
Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 105

Thomas G. Schuessler is
the founder of ARAsoft, a
company offering products,
consulting, custom
development, and training
to customers worldwide,
specializing in integration
between SAP and non-SAP
components and applications.
Thomas is the author of
SAP’s BIT525 and BIT526
classes. Prior to founding
ARAsoft in 1993, he worked
with SAP AG and SAP
America for seven years.

(complete bio appears on page 123)

free advice often turns out to be expensive
– Terry Pratchett, The Wee Free Men, p. 50

When I teach SAP Java Connector (JCo) training classes or workshops,
some of the participants have previous JCo programming experience.
They may have tried the sample programs supplied with JCo or even
written some JCo code themselves. Invariably, they are looking for
advanced information on JCo to help them improve their applications or
speed up their development projects. If you are in the same situation,
then this article is for you. It contains an assortment of general
recommendations, performance tips, debugging tricks, and solutions
to specific client programming challenges that should be of value to
all JCo developers.

If you are a Java programmer new to JCo, I recommend that you
read my JCo tutorial (supplied with JCo) and then try out some of the
sample programs before continuing with this article.

Take Advantage of the SAP Java IDoc
Class Library
From the dawn of its time, JCo could be utilized to send and receive
IDocs (Intermediate Documents). The creation or interpretation of
an IDoc required a lot of programming effort, though. Not anymore.
With the release of the SAP Java IDoc Class Library, you can create or
interpret an IDoc with much less work. Download the product from

Tips and Tricks for SAP
Java Connector (JCo)
Client Programming

Thomas G. Schuessler

SAP Professional Journal January/February 2004

106 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

http://service.sap.com/connectors and try the sample
programs. For a great introduction to the library, read
Robert Chu’s articles in the September/October 2003
issue of this publication.

Upgrade to JCo 2.1.1
When you compare the quality of different SAP
products, JCo is definitely in the top 10 percent.
That notwithstanding, there have been some releases
that introduced “features” (a.k.a. bugs) that we could
have lived without. An automatic update to the latest
release is therefore dangerous. Release 2.1.1, I
am happy to report, is a very stable release and I
recommend that you upgrade to it sooner or later.
Sooner especially if you are still using JCo 1.x, for
which support has ended with 2003.

Data Type Mapping and
Conversions
When you invoke an RFC-enabled Function Module

(RFM) in SAP, JCo needs to translate between the
ABAP and Java data types. JCo uses six different
Java data types to represent the ABAP data types.
Figure 1 shows the mapping between the ABAP and
Java data types used by JCo.

Corresponding to these six Java data types, JCo
offers six data-type-specific access methods for fields
(e.g., getBigDecimal()) plus a generic access method
(getValue()). See Figure 2 for a complete list of these
seven methods.

In addition, JCo provides convenience methods
that are useful if you need different data types in
your application (see Figure 3). Some of these
methods may be new even to experienced JCo
developers because SAP has added them
comparatively recently.

When you use an access method that does not
correspond to a field’s Java data type, JCo will try to
convert the contents to the requested data type. A
JCO.ConversionException will be thrown if the
conversion fails.

Figure 1 ABAP and Java Data Types

ABAP Description Java Type Constant

b 1-byte integer int JCO.TYPE_INT1

s 2-byte integer int JCO.TYPE_INT2

I 4-byte integer int JCO.TYPE_INT

C Character String JCO.TYPE_CHAR

N Numerical character String JCO.TYPE_NUM

P Binary Coded Decimal BigDecimal JCO.TYPE_BCD

D Date Date JCO.TYPE_DATE

T Time Date JCO.TYPE_TIME

F Float double JCO.TYPE_FLOAT

X Raw data byte[] JCO.TYPE_BYTE

g String (variable-length) String JCO.TYPE_STRING

y Raw data (variable-length) byte[] JCO.TYPE_XSTRING

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 107

To change the value of a field, you utilize the
setValue() method. This method is overloaded for
the data types listed in Figure 4. Again, JCo will try
to convert and throw an exception if you pass an
unconvertible value.

For most data types, the mapping always works
without requiring any special attention. There are
two exceptions:

• Some BAPIs use unconventional date and/or
time values. Dates like “00000000” and
“99999999” as well as the time “240000” are

public java.math.BigDecimal getBigDecimal(int index/String field_name)

public byte[] getByteArray(int index/String field_name)

public java.util.Date getDate(int index/String field_name)

public double getDouble(int index/String field_name)

public int getInt(int index/String field_name)

public java.lang.String getString(int index/String field_name)

public java.lang.Object getValue(int index/String field_name)

Figure 2 Basic Field Access Methods

Figure 3 Convenience Field Access Methods

public java.math.BigInteger getBigInteger(int index/String field_name)

public java.io.InputStream getBinaryStream(int index/String field_name)

public char getChar(int index/String field_name)

public java.io.Reader getCharacterStream(int index/String field_name)

public short getShort(int index/String field_name)

public long getLong(int index/String field_name)

public java.util.Date getTime(int index/String field_name)

Figure 4 Data Types Allowed in setValue()

byte[]

char

int

long

double

short

java.lang.Object

java.lang.String

SAP Professional Journal January/February 2004

108 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

illegal in Java. In order to support BAPIs that
use these values, JCo has special rules shown
in Figure 5. As you can see, you get different
results depending on whether you invoke
getString() or getDate()/getTime().

