
103For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Build Custom Java iViews
for SAP Data Using Eclipse:
A Guide for Developers
and Implementation Teams
Carl Vieregger

Carl Vieregger is a senior
consultant with IBM
Business Consulting
Services. Since 1998 he
has been a member of the
Global SAP Centre of
Expertise (GCOE) based in
Walldorf, Germany. After
starting as a certified ABAP
developer and business
workflow specialist, his
current focus is on portals
and portlet application
development.

iViews provide integrated views of business information in the mySAP
Enterprise Portal (EP), and SAP offers a large selection of pre-built
iViews, organized into role-based “business packages.” When you
import these business packages from the iViewStudio, the technical
implementation of the iViews is already done for you. Indeed, portal
administrators can set up a standard business package without any pro-
gramming language experience.

While SAP makes an extensive range of content available in its pre-
built business packages, these solutions cannot possibly address all of
your organization’s unique requirements. Sooner or later, portal users
will begin to look for specific business content that can only be provided
by custom-built iViews. In this article, I guide developers and imple-
mentation teams through the tasks involved in developing a customer-
specific iView that displays data from an SAP system:

1. Custom iViews in Java are built within a software construct called
a “project.” In the first section, I will provide an overview of this
development structure and introduce the different types of files in a
Java-based iView.

2. While you can use any integrated development environment (IDE)
to build a Java iView, this article employs Eclipse, and I will
describe its installation and configuration in the second section.
I’ll also show you how to set up Eclipse for your own iView
development projects.

3. In the third section, I will look at a custom-built example iView that
retrieves and renders SAP data. Then I’ll walk you through the

(complete bio appears on page 136)

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.104

process of building and deploying the example,
which I call the “HelloSAP” iView. My assump-
tion throughout is that you have a basic under-
standing of Java, but experienced developers will
also benefit from the hands-on exploration of
SAP’s API. The HelloSAP example is based on
version 5.0 of the Enterprise Portal, using service
pack 4 (SP4).

4. Once the HelloSAP iView is running in the
SAP Portal Development Kit (PDK), I will
demonstrate how to enhance the example with
language-independent features, a process known
as “internationalization.”

This article contains all of the resources you need
to build the HelloSAP example — your first Java
iView. While the example is simple enough to help
you get started, it still provides valuable functionality
for an EP production system. You can download
the HelloSAP iView detailed in this article from the
“Download Files” section at www.SAPpro.com and
import it directly into your own PDK.

� Note!

Before working through the example iView in
this article, you must first install the PDK and
configure it for single sign-on (SSO) access to an
SAP system. I describe this installation and
configuration process in the November/December
2002 issue of this publication. If you have already
deployed the PDK, you can test your SSO settings
for SAP with the JCo Connection Pool iView,
which is located on the PDK’s Examples tab.

Development Projects for
Custom Java iViews

The HelloSAP example iView is shown in Figure 1.
Like all iViews, it is a web application component

that runs within the mySAP Enterprise Portal (EP).
Users can access and interact with the iView through
the EP’s Internet browser interface. Java-based
iViews are built on the multi-tier distributed architec-
ture of the J2EE platform (see the sidebar on the next
page), and they are often referred to as “portal com-
ponents,” particularly while still under construction.

At the development level, portal components are
assembled within a programming construct called a
“project.” A development project in Java is almost
always file-based, consisting of an assortment of root
folders and subfolders. All of the source and build
files, as well as any additional resources and connec-
tors, are included within the project’s file structure.
Figure 2 provides a look at the root folders of the
development project for my HelloSAP portal compo-
nent. As seen via Eclipse, the full name of the project
is com.ibm.gcoe.HelloSAP.

Figure 1 The HelloSAP Example iView
for Displaying SAP Data

105For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Before I discuss the build and deployment pro-
cess in further detail, I want to take a step back and
look at the file structure for the HelloSAP portal
component and introduce the individual files in the
development project. As you can see in Figure 2, my
HelloSAP project consists of a private and a public
folder, plus two additional files in the project root
directory, .classpath and .project. These two files are
described in more detail in the sidebar “Project Build
Files” on the next page.

Project files in the public folder are available to
the client at runtime, while those in the private folder
are not. As shown in Figure 3, the types of files that
are saved in the public folder include Cascading Style
Sheets (css), graphic files such as images and icons
(images), and files containing JavaScript code
(scripts). My HelloSAP project does not have any
files in the public folder.

Java 2 Platform, Enterprise Edition (J2EE)

SAP Java iViews are web application components on the J2EE platform. The distributed application
model of the J2EE platform consists of three separate tiers: client, web, and backend. Portal users
access iViews on the client tier, which is usually an Internet browser. SAP portal components are
built on the web tier with JavaServer Pages (JSP) technology and Java servlets, both of which are
responsible for the dynamic rendering of the iView. At runtime, JSPs and servlets are transformed into
the necessary markup language of the client. The connector architecture of the J2EE platform supports
access from the web tier to the backend tier, enabled via plug-in adapters for data sources.

Figure 2 The HelloSAP Project in Eclipse

� Tip

While not the case for the HelloSAP example
outlined here, you should note that it is possible
for more than one portal component (i.e., more
than one iView) to be maintained in a single
development project.

The J2EE platform not only supports the
development of portal components in project file
structures, it also enables their packaging and deploy-
ment. Packaging consists of building the separate
files of a development project into an application
archive, which SAP calls a portal archive (PAR)
file. Deployment, then, is the process of copying
and extracting the packaged PAR file to the EP’s
operational environment, the Portal Content Direc-
tory (PCD).

Figure 3 Contents of the “public” Folder

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.106

Within the private folder are four subfolders
(see Figure 4):

• classes

• pagelet

• profiles

• src

Let’s take a closer look at each of these
subfolders in turn.

The “profiles” Subfolder

Component profiles provide additional runtime prop-
erties for portal components and are saved in the
profiles subfolder (see Figure 5). SAP portal compo-
nents can use a number of standard properties that
control how the iView is displayed. You can also
define new properties to support custom runtime tasks
and user personalization. A component profile is a
plain-text file saved with the .properties extension,
and each property in the profile is maintained as a
name/value pair.

Project Build Files

The .classpath and .project files contain build- and deployment-related information for the portal
component project. These particular build files are specific to Eclipse, and they are generated
automatically when the development project is first created. Both files are XML-based.

