(salary);
return null;

}

Figure 22 The ejbCreate Method

public void ejbPostCreate(
int empId,
String firstName,
String lastName,
BigDecimal salary,
DepartmentLocal department)
throws CreateException {

// Initialize the CMR field
department

setDepartment(department);
}

Figure 23 The ejbPostCreate Method

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 163

Deleting Entity Beans and Their
Persistent Entities

There are two ways the session bean can delete an
entity bean (see Figure 25):

• By invoking the remove method on the bean’s
component interface

• By passing a reference to the bean’s identity
object to the remove method in the bean’s
home interface

The persistent entity is not removed from the data-
base until the transaction is committed. Before the
persistent entity is removed, the container invokes the

ejbRemove method on the bean instance to notify the
bean about the forthcoming removal. Thus the bean
can perform additional operations such as updating
other beans. For beans that are in a relationship, one
can declaratively specify “cascading deletes,” so that
all dependent objects are also deleted (see the sidebar
on pages 150-153).

Finding Entity Beans and Their
Persistent Entities

The session bean finds existing entity beans in the
data store that meet a given search criterion using
query methods. There are two kinds of query meth-
ods: finder methods and select methods. The main
difference between these two is that finder methods
are exposed to clients, whereas select methods can
only be used internally in the bean class. For the sake
of brevity, we will focus on finder methods.9

Finder methods are exposed to clients through the
bean’s home interface, as shown in Figure 26.

We declare some finder methods in the local home
interface of EmployeeBean. A finder method has to
specify the exception javax.ejb.FinderException in
its throws clause. It can take parameters and it basi-
cally returns a collection of entity beans, or, to be
more precise, a collection of references to the beans’

employee.setLastName("Miller");
employee.setDepartment(

otherDepartment);

Figure 24 Updating an Entity Bean

employee.remove();

// or alternatively:

employeeHome.remove(employeePKObj);

Figure 25 Deleting an Entity Bean

public interface EmployeeLocalHome extend EJBLocalHome {
…

EmployeeLocal findByPrimaryKey(Object pk)
throws FinderException;

Collection findAllEmployees() throws FinderException;
Collection findEmployeesByLastName(String lastName)

throws FinderException;
Collection findEmployeesByDepartment(String depName)

throws FinderException;
}

Figure 26 Using Finder Methods

9 You can find more on select methods in the NetWeaver documentation
and in many EJB books.

SAP Professional Journal July/August 2004

164 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

component interfaces. Note that a finder method can
only return beans of its own kind — a finder method
in the employee home can only return employees; it
cannot return department beans or strings.

Finder methods that are expected to find more
than one bean are called “multi-object finders” (for
example, findEmployeesByLastName) and must have
java.util.Collection as the return type. Finder methods
that will return at most one bean are called “single-

object finders” (for example, findByPrimaryKey) and
can simply use the bean’s component interface as the
return type.

Finder methods are declared in the bean’s home
interface. But where and how are their semantics
(that is, the actual search conditions) specified and
implemented? Apart from putting the finder declara-
tion into the home interface, the bean provider (the
application developer) has to declare the finder in the

Figure 27 The EJBQL Query for a Finder Method

�� Note!

Every entity bean has to declare at least the special single-object finder findByPrimaryKey in its home interface.
This finder takes a reference to a primary key object as a parameter and returns the corresponding bean. Method
findByPrimaryKey is implemented automatically by the EJB container.

Persist Data for Your J2EE Applications with Less Effort Using Entity Beans with Container-Managed Persistence (EJB CMP)

For site licenses and volume subscriptions, call 1-781-751-8799. 165

ejb-jar.xml deployment descriptor, where the name
and the signature of the finder are declared. The
finder’s semantics are declaratively specified by
means of the EJB Query Language (EJBQL). That’s
all the bean provider has to do.

�� Note!

Don’t put anything about finders in your bean
class code.

During deployment, the EJB container uses the
home interfaces to figure out what the finders are
and to relate them to the finder declarations in the
deployment descriptor. Given the finder declarations
together with the EJBQL query, the EJB container
then generates the complete implementation of the
finder method, including all necessary database access
code. You can easily declare finder methods with the
SAP NetWeaver Developer Studio EJB editor. The
actual EJBQL query for a finder method is specified
in the ejb-jar.xml editor (see Figure 27).