• Some BAPIs do not follow the rules defined
for currency amounts and return incorrect
amounts if the specific currency uses more or
less than two decimals. Unfortunately, quite
famous BAPIs like SalesOrder.GetStatus are
amongst those in this category. For more
information about this problem and how to deal
with it, please read my article “Currencies and
Currency Conversions in BAPI Programming”
in the September/October 2001 issue of this
publication.

Always Use a Fresh
JCO.Function Object
Some customers have tried to optimize the
performance of their applications by reusing existing
JCO.Function objects. This is not only superfluous
because JCO.Repository buffers the metadata for
the RFMs itself, but also dangerous. If you call a
function in SAP that fills a table parameter without
deleting existing rows first, then more and more
rows are added to this table. In other words, you get
incorrect results. In order to simplify the creation of
new JCO.Function objects, you can use a method like
the one shown in Figure 6. Class ARAsoftException,
which allows the chaining of exceptions, is listed in
Appendix A on page 124. Figure 7 is sample code
that uses the createFunction() method.

Figure 5 Treatment of Special Date and Time Values

ABAP Data Type Contents getString() getDate() or getTime()

D 00000000 0000-00-00 null

D 99999999 9999-99-99 9999-12-31

T 240000 24:00:00 23:59:59

Figure 6 The createFunction Method

public JCO.Function createFunction(String name)
throws ARAsoftException {

try {
IFunctionTemplate ft =

mRepository.getFunctionTemplate(name.toUpperCase());
if (ft == null)

return null;
return ft.getFunction();

}
catch (Exception ex) {

throw new ARAsoftException(
"Problem retrieving JCO.Function object.", ex);

}
}

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 109

Figure 7 Using the createFunction Method

JCO.Function function =
createFunction("BAPI_COMPANYCODE_GETLIST");

mConnection.execute(function);
JCO.Structure bapiReturn = function.getExportParameterList()

.getStructure("RETURN");
if (! (bapiReturn.getString("TYPE").equals("") ||

bapiReturn.getString("TYPE").equals("S"))) {
System.out.println(bapiReturn.getString("MESSAGE"));
System.exit(0);

}
JCO.Table table =

function.getTableParameterList().getTable("COMPANYCODE_LIST");
int records = table.getNumRows();
for (int i = 0; i < records; i++) {

table.setRow(i);
function = createFunction("BAPI_COMPANYCODE_GETDETAIL");
function.getImportParameterList()

.setValue(table.getString("COMP_CODE"),
"COMPANYCODEID");

mConnection.execute(function);
bapiReturn = function.getExportParameterList()

.getStructure("RETURN");
if (! (bapiReturn.getString("TYPE").equals("") ||

bapiReturn.getString("TYPE").equals("S"))) {
System.out.println(bapiReturn.getString("MESSAGE"));

}
}

1 Tom Archer and Andrew Whitechapel, Inside C#, p. 145.

Use the Request/Response
Programming Model
An RFM has three types of parameters:

• Import: These parameters are passed from the
JCo client to the RFM. Import parameters are
usually scalars (simple fields) or structures
(groups of fields). In some rare cases (since 4.6C)
import parameters are tables, but this feature is
not used in BAPIs. Import parameters can be
optional or mandatory. Scalar optional import
parameters usually have a default value.

• Export: These parameters are passed from the
RFM back to the JCo client. As for import
parameters, export parameters are usually
scalars or structures, and in rare cases, tables.

• Tables: These parameters, which can be optional
or mandatory, represent ABAP internal tables,
i.e., smart arrays. Table parameters are
technically passed by reference. Only the
documentation (“in other words, the source
code”1) tells the developer whether the parameter
is semantically to be interpreted as import, export,
or both.

When an RFM is defined as a BAPI, a table
parameter can be marked as import only,
export only, or both, but this setting has only
informational value and is totally ignored when
the BAPI is invoked as an RFM. In addition,
not all BAPIs are defined correctly with regard
to this setting.

SAP Professional Journal January/February 2004

110 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Figure 8 The createRequest Method

public JCO.Request createRequest(String name)
throws ARAsoftException {

try {
IFunctionTemplate ft =

mRepository.getFunctionTemplate(name.toUpperCase());
if (ft == null)

return null;
return ft.getRequest();

}
catch (Exception ex) {

throw new ARAsoftException(
"Problem retrieving JCO.Request object.", ex);

}
}

Figure 9 Using the Request/Response Programming Model

JCO.Request request = createRequest("BAPI_COMPANYCODE_GETLIST");
JCO.Response response = mConnection.execute(request);
JCO.Structure bapiReturn = response.getStructure("RETURN");
if (! (bapiReturn.getString("TYPE").equals("") ||

bapiReturn.getString("TYPE").equals("S"))) {
System.out.println(bapiReturn.getString("MESSAGE"));
System.exit(0);

}
JCO.Table table =

response.getTable("COMPANYCODE_LIST");
int records = table.getNumRows();
for (int i = 0; i < records; i++) {

table.setRow(i);
request = createRequest("BAPI_COMPANYCODE_GETDETAIL");
request.setValue(table.getString("COMP_CODE"),

"COMPANYCODEID");
response = mConnection.execute(request);
bapiReturn = response.getStructure("RETURN");
if (! (bapiReturn.getString("TYPE").equals("") ||

bapiReturn.getString("TYPE").equals("S"))) {
System.out.println(bapiReturn.getString("MESSAGE"));

}
}

In the standard JCo programming model, these
three parameter types are represented by three

objects of type JCO.ParameterList, accessed via the
JCO.Function object’s getImportParameterList(),

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 111

getExportParameterList(), and
getTableParameterList() methods. (See Figure 7
for sample code using these methods.)