The .project file contains the name of the development project (com.ibm.gcoe.HelloSAP) and some
additional details about the project’s build and run structure. The second file, .classpath, includes path
references for the Java libraries that are required to compile the Java source. When the project is
packaged and the PAR is created, the Java compiler (Javac) uses the .classpath file to locate the
necessary libraries. If Javac can’t find a required library, the build process will fail.

By way of comparison, JBuilder saves the location of required libraries via its “Project Properties” option;
if you use the open source build-and-deploy tool Apache Ant, the Java libraries are maintained in the
libraries.properties file. (Ant enables you to deploy PAR files without the use of a commercial IDE.)

Figure 4 Contents of the “private” Folder
Figure 5 The “profiles” Subfolder

107For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

One profile, named default.properties, is required
in every portal archive. When a development project
contains multiple portal components, the properties in
this default profile apply to all of them.

In addition to the default.properties file, a unique
profile must be maintained for each portal component
in the project. I refer to these files as “implementa-
tion profiles,” and the properties in them are portal-
component-specific. An implementation profile
generally shares the same name as the primary class
in the portal component.1 Since my HelloSAP project
consists of a single portal component, it has just one
implementation profile: HelloController.properties.

At runtime, profiles can be thought of as the
starting point of the portal component. Indeed, the
generated URI2 for a Java iView points directly to the
implementation profile of the deployed portal compo-
nent. If you are familiar with ITS-based Internet
applications, profiles in an SAP portal component can
be loosely compared to the service (SRVC) file used
in Internet Services, IACs, and MiniApps.3

The “src” Subfolder

Two types of Java source files are saved in the src
subfolder (see Figure 6): component application files
(com) and JavaBeans components (bean).4 Compo-
nent application files contain the application logic of
the portal component. These files work to make the
connection to the backend system, to retrieve the
required data, and to manage the dialog flow of the
iView. JavaBeans components, on the other hand,

provide a container infrastructure for persisting
data during the browser session of the iView. Typi-
cally, component application files will save data to
a bean so that a JSP page can access and render it
at a later time.

In the src subfolder, Java source files are orga-
nized in a directory structure that is dictated by the
package directive for their class. For example, the
package for the implementation class in my
HelloSAP project is defined as:

package com.ibm.gcoe;

Accordingly, the source file for the implementa-
tion class is saved in the folder structure
private\src\com\ibm\gcoe.

Component application files and JavaBeans com-
ponents both end with the .java extension. At build
time, you choose whether or not to include them in
the portal archive.5 My HelloSAP example has two
component application files: HelloController.java
(the implementation class) and HelloDispatcher.java.
The name of the JavaBeans component in the
example is HelloBean.java.

Figure 6 The “src” Subfolder

1 The primary class in a portal component is the first Java class that is
instantiated at runtime. It is sometimes referred to as the “implemen-
tation class.” In the example, this class is HelloController.

2 The uniform resource identifier (URI) is also known as the web
component request path.

3 For more on IACs and MiniApps, see the articles “No Service Reps
Required! Learn How to Supply 24x7 Sales Order Information
Online with the Sales Order Status IAC” and “Ready to Build Your
First MiniApp? It’s Quick and Easy with the ABAP Workbench!” in
the May/June 2001 issue of this publication.

4 The files in the resource bundle that support internationalization are
also maintained in the src subfolder. I will demonstrate how to use
internationalization features in the final section of this article.

5 For its part, SAP does not include the source code in the PAR files of
its standard iViews.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.108

Figure 7 The “classes” Subfolder

The “classes” Subfolder

Closely related to the Java source files are the com-
piled bytecode files of the development project.
Within Eclipse, Javac (the Java compiler) compiles
the source code each time the project is built, and
the resulting CLASS files are saved in the classes
subfolder (see Figure 7) with the .class extension.
The directory structure in classes, just as for src, is
based on the package directives of the Java source
files. The CLASS files in the example are
HelloController.class, HelloDispatcher.class, and
HelloBean.class.

The “pagelet” Subfolder

The HelloSAP example detailed in this article is
rendered in the EP via JSP pages. In a portal compo-
nent development project, the JSP pages are saved
(with the file extension .jsp, naturally) in the pagelet
subfolder (see Figure 8). The JSP page in the
pagelet subfolder of the example is named
HelloView.jsp.

JSP technology allows you to integrate Java with
HTML, where the Java code is included on an HTML
page via a special tag called a “scriplet.” Combining

scriplets with standard HTML, though, can quickly
lead to unmanageable code, because it mixes server-
side application logic with client-side rendering.

To simplify the development of JSP pages for the
EP, SAP developed a tag library called HTML Busi-
ness (HTMLB) for Java. HTMLB is a set of web
controls that support the use of HTML-like forms and
layers, as well as GUI elements such as text fields
and pushbuttons. HTMLB also provides support for
event handling (for example, what the application
should do when the portal user fills a text field and
selects a pushbutton).6

Installation and Configuration
of Eclipse

In the previous section, I introduced SAP portal com-
ponents as enterprise applications based on the J2EE
platform. I also walked through the development
project structure behind the HelloSAP iView. To
support the construction of portal component projects,
SAP provides a plug-in for Eclipse, an open source
IDE, and extensible development platform. While you
can use any IDE for iView development, SAP is plan-
ning to provide continued support only for Eclipse.
Before working further with the HelloSAP example,

Figure 8 The “pagelet” Subfolder

6 The HTMLB library can also be used with BSP pages in SAP for web
application development. For more detail on this, see the article
“Build More Powerful Web Applications in Less Time with BSP
Extensions and the MVC Model” on page 3 of this issue.

109For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Figure 9 Download the Eclipse SDK

then, I will describe the details of how to install
Eclipse and configure it with the SAP plug-in.

The Eclipse SDK

According to a technical white paper on its project
web site, Eclipse is “an IDE for anything, and for
nothing in particular.”7 Essentially, Eclipse is an
open tool that can be extended with additional fea-
tures and new functionality, which are integrated into
its runtime platform via a plug-in architecture.

A standard plug-in that is delivered with the
Eclipse SDK, the Java development tools (JDT),

provides all the features of a robust Java IDE for the
Eclipse Platform. Other plug-ins, such as editors
for JSP pages and XML files, can also be added to
Eclipse’s feature set. SAP provides an Eclipse plug-
in to extend the platform’s support for portal compo-
nents in Java. In conjunction with the PDK, Eclipse
offers a comprehensive development environment for
building, deploying, and testing Java iViews.