EJBQL allows you to write queries for your find-
ers in a portable and SQL-like style. With EJBQL,
you don’t have to know anything about the real data-
base where your beans will finally run. For the search
condition, you simply use your object model. During
deployment, the EJB container will generate the real
database access code for your queries. In our case,
with a relational database, the EJBQL queries are
translated by the container into semantically equiva-
lent SQL queries. Let’s take a look at a simple
EJBQL query, shown in Figure 28. This query
returns all employees whose salary is greater than or
equal to a specific salary that is given as the value of
the parameter ?1.

As you can see in Figure 28, a query consists of
three parts:

• The SELECT clause, which specifies the kinds
of things the query will return. SELECT Object(e)
says that the query will return e beans, whatever
e is. Formally, e is called an “identification
variable.”

• The FROM clause, in which the domain of the
query is declared. Here, we tell the container
where we want it to search for beans. This is done
by declaring the identification variables that are
used in the SELECT clause. FROM Employee e
simply says that we want to search for
EmployeeBean beans.

• The WHERE clause, which is optional, lets you
define extra search criteria for the beans you are
looking for. By using WHERE e.salary >= ?1,
you are saying that you are not interested in all
employees, only in those whose salary fulfills the
given condition.

A query can have parameters (?1, ?2, ?3, etc.)
that correspond to the parameters of the finder method.
When a finder method is invoked, the underlying query
is executed with its parameters bound to the current val-
ues of the corresponding parameters of the finder.

�� Note!

You may have observed that we don’t use the
actual bean name EmployeeBean in the EJBQL
query in Figure 28. Instead we use Employee to
refer to EmployeeBean. Each CMP entity bean
has a second name, its abstract schema name,
which you have to use in EJBQL queries to refer to
the bean. The abstract schema name is declared in
the ejb-jar.xml deployment descriptor as part of
the bean’s declaration.

In the WHERE clause WHERE e.salary >?= ?1
in Figure 28, we use the dot notation e.salary in the

SELECT Object(e) FROM Employee e
WHERE e.salary >= ?1

Figure 28 A Simple EJBQL Query

SAP Professional Journal July/August 2004

166 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

query to navigate to and access the CMP field salary
of the EmployeeBean, denoted by e. With the dot
notation, you can make up paths and navigate in an
object-oriented way. In the example in Figure 29,
we even navigate to another related bean. The single-
valued CMR field department is used to navigate from
Employee to Department.

The path used in navigation must end up in a
CMP field. You can only navigate from one bean to
another through single-valued CMR fields. In the
case of collection-valued CMR fields, you have to use
the IN operator, which lets you declare a variable that
ranges over the elements of the collection. With the
query in Figure 30, we search for all departments that
have at least one employee whose salary is greater
than or equal to a given salary.

By using the IN operator we declare the identifica-
tion variable e that ranges over the elements of the
collection d.employees.

Conclusion
This article has aimed to provide you with a general
introduction to CMP entity beans and the transparent

object persistence provided by the SAP Web AS 6.40
EJB container. By following the steps for developing
CMP entity beans, getting acquainted with the EJB
development tools in SAP NetWeaver Developer
Studio, and looking behind the curtain to see entity
beans in action, you have glimpsed the powerful
world of CMP entity beans. We hope we have given
you the knowledge and the confidence to delve more
deeply into this area and to discover some of the more
interesting features of CMP entity beans — they will
prove to be of great help to you in lots of situations by
reducing your custom-coding workload. Try it for
yourself and see!

Christian Fecht studied computer science at
the University of Saarland in Saarbruecken,
Germany, where he received his Ph.D. in 1997.
He joined SAP in 1998 as a member of the
Business Programming Languages group,
where he was responsible for the ABAP runtime
environment, in particular the ABAP Objects
garbage collector. Christian is currently a member
of the Java Server Technology group, where he
works in the area of Java persistence, with a
special focus on object persistence. He can be
reached at christian.fecht@sap.com.

Svetoslav Manolov graduated with a degree in
computer science from Sofia University, Bulgaria,
after completing a master’s degree thesis on
persistence management. He joined SAP Labs
Bulgaria when it was founded in 2000. Svetoslav
is a member of the Java Server Technology group,
where he works in the area of EJB and Java
persistence, and currently leads the EJB team. He
can be reached at svetoslav.manolov@sap.com.

SELECT Object(e)
FROM Employee e, Department d
WHERE e.department.name >= ?1

Figure 29 Navigating to a Related Bean

SELECT Object(d)
FROM Department d,

IN(d.employees) e
WHERE e.salary >= ?1

Figure 30 Using the IN Operator