Although most developers get used to the standard
programming model after comparatively little time,
some still feel uncomfortable. For these developers,
JCo offers an alternative, the Request/Response
programming model. Instead of explicitly creating
a JCO.Function object, the application creates an
object of type JCO.Request. This object then allows
access to all parameters defined as Import or Tables.

To invoke the RFM, you use the
execute(JCO.Request request) method of object
type JCO.Client. This overloaded version of the
execute(JCO.Function function) method returns
an object of type JCO.Response, which allows access
to all Export and Tables parameters. Figure 8 shows
a sample method (similar to the createFunction()
method in Figure 6) that can be used to encapsulate
the creation of a JCO.Request object. Figure 9
contains the application code from Figure 7, rewritten
to use the Request/Response programming model.
There are no performance penalties for using the
Request/Response model, so your choice should
be based entirely on your personal preferences.
Each development project should probably define
a standard for this choice, so that developers have
no problem when maintaining other people’s code.

Use Only One Repository
The most important performance tip for applications
that are clients to an SAP server is to avoid calls to
said server. In general, that means caching read-
only SAP information in your client application.
In terms of the JCO.Repository class, it means to
create only one repository object per SAP system
that your application is connected to. The RFM
metadata that the JCO.Repository caches is client-
independent (“client” here meaning the 3-digit
number that logically separates an SAP database),
so one repository per SAP system is sufficient.
JCO.Repository dynamically retrieves RFM metadata
from SAP for each RFM that it could not find in its

cache. Creating one repository object per user of
your application, or, even worse, for each session of
each user, significantly increases the number of SAP
calls your application is responsible for. This will not
only slow down your application, but also the SAP
system itself. So the importance of creating only one
repository per SAP system cannot be overestimated.

Unfortunately, JCo does not help you to
accomplish this task, so you need to write a suitable
repository manager class yourself. This class must
keep a reference to each repository object and provide
methods that allow the client program to access
existing repositories or create new ones if necessary.

For more information about JCO.Repository,
please refer to my article “Repositories in the SAP
Java Connector (JCo)” in the March/April 2003 issue
of this publication. An implementation of a repository
manager class, StandardRepositoryManager, is
reprinted in Appendix B on page 126 for your
convenience.

Using Connection Pools
This topic warrants its own article, but I will give you
the most important information here:

• Use one pool for your JCO.Repository and
technical support components encapsulating
Helpvalues, conversions between the internal and
external SAP data formats, metadata retrieval, etc.

• Use one pool for the anonymous users (if any)
of your application.

• Use a (small) pool for each named user of your
application. Using this approach instead of
explicitly created JCO.Client objects makes it
much easier to strike the proper balance between
freeing resources in SAP and avoiding too many
logons to SAP.

• Return a JCO.Client (via a call to releaseClient())
that you obtained from a pool (via a call to
getClient()) early, but not too early. It makes
no sense to bracket each RFM invocation with

SAP Professional Journal January/February 2004

112 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

getClient()/releaseClient() if a sequence of RFMs
is called successively without any user interaction
or other prolonged wait periods.

Also be aware that if you use BAPIs that
require an extra commit by the application,
these BAPIs and the commit BAPI
(BapiService.TransactionCommit, RFM
BAPI_TRANSACTION_COMMIT) must be
called in the same getClient()/releaseClient()
bracket.

• Make the pool large enough so that wait situations
do not occur. In older versions of JCo, the
maximum value of connections in a pool,
specified when the pool was created, could
never be exceeded. Nowadays, there is an
additional parameter that can be set using the
setMaxConnections() method of JCO.Pool.
When the pool is created, MaxConnections
is set to the same value as MaxPoolSize.
MaxConnections controls the maximum number
of JCO.Client objects that can be obtained from
the pool. MaxPoolSize controls how many
JCO.Client objects are kept in an internal array.
If a connection that is part of the internal array
is returned to the pool, it will be kept open
(connected to SAP) until ConnectionTimeOut

(default: 10 minutes) is reached. This allows
you to reuse a connection without having to go
through the expensive logon process again. If
a connection that is not part of the internal array
is returned to the pool (this is only possible if
MaxConnections is larger than MaxPoolSize),
it is closed immediately.

My recommendation is to set MaxPoolSize to a
value large enough to cover any activity of your
application other than absolute peaks. Make
MaxConnections large enough so that the limit is
never reached. An exception to this would be the
small pools used for individual named users. Here
a small MaxConnections is a suitable way to ensure
that the same user does not have an inordinate
number of sessions with the SAP system.