Download and Install the Eclipse SDK

Eclipse 2.0 is available for download under the
Eclipse.org Software User Agreement. While 2.0 is
not the most recent release of Eclipse, it is the version
for which SAP’s plug-ins are presently supported.
Make sure to download the complete SDK version for
Windows (see Figure 9).

7 This white paper is a good introduction to Eclipse, and is available at
www.eclipse.org/whitepapers/eclipse-overview.pdf.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.110

Once the download is complete, simply extract
the file to install the application. (I extracted Eclipse
to C:\pdk\ and changed the name of its root folder to
eclipse20.) To complete the installation automati-
cally, you need to execute eclipse.exe in the root
directory of the extraction. The default layout of the
Eclipse Workbench is shown in Figure 10. Behind
the layout, you can change the default runtime of
Eclipse. For details on changing the default layout,
see the sidebar “Change the Eclipse Java Runtime
Environment (JRE)” on the next page.

Customize Eclipse for SAP Portal Component
Development

You can download SAP’s Eclipse plug-in
(SAPPDKEclipsePlugins.zip) from the iViewStudio
Java DevZone at www.iviewstudio.com. To install
the plug-in, first close Eclipse. Now simply extract

Figure 10 Default Layout of the Eclipse Workbench

Figure 11 Extract the SAP Plug-In

111For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Change the Eclipse Java Runtime Environment (JRE)

In order to mirror the actual EP environment as closely as possible, you can ensure that Eclipse’s default
JRE is the same version used for your own Portal Development Kit (PDK) deployment.

To change the default JRE, go to Window → Preferences. In the tree structure under Java, choose
Installed JREs to view the detected runtime environment, shown in the screenshot below.

Include another JRE in the list with the Add
pushbutton. In the pop-up dialog that appears
(see the screenshot to the right), name the JRE
and browse to its home directory.

Note that the home directory is not where you
installed the Java SDK, but rather it is typically
under Program Files\JavaSoft\JRE. Select the
folder of the version you want to include, and the
corresponding rt.jar library should appear in the
box for JRE system libraries. Select OK to add
the JRE, and then choose it from the list below:

the ZIP file to the plugins subfolder under the Eclipse
root directory. As you can see in Figure 11, the
extract destination for my environment is
C:\pdk\eclipse20\plugins.

Now open Eclipse again. Before you can
make use of the new features for portal component
development, you need to maintain the connection
parameters to your PDK platform. Choose

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.112

Window → Preferences from the Eclipse menu.
In the dialog that appears, choose Portal Development
Kit from the tree list on the left (see Figure 12).

The default settings in the dialog will connect
to the default location of the PDK in Tomcat8:
localhost at port 8080. Since I have changed the port
where my computer listens for Tomcat, I must enter
this modified value (8133) in the Irj webapp TCP
port field. I can also insert the name of my computer
in place of localhost. The other default settings
should be okay, and you can select the Apply
pushbutton to verify them.

If the verification is not successful, you will
get a message similar to that depicted in Figure 13.
Note that Tomcat must be running for the verification
to succeed.

Figure 12 Maintain the Eclipse Preferences

Figure 13 Failed Verification Message

8 For more on installing and configuring Tomcat for use with the PDK,
see my previous article in the November/December 2002 issue of this
publication.

� Tip

You can also choose the Test Settings
pushbutton, which verifies the connection
settings before launching the PDK in a new
browser window. In an offline development
environment, a pop-up may prompt you to either
work offline or connect to the Internet.

113For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

A successful connection will enable the direct
deployment of portal archive files from Eclipse
to the PDK.9 Other features of the SAP plug-in
include wizards for building portal component
development projects, together with templates for
setting up the individual component application
files. The SAP plug-in also enables you to import
existing PAR files as development projects, which
I will demonstrate next.

Before continuing with this article, if you
haven’t already done so, take a moment to download
the PAR file for the HelloSAP example iView
(com.ibm.gcoe.HelloSAP.par) from the download
page at www.SAPpro.com. Save the PAR file to
your local machine.

� Note!

The SAP plug-in for iView development is only
one of hundreds of plug-ins that are available for
the Eclipse Platform. A good place to search for
other plug-ins is at the unofficial “plug-in portal”
at http://eclipse-plugins.2y.net.

In addition to the SAP plug-in for portal
components, I use an open source plug-in called
SolarEclipse, which supplies additional editor
formatting for web application development. It
provides support for HTML, JSP, and XML files.
You can download the SolarEclipse plug-in at
http://sourceforge.net/projects/solareclipse.

Now choose File → Import… from the Eclipse
menu. In the Import wizard dialog that appears (see
Figure 14), make sure that the option Create a

9 The SAP plug-in for Eclipse can only connect with the PDK SP4 or
later. If you are using a previous PDK release, you can still use
Eclipse to build your project and make the portal archive. From
within the PDK, you can upload and deploy the PAR file with the
Archive Uploader component on the DevTools page.

Figure 14 Create a Development Project from a Portal Archive

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.114

project from a portal archive is highlighted and select
the Next pushbutton.

In the second step of the wizard, shown in
Figure 15, choose the browse pushbutton ()
for the Archive file name field. Navigate to the
com.ibm.gcoe.HelloSAP.par file and select it.
Provide a name for the project (mine is named
com.ibm.gcoe.HelloSAP) and set the project root
folder (for me, C:\pdk\projects). Select the Finish
pushbutton to import the PAR, and the HelloSAP
project will be created in the Navigator view of the
Eclipse Workbench. The sidebar on the next page
provides a short tour of the Eclipse Workbench user
interface using the imported project.

After you import the PAR file, your project may
display two errors in the Tasks view of the Eclipse
Workbench, as shown in Figure 16. This occurs
because the .classpath file is missing the path to a
resource library for the SAP Java Connector (JCo).
(Refer back to the sidebar “Project Build Files” on
page 106 for a further description of the .classpath
file.) To resolve the build error, you need to manu-
ally provide this information to the project. Open
the .classpath file by double-clicking on it in the
Navigator view. It should contain a number of
<classpathentry> attributes for the different resource
libraries, but a reference to the sapjco.jar library is
missing. If you are using Tomcat 3.3.1 (as in my
example), sapjco.jar is located at tomcat\lib\apps.

Figure 15 Import the Portal Archive

Figure 16 Initial Errors in the HelloSAP Project

115For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

The Eclipse Workbench User Interface

The layout of the default Eclipse Workbench consists of four panes, or views (see the screenshot
below): Navigator, Editor, Tasks, and Outline.