Use Properties for Connection
Information
When you create a JCO.Client or JCO.Pool object,
you have several overloaded versions of the pertinent
methods to choose from. My recommendation is to
avoid hard-coded values and use a Properties object
instead. Figure 10 contains a code snippet that

Figure 10 Using Properties to Create a JCO.Pool

import com.sap.mw.jco.*;

static final String POOL_NAME = "ARAsoft";

try {
if (JCO.getClientPoolManager().getPool(POOL_NAME) == null) {

OrderedProperties logonProperties =
OrderedProperties.load("/logon.properties");

JCO.addClientPool(POOL_NAME, 10, logonProperties);
}
JCO.Pool pool = JCO.getClientPoolManager().getPool(POOL_NAME);

}
catch (Exception ex) {

ex.printStackTrace();
}

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 113

creates a pool object based on the information in a file
(Figure 11). You can initialize your Properties object
whichever way you like, but for your convenience
class OrderedProperties is provided in Appendix C
on page 130.

Inactivate Table Parameters
Some RFMs, especially BAPIs, cover a lot of
application scope and thus need to have quite a few
table parameters. A concrete application usually only
needs a subset of all these tables. You can improve
the performance of your application by inactivating
those table parameters that your application does
not utilize. This is accomplished by invoking
the setActive() method, available both for the
JCO.ParameterList and JCO.Request object types.
Figure 12 shows sample code that inactivates a
table parameter.

Improving System Performance
When Appending Multiple Table
Rows
You can manipulate table parameters by deleting,
inserting, or appending rows. If you need to append
multiple rows, your application will run faster if you

replace multiple calls to the appendRow() method
by one call to appendRows(int num_rows). An
alternative approach is the ensureBufferCapacity(int
required_rows) method, which was added in
JCo 2.1.1.

Collecting Structures into a Table
A structure parameter is equivalent to a table
parameter with exactly one row. Both structures and
table rows are composed of fields. This is reflected
by the fact that both JCO.Structure and JCO.Table
are subclasses of JCO.Record. In some applications,
we need to somehow collect the contents of multiple
structure objects. An example would be an
application that needs all the details for all company
codes. You would first call CompanyCode.GetList
(RFM BAPI_COMPANYCODE_GETLIST) to
produce a list of all company codes and their
names and then call CompanyCode.GetDetail
(RFM BAPI_COMPANYCODE_GETDETAIL)
once for each company code in order to retrieve
the details provided in structure parameter
COMPANYCODE_DETAIL.

JCo makes collecting all the information
contained in those structures extremely easy by
allowing you to collect them into a table. The first
step is to create a table with the same fields (columns)

Figure 11 Sample Contents of File logon.properties

jco.client.client=001
jco.client.user=userid
jco.client.passwd=secret
jco.client.ashost=hostname
jco.client.sysnr=00

Figure 12 Inactivating a Table Parameter

function.getTableParameterList().setActive(false, "TABLE_PARAM");

SAP Professional Journal January/February 2004

114 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

that the structure to be collected contains. This
is accomplished by invoking the constructor of
JCO.Table, passing the structure parameter object

for COMPANYCODE_DETAIL as the only
parameter (see Figure 13 for sample code for
this and subsequent operations).

Figure 13 Collecting Structures into a Table

import com.sap.mw.jco.*;

import de.arasoft.java.ARAsoftException;
import de.arasoft.sap.jco.BapiMessageInfo;
import de.arasoft.sap.jco.StandardRepositoryManager;

public class CompanyCodes {
JCO.Repository mRepository;
JCO.Client mConnection;
static final String POOL_NAME = "ARAsoft";

public CompanyCodes() {
try {

if (JCO.getClientPoolManager().getPool(POOL_NAME) == null) {
OrderedProperties logonProperties =

OrderedProperties.load("/logon.properties");
JCO.addClientPool(POOL_NAME, 10, logonProperties);

}
JCO.Pool pool = JCO.getClientPoolManager().getPool(POOL_NAME);
mRepository =

StandardRepositoryManager.getSingleInstance()
.getRepository(pool, true);

mConnection = JCO.getClient(POOL_NAME);
JCO.Function function =

createFunction("BAPI_COMPANYCODE_GETLIST");
mConnection.execute(function);
BapiMessageInfo returnMessage =

new BapiMessageInfo(function.getExportParameterList()
.getStructure("RETURN"));

if (! returnMessage.isBapiReturnCodeOkay()) {

System.out.println(returnMessage.getFormattedMessage());
System.exit(0);

}
JCO.Table table =

function.getTableParameterList().getTable("COMPANYCODE_LIST");
function = createFunction("BAPI_COMPANYCODE_GETDETAIL");

// Create a table based on a structure

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 115

JCO.Table infos =
new JCO.Table(function.getExportParameterList()

.getStructure("COMPANYCODE_DETAIL"));
infos.ensureBufferCapacity(table.getNumRows());

int records = table.getNumRows();
for (int i = 0; i < records; i++) {

table.setRow(i);
function = createFunction("BAPI_COMPANYCODE_GETDETAIL");
function.getImportParameterList()

.setValue(table.getString("COMP_CODE"),
"COMPANYCODEID");

mConnection.execute(function);
returnMessage =

new BapiMessageInfo(function.getExportParameterList()
.getStructure("RETURN"));

if (! returnMessage.isBapiReturnCodeOkay(false, false,
null, "FN021")) {

System.out.println(returnMessage.getFormattedMessage());
System.exit(0);

}
// Copy the data of the structure to the table

infos.copyFrom(function.getExportParameterList()
.getStructure("COMPANYCODE_DETAIL"));

}
infos.writeHTML("c:\\infos.html");

}
catch (Exception ex) {

ex.printStackTrace();
}
finally {

JCO.releaseClient(mConnection);
}

}

public static void main(String[] args) {
CompanyCodes app = new CompanyCodes();

}
}

Then, after each call of
BAPI_COMPANYCODE_GETDETAIL, we
append the structure data in the

COMPANYCODE_DETAIL parameter to the table
by invoking the copyFrom() method offered by
JCO.Table. It is not necessary to call appendRow()

Figure 13 (continued)

SAP Professional Journal January/February 2004

116 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

before calling copyFrom(), since the latter method
appends a new row automatically.