In the top left corner is the Navigator view, which I have already used in the article to introduce the
development project file structure. To the right of the Navigator is the Editor view, where each file,
regardless of file type, is opened and displayed. Go to the private\src\com\ibm\gcoe folder in the
Navigator and open the two Java source files (HelloController.java and HelloDispatcher.java) by double-
clicking on them. In the screenshot above you can see the code for HelloDispatcher.java. When
multiple files are open simultaneously, you can navigate between them using the corresponding title
bars at the top of the Editor view.

Below the Editor view is the Tasks view, where you can maintain a task list to keep track of activities.
All problems or syntax errors in the project will be listed in this view as well. The fourth view in the
default layout, the Outline view under the Navigator, displays the structure of the active file in the Editor
area. If the active file is a Java source file, like HelloDispatcher.java, the Outline will show the structure
of the complete package, including class definitions, variable declarations, and methods.

Together, the organized views of the Eclipse Workbench user interface are referred to as a
“perspective.” The default layout is set to the Resource perspective. Other perspectives include Java,
Debug, and CVS (Concurrent Versions System). You can learn more about the Eclipse Workbench and
the features of the other perspectives under Help → Help Contents.

Navigator

Outline

Editor

Tasks

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.116

For a 4.x release of Tomcat, the missing library is
under tomcat\common\lib. Add a new attribute with
the appropriate value, for example:

<classpathentry kind="lib"
 path="C:/pdk/tomcat331/lib/
 apps/sapjco.jar"/>

Save the project. It should now build successfully.

Developing the HelloSAP iView

Now that you have set up the development project,
let’s examine how you can use Eclipse to build an
SAP portal component based on the J2EE platform.
To support the development process, SAP provides
a group of interfaces and classes that can be collec-
tively referred to as the “DynPage framework.” Cli-
ent programmers10 can use these APIs as the founda-
tion and structure for their portal components. This
section briefly introduces the DynPage framework
and then moves on to describe how the HelloSAP
portal component implements it. I will highlight the
key pieces of source code and offer a number of tips
for working effectively with the Eclipse Workbench.

The “DynPage Framework”

By definition, a framework provides a reusable struc-
ture for software development. The main objective of
a framework is to support the creation of applications
in a manner that increases development efficiency and
at the same time improves quality and maintainabil-
ity. This objective is achieved by building applica-
tions that are based on the framework’s collection of
interfaces and classes. The client programmer can

then exploit the framework by implementing the
interfaces and extending the classes in a predefined,
yet flexible way.

Within the EP, the DynPage framework defines
the overall structure of an SAP portal component and,
with support from the overall Enterprise Portal Client
Framework (EPCF), manages its runtime functional-
ity. At the technical level, the DynPage framework is
primarily based on two programming interfaces:

• com.sapportals.portal.prt.component.
IPortalComponent

• com.sapportals.htmlb.page.DynPage

The central abstraction of an SAP portal compo-
nent is the IPortalComponent interface, which
handles the request from the client, supports the
integration of portal services, and delegates control in
the application. All SAP custom-developed iViews
in Java are based on this interface, and they usually
extend a class that supplies the implementation (e.g.,
com.sapportals.portal.htmlb.PageProcessorComponent).
In the HelloSAP portal component, the
HelloController class extends
PageProcessorComponent to implement the
IPortalComponent interface.

The second major piece of the framework,
the abstract class DynPage, provides support for
event handling, application flow, and view manage-
ment. As an extension of the DynPage class,
com.sapportals.htmlb.page.JSPDynPage contributes
additional support for JavaServer Pages technology
to the portal component. Since its output is rendered
in a JSP page, the HelloDispatcher class of the
HelloSAP portal component extends JSPDynPage.

The Application Flow of the HelloSAP iView

At runtime, all of the different files in the portal
component project work together within the construct
of the DynPage framework. The best way to illus-
trate this runtime interaction is with a sequence dia-
gram, which is shown for the example HelloSAP

10 In his book Thinking in Java, Bruce Eckel divides Java developers
into “class creators” and “client programmers.” Class creators, for
example, include the experts at SAP who wrote the API for the
DynPage framework. You and I, on the other hand, are client pro-
grammers. We use the interfaces of the framework as support for our
own development efforts. I recommend Eckel’s book, available for
free at www.mindview.net, as a solid reference for Java basics and the
language’s object-oriented concepts.

117For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

portal component in Figure 17. For the rest of this
section, I will follow the flow of this diagram in
describing the details of the HelloSAP iView.11

Step 1: The EP Client Request

The processing of the portal component begins with
the request from the client. The portal user logs on to
the EP, and the iView is launched on the portal page.
As I mentioned earlier, the web component request
path of the portal component actually points to the

component-specific profile (i.e., the implementation
profile) from the deployed PAR. Based on my set-
tings for the PDK, the direct URI to start the
HelloSAP iView is:

http://de-walapp963:8133/
 irj/servlet/prt/portal/
 prtroot/com.ibm.gcoe.
 HelloSAP.HelloController

Step 2: Helper Profiles and the
ClassName Property

The HelloSAP development project contains
two profiles:

• default.properties

• HelloController.properties

Figure 17 Sequence Diagram for the HelloSAP Portal Component

11 My HelloSAP portal component makes use of terms (controller,
dispatcher, view, helper) that are often used to describe abstract
design patterns for distributed applications. In many ways, the
DynPage framework can be seen as an implementation of a
pattern called “Service-to-Worker.” For more information about
patterns in Java, I recommend Sun’s Enterprise BluePrints site at
http://java.sun.com/blueprints/enterprise.

��
������

	��
��
���
� ��� ���������� ���
������ ���� 	��
��

����������
	��
��

���������
���

������

�������

���������

��������

 �!�"�������������#������������ � $�#�%

��������#������������

&���������������'��

��������

��������

&�������

���������'����'�������

(

)

*

+

,

-

.

/

0

(1

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.118

The ServicesReference property in the default
profile (see Listing 1) is a standard property that
specifies the portal services required for the iView at
runtime. Each portal service is a collection of classes
that offers a specific piece of functionality to the
portal component. Portal services in the HelloSAP
example include those for HTML Business for Java
(htmlb), the SAP Java Connector (jco), and the JCo
Client (jcoclient). At runtime, the APIs for these
services are loaded to the iView Runtime for Java
(IRJ) web component.