Use Proper Exception Handling
JCo uses three types of exceptions. JCO.Exception
is the main one, and JCO.AbapException and
JCO.ConversionException are its subclasses.
JCO.ConversionException was discussed earlier.
JCO.AbapException is thrown whenever the RFM
you invoke raises an exception. All three exceptions
are runtime exceptions, i.e., you are not syntactically
required to catch them or define them in the method
signature. This should not be interpreted as an
indication that proper exception handling in your
application is not necessary. Figure 14 shows an
exception handling example, in which we differentiate
between the NOT_FOUND exception and other
ABAP exceptions raised by DDIF_FIELDINFO_GET.

Synchronization in JCo
Sharing objects between threads is always somewhat
dangerous without synchronization, so it is important
to know how JCo deals with this. The rule is simple:
Access to JCO.Pool and JCO.Repository objects is
synchronized and nothing else! Sharing connections
(JCO.Client objects) is specifically disallowed and
will lead to an exception. Sharing other objects like
JCO.Table objects is possible, but you need to take
care of the synchronization yourself.

Create HTML to Help with
Debugging
When debugging your application, you oftentimes
need to check the contents of the parameters of the
RFMs you invoke. Using the debugger contained
in your IDE, this is a very cumbersome task. JCo

Figure 14 Exception Handling

JCO.Function function = this.createFunction("DDIF_FIELDINFO_GET");
try {

function.getImportParameterList()
.setValue("MARA", "TABNAME");

mConnection.execute(function);
}
catch (JCO.AbapException ex) {

if (ex.getKey().equalsIgnoreCase("NOT_FOUND")) {
System.out.println

("Dictionary structure/table not found.");
System.exit(1);

}
else {

System.out.println(ex.getMessage());
System.exit(1);

}
}
catch (JCO.Exception ex) {
// Handle the exception
}
catch (Exception ex) {
// Handle the exception
}

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 117

offers methods that make this exercise very simple,
by allowing you to create HTML files for JCO.Record
(and hence its subclasses JCO.ParameterList,
JCO.Structure, JCO.Table, JCO.Request, and
JCO.Response) and JCO.Function objects. The
pertinent method is writeHTML(java.lang.String
html_filename). If you use it for a JCO.Table (as
shown towards the end of Figure 13), by default
only the first 100 rows plus the last row of the table
are written to the HTML file (see Figure 15 for a
screenshot of the beginning of the HTML file created
by running the code in Figure 13). This is because a
JCO.Table object could potentially contain millions of
records, and browsers (at least Internet Explorer) have
problems displaying very large HTML pages. If you
need more than these 101 rows, you can change the
jco.html.table_max_rows property by calling
the setProperty() method of class JCO.

Debugging the ABAP Code
Sometimes you are quite certain that your Java code
is correct and the problem to be debugged probably
resides in the invoked ABAP code. How can you find
out whether you are right? SAP actually allows you
to debug the ABAP code if the following prerequisites
are met:

• SAPGUI is installed on the machine on
which the JCo client code is running.

• You invoke setAbapDebug(true)
for the relevant JCO.Client or JCO.Pool
object before the connection to SAP is
established.

Then, as if by magic, the ABAP debugger will

Figure 15 The HTML Representation of a Table

SAP Professional Journal January/February 2004

118 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

appear. It obviously helps to be able to operate this
debugger and understand ABAP source code. You
may have to ask an ABAP expert for help here. See
Figure 16 for a screenshot of the ABAP debugger
in action.

If the RFM that you are invoking is not in
the repository cache yet, the first few calls you
will see in SAP will be to metadata retrieval
functions like DDIF_FIELDINFO_GET. Just
continue until the RFM you are interested in is
reached.

Obviously, debugging a web application this

way may be a bit difficult, because you may not be
allowed direct access to that server or it does not
have SAPGUI installed. This is one of several
reasons why I keep recommending that all SAP-
related application functionality be encapsulated
in classes that can be tested separately.

Combining ABAP Date
and Time Fields
ABAP uses different data types for date (D) and
time (T) information. In Java, both date and time

Figure 16 Using the ABAP Debugger

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 119

are contained in a java.util.Date object. How do
you combine two ABAP fields containing date and
time into one Java Date object? There are several
possible approaches to this, but my favorite one uses
the java.text.SimpleDateFormat class. Unfortunately,
this class has a bug in at least some of Sun’s Java
releases. This bug creates incorrect Date objects
if SimpleDateFormat is invoked concurrently
by multiple threads. The JCo developers found
this bug during stress tests of JCo and decided
to solve the issue by writing their own class,
com.sap.mw.jco.util.SyncDateFormat. This class
extends SimpleDateFormat and overwrites the
buggy format() and parse() methods, making
them synchronized. JCo does not provide Javadoc
for SyncDateFormat, but that is not necessary,
because it has the same features as
SimpleDateFormat.