The second property in the default profile,
tagLib, is a custom property that the developer must
define and maintain. Its value determines the file
location of the tag library descriptor (TLD) for the
HTMLB tag library. As I will demonstrate in
Steps 8 and 9, the JSP page of the portal component
accesses the TLD to render the HTMLB output. The
value of the property in the example is the default
location of the htmlb.tld file, which is located at
tomcat\webapps\irj\services\htmlb\taglib.

The component-specific implementation profile,
HelloController.properties, is shown in Listing 2. It

Listing 1: default.properties

ServicesReference=htmlb, jco, jcoclient
tagLib.value=/SERVICE/htmlb/taglib/htmlb.tld

Listing 2: HelloController.properties

ClassName=com.ibm.gcoe.HelloController

Figure 18 Profile Property Settings
for HelloController

contains only a single property: ClassName.12 You
can maintain this property in the Class/JSP Name
field on the dialog shown in Figure 18 (for details on
modifying component profiles, see the sidebar “Using
Eclipse to Modify Portal Component Profiles” to the
right). The value of the ClassName property must be

12 Strictly speaking, the ClassName property can also be maintained
in the default profile, allowing it to serve as both the default and an
implementation profile at the same time. Since this practice is less
transparent, I always recommend creating a separate implementation
profile, even if the PAR contains only a single portal component, as in
the HelloSAP example.

119For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Using Eclipse to Modify Portal Component Profiles

You can use the project
properties dialog in
Eclipse to maintain the
portal component
profiles. To open the
properties dialog for
the project, select the
project name in the
Navigator view and
choose File →
Properties. On the
Properties screen
(shown at the upper
right), select PDK:
Profile Settings.

As you can see, the default and
HelloController profiles are listed
on the Individual Profile Settings
tab. To modify the profile property
settings, choose the default
profile and select the edit Profile
pushbutton, which takes you to the
Profile Property Settings pop-up
shown to the right.

Note that for default.properties I
have not defined an implementation class
in the Class/JSP Name field, because the
default profile does not trigger an individual
portal component. Instead, you will recall
that the properties in the default profile
apply to all of the portal components in the
PAR. You can also see the tagLib property
at the bottom of the pop-up, which has
been created as a custom profile property.
Close the pop-up and switch to the
General Profile Settings tab of the
Properties screen (shown to the right).

On this tab, you will find the portal services
in the default.properties file: htmlb, jco,
and jcoclient. When you use this tab to
manage the portal services, the proper
entries are directly made in (or deleted
from) the ServicesReference property of the default profile. This interface also ensures that the
required libraries for each portal service are maintained in the .classpath build file.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.120

Listing 3: HelloController Delegates to HelloDispatcher

public class HelloController extends PageProcessorComponent {
 public DynPage getPage() {
 return new HelloDispatcher();
 }
}

13 The DynPage framework, which implements the necessary methods
from the Java APIs, manages the hidden processes to load and
instantiate the HelloController class automatically.

14 While I haven’t provided the complete listing for
HelloDispatcher.java in this article, you can view the source from the
imported PAR file in the Eclipse Workbench.

set to the fully defined implementation class of the
portal component, which, for the HelloSAP example,
is com.ibm.gcoe.HelloController. Normally, you
should be able to select the appropriate class from the
field’s dropdown list.

Step 3: Controller Delegates to Dispatcher

Based on the ClassName property in the
HelloController.properties profile, the
HelloController class is first instantiated in the IRJ.13

The controller acts as the central point of access for
all requests to the portal component. As Listing 3
shows, for each request it receives, HelloController
instantiates HelloDispatcher, returns an object refer-
ence of type DynPage, and finally delegates process-
ing flow to it.

The dispatcher works to carry out the application
logic of the portal component. It also provides event
management and view delegation. Specifically, the
HelloDispatcher class14 extends the abstract class
JSPDynPage, and as a result inherits three abstract
methods from DynPage:

• doInitialization()

• doProcessAfterInput()

• doProcessBeforeOutput()

These methods provide the foundation for
the structure of the portal component. The sidebar
“Using the Portal Component Wizard in Eclipse” on
the next page explains how to create a new portal
component that extends the JSPDynPage class.
Using the wizard automatically prepares the project’s
foundation code, including empty implementations of
the methods.

If you are an ABAP developer, you will immedi-
ately recognize that the names for the methods were
derived from SAP module pool (dialog) program-
ming, where you use the PAI and PBO sub-routine
modules. You will provide the same type of process-
ing logic within the Java methods that you have
come to know in these ABAP flow logic modules.
The doProcessAfterInput() method handles user
input, while the doProcessBeforeOutput() method
prepares application data for output and sets the
next screen. The doInitialization() method, in
contrast, is called immediately when the class is
executed.

In the HelloDispatcher class of the HelloSAP
portal component, both the doInitialization() and
the doProcessAfterInput() methods are empty imple-
mentations of the abstract methods from DynPage.
The whole of the application logic in HelloSAP,
then, takes place in the doProcessBeforeOutput()
method.

121For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Using the Portal Component Wizard
in Eclipse

The SAP plug-in for the Eclipse Platform supplies
a number of features to support the development
of portal components, including a wizard to
create a new portal component based on the
JSPDynPage class.

� Note!

You should start Tomcat before working with
this wizard. For details on installing and
configuring Tomcat for use with the PDK, see
my article in the November/December 2002
issue of this publication.

Start the Project wizard via the File →
New → Project… menu path. Then follow
these steps:

1. Select SAP Portal Development Tools
from the options listed on the left-hand
side of the project creation screen (see
the screenshot to the right). Highlight
Portal Component Project and then
choose Next.

(continued on next page)

� Tip

While the dispatcher can be included directly within the controller, I prefer to define it as a separate class file.
(This practice does not deliver any programmatic advantages, but I find that using two files helps to clarify the
different roles of the two classes.) In order to instantiate it, then, HelloController must import the HelloDispatcher
class as follows:

import com.ibm.gcoe.HelloDispatcher;

When adding an import directive in the Eclipse Workbench, you can make use of the “content assist” functionality.
The screenshot below depicts the floating content assist window with options to complete the import directive for
the JSPDynPage class in HelloDispatcher. Content assist also supports the automatic completion of other Java
code, such as package directives or methods, with their required arguments.

“Content assist” window

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.122

(continued from previous page)

Step 4: Invoke the SAP Remote Function Call
(RFC)

The first task in the implementation of
doProcessBeforeOutput() is to access the SAP
system and invoke the appropriate BAPI
(BAPI_COMPANYCODE_GETLIST in the example
here). The recommended method for connecting to

Listing 4: Connect to SAP with Hard-Coded Parameters

jcoClient = JCO.createClient("100",
 "vieregger",
 "mypass",
 "EN",
 SAPhost,
 "00");

an SAP system is through client pooling, which is
supported by the jcoclient portal service.15

15 Matthias Edinger, SAP project manager for the PDK, has written an
informative article on the technical details of the jcoclient service
and how it handles client pooling. You can read the article at
www.iviewstudio.com. You can also review the source code of the JCo
Client Pool iView on the Documentation tab of the PDK. The HelloSAP
portal component attains its connection to SAP in the same manner.

2. Give your project a name (the project name
is JspDynPageWizard in the example here)
and set its root folder (e.g., C:\pdk\projects),
just as you did earlier when importing the portal
archive.

3. Choose Finish, and the Select pop-up shown
to the right will appear, where you can choose
to create a portal component based on either
the AbstractPortalComponent or JSPDynPage
template.

The AbstractPortalComponent is a basic class
for portal component development, and you can
choose it to build iViews that do not require direct
support from the DynPage framework. With
JSPDynPage, you can build iViews that are
based on the DynPage framework and that
support rendering via JSP pages. If you choose
the JSPDynPage template, as I have in the
example shown here, you can provide the name
of the class, the package name, and a JSP page
in the next step of the wizard (see the second
screenshot to the right).

123For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Listing 5: Connect to SAP with Runtime User Parameters

IJCOClientService jcoClientService = (IJCOClientService)
 request.getService(IJCOClientService.KEY);
IJCOClientPoolEntry jcoPoolEntry =
 jcoClientService.getJCOClientPoolEntry("P46_400", request);
JCO.Client jcoClient = jcoPoolEntry.getJCOClient();

4. Select the Next pushbutton again to use the wizard to define the JavaBeans component, as
shown in the screenshot at the lower right. Once you have made the appropriate selections on
this screen, you can finally select Finish.

The wizard now creates the development project,
with predefined templates for each of the files.
The Java source for WizPpc.java (see the
screenshot at the lower left), for example, extends
the PageProcessorComponent and contains the
implementation for the getPage() method. Note
that the wizard creates only one Java source file
for both the controller and dispatcher classes.

If you have previous experience with JCo, you
are probably familiar with the createClient() method
of the JCO class shown in Listing 4.

The arguments for the method provide the param-
eters, including a hard-coded user ID and password,
to enable programmatic access to a remote SAP

system. Instead of using hard-coded parameters,
HelloDispatcher determines the user information
from the request object and utilizes the jcoclient
service to read the SAP system destination informa-
tion. Based on these parameters, the service can
dynamically create the jcoClient object that enables
the connection, as shown in Listing 5.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.124

The method getJCOClientPoolEntry() requires
two arguments: a string object with the SAP destina-
tion name (P46_400 in the example) from the
jcoDestinations.xml file, and a request object, which
is created as type IPortalComponentRequest (see
Listing 6).

The next block of code (Listing 7) creates
the jcoFunction object, which serves as the Java
representation of the SAP Remote Function Call
(RFC) or BAPI. To create the object, the name of
the SAP BAPI (BAPI_COMPANYCODE_GETLIST)
is supplied as the argument to the
getFunctionTemplate() method.

The output of the BAPI in an SAP IDES system
is shown in Figure 19.

If the RFC or BAPI required any input param-
eters, they would also be set here, but
BAPI_COMPANYCODE_GETLIST can be executed
directly:

jcoClient.execute(jcoFunction);

Once the BAPI has been executed in the SAP

Listing 6: Get the Request Object for the Portal Component

IPortalComponentRequest request = (IPortalComponentRequest)
 this.getRequest();

Listing 7: Create the Function Object for the RFC

IRepository jcoRepository = JCO.createRepository("Repository",
 jcoClient);
IFunctionTemplate jcoFunctionTemplate =
 jcoRepository.getFunctionTemplate("BAPI_COMPANYCODE_GETLIST");
JCO.Function jcoFunction = new JCO.Function(jcoFunctionTemplate);

Figure 19 Execute the BAPI via SE37 in SAP

125For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

system, you can release the jcoClient object to put it
back in the client pool:

jcoPoolEntry.release();

access to export fields and structures, or even to the
entire export parameter list.) The table parameter is
then set into the jcoTable object.

The BAPI table parameter is transferred from
jcoTable to the jcoModel object. The
TableViewModel interface, which is implemented by
JCOTableViewModel, is part of the DynPage frame-
work and supports the data format required for tabular
output on JSP pages. The interface also defines a
number of methods that enable runtime manipulation
of the data in the JCOTableViewModel:

JCOTableViewModel jcoModel = new
 JCOTableViewModel(jcoTable);

Step 6: Get Resource Bundle

The resource bundle includes additional properties
files with language-specific text for the portal compo-
nent. Before the BAPI return data is rendered in
the iView, the HelloController class will determine
the language settings for the EP user and access the
properties file for that language. I will demonstrate
how to modify my HelloSAP example iView with
language-independent features in the final section of
this article.

Step 7: Set Data

From jcoModel you can set the SAP table parameter
data to the JavaBeans component, HelloBean. In the
HelloSAP example, the bean class, which I describe

� Note!

In order to maintain the simplicity of the
HelloSAP iView, I have not included robust error
checking and Java exception handling in the
portal component code. For instance, if the BAPI
execution results in an error, you should not
release the pooled entry, but instead delete it.
An example of this scenario is demonstrated in
Matthias Edinger’s JCo Client article on the
iViewStudio web site (www.iviewstudio.com).
Also, after the actual execution of the BAPI
(Step 5), I do not check the return code export
parameter, which is important to determine the
final status of the execution. You can find further
examples using JCo, in addition to the complete
com.sap.mw.jco.JCO API, in the PDK.

Step 5: Get RFC Return Parameters

After the successful call of the BAPI, any table or
export parameters that are required for further pro-
cessing must be retrieved from the jcoFunction object
(see Listing 8).