Figure 17 contains two combineDateAndTime()
methods that use JCo’s SyncDateFormat class. The
first method expects two parameters of type Date,
the second one two JCO.Field objects. JCO.Field
is a convenience class that allows you to treat fields
in a uniform way, regardless of whether they are
scalar parameters, fields in a structure, or fields in
a row in a table.

Retrieving the SAP Date and Time
The date and time used in the SAP server is not
necessarily the same as that used in the JCo
client machine. SAP provides an RFM,
MSS_GET_SY_DATE_TIME, that allows you to
retrieve the current date and time of the SAP server.

Figure 17 Combining ABAP Date and Time Fields

import com.sap.mw.jco.util.SyncDateFormat;

private static final SyncDateFormat dateISO =
new SyncDateFormat("yyyy-MM-dd");

private static final SyncDateFormat timeISO =
new SyncDateFormat("HH:mm:ss");

private static final SyncDateFormat dateTimeISO
= new SyncDateFormat("yyyy-MM-ddHH:mm:ss");

public static Date combineDateAndTime(Date date, Date time) {
try {

return dateTimeISO.parse(dateISO.format(date) +
timeISO.format(time));

}
catch (Exception ex) { return null; }

}
public static Date combineDateAndTime(JCO.Field date, JCO.Field time) {

try {
return combineDateAndTime(date.getDate(), time.getDate());

}
catch (Exception ex) { return null; }

}

SAP Professional Journal January/February 2004

120 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Figure 18 contains a utility method that invokes
MSS_GET_SY_DATE_TIME and returns a Java Date
object, making use of the combineDateAndTime()
method just discussed.

Retrieving the SAP Date Format
For every R/3 user, the date format to be used
in SAPGUI can be individually defined. If you
want to use the same date format in your own
GUI (e.g., in a browser-based application), you
need to find out the date format defined in R/3.
This can be accomplished by invoking
RFC_GET_SAP_SYSTEM_PARAMETERS,
which in addition to the date format also returns
the user’s language and the decimal symbol defined
for the user. Figure 19 lists a sample function for
retrieving the date format from R/3. Note that
RFC_GET_SAP_SYSTEM_PARAMETERS is

not available in other ABAP-based SAP components
like CRM.

Encapsulate the Checking of the
BAPI Return Parameter
Each BAPI is supposed to have a RETURN
parameter. This can be either a structure or a table.
In the latter case, an empty table signifies a successful
invocation of the BAPI. If the table contains rows,
you need to check each of them. If a RETURN
structure parameter or a row in a RETURN table
parameter contains something other than “S” or
an empty string in the TYPE field, then the BAPI
was not completely successful. To ensure that all
application programs check the RETURN parameter
in a consistent fashion, it is recommended that you use
a standard method like the one shown in Figure 20.

Figure 18 Retrieving the SAP Date and Time

public static Date getSapDateAndTime(JCO.Client connection,
IRepository repository)

throws ARAsoftException {
JCO.Function function = null;
try {

function = createFunction(repository, "MSS_GET_SY_DATE_TIME");
if (function == null)

throw new ARAsoftException
("MSS_GET_SY_DATE_TIME not found in the SAP system.");

connection.execute(function);
return

combineDateAndTime(function.getExportParameterList()
.getField("SAPDATE"),

function.getExportParameterList()
.getField("SAPTIME"));

}
catch (ARAsoftException ax) { throw ax; }
catch (Exception ex) {

throw new ARAsoftException(
"Problem invoking MSS_GET_SY_DATE_TIME.", ex);

}
}

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 121

Figure 19 Retrieving the SAP Date Format

public static String getSapDateFormat (JCO.Client connection,
IRepository repository)

throws Exception {
JCO.Function function =

repository.getFunctionTemplate("RFC_GET_SAP_SYSTEM_PARAMETERS")
.getFunction();

connection.execute(function);
return

function.getExportParameterList()
.getString("DATE_FORMAT");

}

Figure 20 The First isBapiReturnCodeOkay Method

public static boolean isBapiReturnCodeOkay(JCO.Record object) {
JCO.Structure istructure;
JCO.Table itable;

try {
if (object instanceof JCO.Structure) {

return (object.getString("TYPE").equals("") ||
object.getString("TYPE").equals("S"));

}
if (object instanceof JCO.Table) {

itable = (JCO.Table)object;
int count = itable.getNumRows();
if (count == 0) return true;
boolean allOkay = true;
for (int i = 0; i < count; i++) {

itable.setRow(i);
if (! (itable.getString("TYPE").equals("") ||

itable.getString("TYPE").equals("S"))) {
allOkay = false;
break;

}
}
return (allOkay);

}
}
catch (Exception ex) {}
return false;

}

SAP Professional Journal January/February 2004

122 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

This method defines a parameter of type
JCO.Record, the superclass of both JCO.Structure
and JCO.Table.

Figure 21 shows sample code using the
isBapiReturnCodeOkay() method.

One disadvantage to the isBapiReturnCodeOkay()
method from Figure 20 is that the application program
must pass the RETURN parameter. If you use
the standard JCo programming model, that means
that the application must either access the export

parameter list or the table parameter list, depending
on how the BAPI has defined the RETURN
parameter.