The output of the BAPI in my example (shown
in Figure 19) is provided in a table parameter,
COMPANYCODE_LIST, which can be accessed with
the getTable() method. (Other methods provide

Listing 8: Get the BAPI’s Table Parameters

JCO.Table jcoTable =
 jcoFunction.getTableParameterList().getTable("COMPANYCODE_LIST");

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.126

in the sidebar on the next page, is instantiated as
valueBean. The setBeanModel() method from the
bean works to save the SAP table parameter from
jcoModel to an attribute in the bean called BeanModel
(see Listing 9).

After the data is set to the bean, the profile object
uses the putValue() method to bind the valueBean
object to the current application context, associating it
with the string name idBean. Essentially, this bind-
ing enables the JSP page to locate the bean at a later
time and render the saved data (in Step 8).

Step 8: Set View

Once the SAP system has been queried and the result-
ing data model has been set in the bean, the applica-
tion flow is passed to the view (i.e., the JSP page)
via the setJspName() method. The argument
(HelloView.jsp) for the method determines the name
of the JSP page to execute:

this.setJspName("HelloView.jsp");

Step 9: Get Data

The JSP page HelloView.jsp utilizes the HTMLB tag
library and the htmlb portal service to render the
output for the portal component. Access to the web
controls of the HTMLB tag library is provided via the
<taglib> element, where the attribute for the univer-
sal resource indicator (uri="tagLib") defines the
location of the htmlb.tld library descriptor file (you
will recall that the URI value tagLib is a custom
property maintained in the default profile and set to
the directory location of the TLD file):

<%@ taglib uri="tagLib"
prefix="hbj" %>

The value of the prefix attribute (prefix="hbj") is
freely definable. It sets the identifier for tags based
on HTMLB. Within this JSP page, then, any tag that
begins with hbj will look for its element and attribute
values in htmlb.tld.

The standard tag indicator for JavaServer Pages
technology is jsp. In the HelloView.jsp file, the
<jsp:useBean> element serves to locate the
JavaBeans component valueBean, which is acting
as the data container object for the SAP BAPI
table parameter:

<jsp:useBean id="idBean"
 scope="application"
 class="bean.HelloBean" />

You will recognize that the value of the id
attribute is the string name (the first parameter;
here, idBean) from the putValue() method
in the HelloDispatcher class. Once the
<jsp:useBean> element locates the valueBean
object, the logic behind the element defines an
object reference variable (with the name idBean)
and stores a reference to the bean object in it. The
end effect of <jsp:useBean> is to expose the
“getter” and “setter” methods, and consequently
the data, in the valueBean object.

The HelloView.jsp file uses four different
elements from the HTMLB tag library. The elements
content, page, and form describe the layout structure
of the iView. The other element in the example,

Listing 9: Set the BAPI Data in the JavaBeans Component

valueBean.setBeanModel(jcoModel);
profile.putValue("idBean", valueBean);

127For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

The Definition of the JavaBeans Component

The HelloBean JavaBeans component provides a data container that can only be accessed from within
the HelloSAP portal component. Data that is retrieved and manipulated in the HelloDispatcher class
(here, the SAP BAPI table parameter) can be written to the bean. Later, this data can be read and
rendered by the HelloView JSP page. As I already mentioned, the HelloBean JavaBeans component is
instantiated as a valueBean in the HelloDispatcher class:

valueBean = new HelloBean();

The standard format for a JavaBeans component defines a bean property (here, beanModel) and what
are known as the property’s “getter” and “setter” methods:

package bean;
import com.sapportals.htmlb.table.JCOTableViewModel;

public class HelloBean {

 public HelloBean () {
 }

public JCOTableViewModel model;

public JCOTableViewModel getModel() {
 return model;
 }

public void setModel(JCOTableViewModel jcoModel) {
 this.model = jcoModel;
 }
}

In Step 6, the “setter” method setBeanModel() copies jcoModel into the beanModel property of
valueBean. On the other hand, the “getter” method getBeanModel() allows the bean property
beanModel to be read from other classes or components. I will use the getBeanModel() method
(indirectly) in Step 8 to retrieve the data model for output on the JSP page.

It is important to note that typical JavaBeans components do not have different names for the individual
parameters of the “getter” and “setter” methods, as I have done with beanModel and jcoModel.

tableView, provides for the rendering of the bean’s
data in the EP:

<hbj:tableView id = "idTableView"
 model = "idBean.BeanModel" />

The model attribute in the tableView element
provides direct access to the maintained properties
in a JavaBeans component. To read from the
valueBean, the value of the model attribute should be
the value of the id attribute in the <jsp:useBean>

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.128

element (idBean), with a reference to the property
(BeanModel) you want to get from the bean. While
the getBeanModel() method is not explicitly executed
in the JSP page, the application logic behind the
model attribute provides the same result.

The tableView element also supports a number
of other attributes, which are beyond the scope of this
article. You can find the complete list of possible
attributes and their arguments, as well as further
information about the other elements, on the Docu-
mentation tab of the Portal Development Kit.

Step 10: Return and Render Data

The final step, as depicted in the sequence diagram
shown in Figure 17, is the rendering of the data in
the Enterprise Portal.

When it is served at runtime, the JSP page
HelloView.jsp is translated into a Java servlet class

called _sapportalsjsp_HelloView.java.16 Finally,
the Tomcat servlet engine compiles and executes
this servlet class to render the output of the portal
component.

Build and Deploy the Portal Archive

To build and deploy the HelloSAP development
project, choose File → Export… from the menu.
On the first screen of the Export wizard, which is
shown in Figure 20, make sure that Create a portal
archive is highlighted and select Next. Choose
the HelloSAP project from the available list (see
Figure 21) and select Next again. In the final step
(shown in Figure 22), select all three checkboxes.
The option Deploy portal component to local portal
will upload and deploy to your PDK the newly
created portal archive that was configured in

Figure 20 Create the Portal Archive

16 The servlet class from the JSP page of the HelloSAP example is
stored at tomcat\webapps\irj\WEB-INF\plugins\portal\resources\
com.ibm.gcoe.HelloSAP\work\pagelet.

129For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Figure 21 Select the HelloSAP Development Project

Figure 22 Deploy the Portal Component to the PDK

Window → Preferences. Do not launch a profile17

and, finally, select the Finish pushbutton.
You may need to refresh the Navigator view in

the Eclipse Workbench in order to see the newly
created PAR file. The PAR file is stored in the root
directory of the HelloSAP development project.