This slight inconvenience can be removed by
providing an overloaded version of the
isBapiReturnCodeOkay() method that accepts an
object of type JCO.Function (Figure 22). This new
version finds out for itself whether the RETURN
parameter is a structure or a table and then calls
our first isBapiReturnCodeOkay() method with the
correct parameter.

Figure 21 Using the First isBapiReturnCodeOkay Method

JCO.Function function =
createFunction("BAPI_COMPANYCODE_GETLIST");

mConnection.execute(function);
JCO.Structure bapiReturn = function.getExportParameterList()

.getStructure("RETURN");
if (! isBapiReturnCodeOkay(bapiReturn)) {

System.out.println(bapiReturn.getString("MESSAGE"));
System.exit(0);

}

Figure 22 The Second isBapiReturnCodeOkay Method

public static boolean isBapiReturnCodeOkay(JCO.Function function) {
JCO.ParameterList exports = function.getExportParameterList();
if (exports != null && exports.hasField("RETURN")) {

return isBapiReturnCodeOkay(exports.getStructure("RETURN"));
} else {

JCO.ParameterList tables = function.getTableParameterList();
if (tables != null && tables.hasField("RETURN")) {

return isBapiReturnCodeOkay(tables.getTable("RETURN"));
} else {

return false;
}

}
}

Tips and Tricks for SAP Java Connector (JCo) Client Programming

For site licenses and volume subscriptions, call 1-781-751-8799. 123

Figure 23 shows sample code using the second
method.

And What About JCo Server
Programming?
This article has dealt exclusively with JCo client
programming, which is what most projects require.
For an introduction to JCo server programming,
please read my article “Server Programming with the
SAP Java Connector (JCo)” in the September/October
2003 issue of this publication.

action in an absence of information
is wasted effort

– Robert Asprin, Hit or Myth, p. 156

Thomas G. Schuessler is the founder of ARAsoft
(www.arasoft.de), a company offering products,
consulting, custom development, and training to
a worldwide base of customers. The company
specializes in integration between SAP and non-
SAP components and applications. ARAsoft offers
various products for BAPI-enabled programs on
the Windows and Java platforms. These products
facilitate the development of desktop and Internet
applications that communicate with R/3. Thomas
is the author of SAP’s BIT525 “Developing BAPI-
enabled Web Applications with Visual Basic”
and BIT526 “Developing BAPI-enabled Web
Applications with Java” classes, which he teaches
in Germany and in English-speaking countries.
Thomas is a regularly featured speaker at SAP
TechEd and SAPPHIRE conferences. Prior to
founding ARAsoft in 1993, he worked with SAP AG
and SAP America for seven years. Thomas can be
contacted at thomas.schuessler@sap.com or at
tgs@arasoft.de.

Figure 23 Using the Second isBapiReturnCodeOkay Method

JCO.Function function =
createFunction("BAPI_COMPANYCODE_GETLIST");

mConnection.execute(function);
if (! isBapiReturnCodeOkay(function)) {

System.exit(0);
}

SAP Professional Journal January/February 2004

124 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

package de.arasoft.java;

/*
* Copyright (c) 2001 ARAsoft GmbH
* All Rights Reserved.
*/

/**
* Exception class
*
* @author ARAsoft GmbH
* @version 1.0
* @since 1.0
*/

public class ARAsoftException extends Exception {

private Exception mOriginalException = null;
private final static Copyright copyright = new Copyright();

/**
* Constructor.
*/
public ARAsoftException() {

super();
}

/**
* Constructor to be used if we wrap another exception.
* @param originalException The original exception
*/
public ARAsoftException(java.lang.Exception originalException) {

super(originalException.toString());
mOriginalException = originalException;

}

/**
* Constructor with a message string.
* @param s Exception string
*/
public ARAsoftException(String s) {

super(s);
}

Appendix A:
Class ARAsoftException

Appendix A: Class ARAsoftException

For site licenses and volume subscriptions, call 1-781-751-8799. 125

/**
* Constructor to be used if we wrap another exception and have an
* additional message string.
* @param s Exception string
* @param originalException The original exception
*/
public ARAsoftException(String s, Exception originalException) {

super(s);
mOriginalException = originalException;

}

/**
* Returns the original exception.
* @return The original exception.
*/
public Exception getOriginalException() {

return mOriginalException;
}

/**
* Returns the exception message.
* @return The exception message.
*/
public String getMessage() {

if (mOriginalException == null)
return super.getMessage();

return super.getMessage() + '\n' +
"Original exception:" + '\n' +
mOriginalException.toString();

}
}

SAP Professional Journal January/February 2004

126 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

package de.arasoft.sap.jco;

import java.util.TreeMap;
import com.sap.mw.jco.*;
import de.arasoft.java.ARAsoftException;

/*
* Copyright (c) 2002 ARAsoft GmbH
* All Rights Reserved.
*/

/**
* A singleton object that manages JCO.Repository objects.
*
* @author ARAsoft GmbH
* @version 2.5
* @since 2.5
*/

public class StandardRepositoryManager {

static private StandardRepositoryManager repositoryManager = null;
static private TreeMap items = null;

protected StandardRepositoryManager() {
items = new TreeMap();

}

/**
* Returns the singleton instance of this class.
* @return The singleton instance.
*/
static public synchronized StandardRepositoryManager

getSingleInstance() {
if (repositoryManager == null)

repositoryManager = new StandardRepositoryManager();
return repositoryManager;

}

/**
* Creates a JCO.Repository object for the SAP system to which the pool
* is connected.
* Throws an exception if a repository for this system already exists.

Appendix B:
Class StandardRepositoryManager

Appendix B: Class StandardRepositoryManager

For site licenses and volume subscriptions, call 1-781-751-8799. 127

* @return The created repository object.
* @param pool The JCO.Pool object.
*/
public synchronized JCO.Repository createRepository(JCO.Pool pool)

throws ARAsoftException {
JCO.Client client = null;
try {

client = JCO.getClient(pool.getName());
String name = client.getAttributes().getSystemID();
JCO.releaseClient(client);
client = null;
if (items.containsKey(name))

throw new ARAsoftException
("A repository for system '" + name + "' already exists.");

JCO.Repository repository =
new JCO.Repository(name, pool.getName());

items.put(name, repository);
return repository;

}
catch (Exception ex) {

throw new ARAsoftException(ex);
}
finally {

if (client != null) {
JCO.releaseClient(client);

}
}

}

/**
* Checks whether a JCO.Repository object for the specified SAP system
* already exists.
* @return Does a repository for the specified SAP system exist?
* @param systemId The system ID of the SAP system.
*/
public boolean existsRepository(String systemId) {

JCO.Repository repository = (JCO.Repository) items.get(systemId);
return (repository != null);

}

/**
* Checks whether a JCO.Repository object for the SAP system to which
* the pool is connected already exists.
* @return Does a repository for this system exist?
* @param pool The JCO.Pool object.
*/
public boolean existsRepository(JCO.Pool pool)

throws ARAsoftException {
JCO.Client client = null;

try {

(continued on next page)

SAP Professional Journal January/February 2004

128 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

client = JCO.getClient(pool.getName());
String name = client.getAttributes().getSystemID();
JCO.releaseClient(client);
client = null;
return this.existsRepository(name);

}
catch (Exception ex) {

throw new ARAsoftException(ex);
}
finally {

if (client != null) {
JCO.releaseClient(client);

}
}

}

/**
* Returns the JCO.Repository object for the SAP system to which the
* pool is connected.
* Throws an exception if no repository exists.
* @return The repository object.
* @param pool The JCO.Pool object.
*/
public synchronized JCO.Repository getRepository(JCO.Pool pool)

throws ARAsoftException {
return this.getRepository(pool, false);

}

/**
* Returns the JCO.Repository object for the SAP system to which the
* pool is connected. If no repository exists and
* <code>createIfItDoesNotExist</code>
* is <code>true</code>, a new repository is created,
* otherwise an exception is thrown.
* @return The repository object.
* @param pool The JCO.Pool object.
* @param createIfItDoesNotExist Should a new repository be created
* if none exists?
*/
public synchronized JCO.Repository getRepository

(JCO.Pool pool, boolean createIfItDoesNotExist)
throws ARAsoftException {

JCO.Client client = null;
try {

client = JCO.getClient(pool.getName());
String name = client.getAttributes().getSystemID();
JCO.releaseClient(client);
client = null;
try {

return this.getRepository(name);

(continued from previous page)

Appendix B: Class StandardRepositoryManager

For site licenses and volume subscriptions, call 1-781-751-8799. 129

}
catch (ARAsoftException ax) {

if (createIfItDoesNotExist) {
return this.createRepository(pool);

} else {
throw ax;

}
}

}
catch (Exception ex) {

throw new ARAsoftException(ex);
}
finally {

if (client != null) {
JCO.releaseClient(client);

}
}

}

/**
* Returns the JCO.Repository object for the specified SAP system.
* If no repository exists an exception is thrown.
* @return The repository object.
* @param systemId The system ID of the SAP system.
*/
public synchronized JCO.Repository getRepository(String systemId)

throws ARAsoftException {
JCO.Repository repository = (JCO.Repository) items.get(systemId);
if (repository == null)

throw new ARAsoftException
("No repository exists for system '"
+ systemId + "'.");

return repository;
}

/**
* Removes the specified JCO.Repository object.
* @param repository The repository to be removed.
*/
public synchronized void removeRepository(JCO.Repository repository)

{
String name = repository.getName();
if (items.containsValue(repository)) {

items.remove(name);
}

}
}

import java.util.*;
import java.io.*;

public class OrderedProperties extends java.util.Properties {
ArrayList orderedKeys = new ArrayList();

public OrderedProperties() {
super();

}
public OrderedProperties(java.util.Properties defaults) {

super(defaults);
}

public synchronized Iterator getKeysIterator() {
return orderedKeys.iterator();

}

public static OrderedProperties load(String name)
throws Exception {

OrderedProperties props = null;
java.io.InputStream is =

OrderedProperties.class.getResourceAsStream(name);
props = new OrderedProperties();
if (is != null) {

props.load(is);
return props;

}
else {

throw new IOException("Properties could not be loaded.");
}

}

public synchronized Object put(Object key, Object value) {
Object obj = super.put(key, value);
orderedKeys.add(key);
return obj;

}

public synchronized Object remove(Object key) {
Object obj = super.remove(key);
orderedKeys.remove(key);
return obj;

}
}

SAP Professional Journal January/February 2004

130 www.SAPpro.com ©2004 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix C:
Class OrderedProperties