17 Since JCo requires user parameters from the portal framework, it is
not possible to test the portal component outside of the PDK.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.130

Figure 23 shows the file displayed in the Eclipse
Navigator view. You can also go to the project root
directory in Windows Explorer and open the
com.ibm.gcoe.HelloSAP.par file with your extract
utility. You can further open the JAR (which holds
the CLASS files) and the SRC.JAR (which holds the
Java source files). The contents from all of these files
are shown in Figure 24.

Test the HelloSAP iView in the PDK

Part of the deployment process extracts the archive
to the resources folder under tomcat\webapps\irj\

WEB-INF\plugins\portal. Once deployed, all of the
portal components, including the HelloSAP example,
can be accessed in the PDK from the DevTools →
ComponentInspector. (While you do not have to be
logged in to access the ComponentInspector, the
HelloSAP portal component does require an authenti-
cated user to execute properly.) On the Overview tab
of the ComponentInspector, scroll down to find the
HelloSAP example and select the Add to Favorites
link, as depicted in Figure 25.

The ComponentInspector should change to the
My Personal Components tab, and the HelloSAP
example should be visible. Choose the Start link for

Figure 23 The com.ibm.gcoe.HelloSAP.par File in the Project

131For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

Figure 24 Open the PAR, JAR, and SRC.JAR Files

Figure 25 Add the HelloSAP Example to Your Favorites

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.132

HelloController to execute the iView in a new
browser window. The successful execution of the
HelloSAP iView is shown in Figure 26.

Internationalization for the
HelloSAP iView

I have never worked on an SAP project where inter-
nationalization (i.e., language-independent develop-
ment for end users in different countries) has not been
an integral part of the business requirements. Since
the Java programming language was designed from
its core to write internationalized applications, you
can easily modify the HelloSAP portal component to

be language-independent. The standard API is pro-
vided in the java.util package, which you must import
to your dispatcher class:

import java.util.ResourceBundle;

In this final section, I will make use of the Java
API and SAP’s internationalization portal service to
provide language features in English and in German.

Modify the Dispatcher Class
for Internationalization

As you can see in Figure 26, the default column
headings in the HelloSAP iView (COMP_CODE and
COMP_NAME) are not very descriptive. You can

Figure 26 Test the HelloSAP Portal Component in the PDK

133For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

modify the headings using the setColumnName()
method of TableViewModel:

jcoModel.setColumnName("Code",1);
jcoModel.setColumnName("Company
 Name",2);

The first argument of the method sets the text,
and the second argument determines the column
number. The problem with this simple approach is
that the column headings must be hard-coded in a
single language. To use the internationalization

Listing 10: Use the Internationalization Features for iViews

ResourceBundle resource = request.getResourceBundle();
String varBukrs = resource.getString("t001-bukrs");
String varButxt = resource.getString("t001-butxt");
jcoModel.setColumnName(varBukrs, 1);
jcoModel.setColumnName(varButxt, 2);

features of portal component development, you still
use the setColumnName() method, but you must first
retrieve the language settings of the user and then
access the appropriate language resource file, as
shown in Listing 10.

The ResourceBundle is retrieved with the request
object (created in Step 4 of the previous section), and
it includes the language settings for the current user
and session. (See the sidebar below for more infor-
mation about modifying your default language set-
tings.) The getString() method of the resource object

Language Settings for the Enterprise Portal and the Portal Development Kit

When you first start the PDK, it will pick up the default
language of your browser to determine the language settings
for the welcome and login fields. The first screenshot below
shows the default for English, while the second is German.
The default language setting for Microsoft Internet Explorer is
maintained under Tools → Internet Options… on the General
tab. Choose the Languages pushbutton to access the pop-up
shown to the right.

(continued on next page)

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.134

(continued from previous page)

When you are logged in to the PDK, the EP framework first looks for a mandatory language in the
workplace.properties file at tomcat\irj\WEB-INF\plugins\portal\system\properties. If the mandatorylanguage
parameter is maintained (as is the case with the default settings of my PDK), all of the portal components will
be rendered in that language, regardless of the individual user’s language settings:

request.mandatorylanguage=en

You can comment out the mandatorylanguage parameter with the number symbol (#) or just leave its value
blank. In its place, insert the defaultlanguage parameter to maintain the PDK’s default language:

request.defaultlanguage=en

When no mandatory language is set, the framework will read the language settings of the logged-in user. If
no user-specific setting is maintained, the framework will use the default language from workplace.properties.

You can modify the settings of your PDK user in the KMUsers.properties file, where the user-specific
language is maintained via the locale parameter:

vieregger.locale=en

If I execute the portal component with locale en, the framework will read the resource file
localization_en.properties and render the iView in English. To work with the provided resource bundle for
my HelloSAP example, you can change your user’s locale parameter to de, the language abbreviation for
German. Note that after making changes to either the workplace.properties or KMUsers.properties file, you
must restart Tomcat for any modifications to take effect.

passes a predefined string (here, t001-bukrs and t001-
butxt) and returns the required value (based on the
resource object language setting) from the appropri-
ate language resource file.

Create the Resource Bundle
in the Development Project

The resource bundle for internationalization is
made up of a single default resource, plus individual
resource files for each required language. The default
resource file is named localization.properties and is
used when the particular language setting for a user is
not maintained in the resource bundle. Since I have
maintained resource files for English and German, the

default resource file would be accessed, for example,
if my PDK user’s language were set to Spanish.

The entire resource bundle, including the default
(localization.properties) and the individual files for
each language (here, localization_en.properties and
localization_de.properties), must be maintained in the
root of the src subfolder of the development project
(see Figure 27).

Inside each of the language resource files, a
name/value pair is maintained for each piece of text
in an iView. The HelloSAP example iView contains
only text for the column headings, but you can also
maintain the text for GUI elements, such as text fields
and pushbuttons, in addition to standard HTML text,
on the JSP page.

135For site licenses and volume subscriptions, call 1-781-751-8699.

Build Custom Java iViews for SAP Data Using Eclipse: A Guide for Developers and Implementation Teams

The language resource file for English
(localization_en.properties), which is the same as the
default, is:

t001-bukrs=Code
t001-butxt=Company Name

The language resource file for German
(localization_de.properties) is:

t001-bukrs=Buchungskreis
t001-butxt=Firmen-Bezeichnung

The parameter name, as you can see, is used
as the first argument in the setColumnName()
method shown in Listing 10. The value of the param-
eter in the resource file, then, is maintained with
the language-specific translation of the text. For
example, the value of t001-bukrs is Code in the
English resource file and Buchungskreis in the
German. The English-language version of the
HelloSAP iView is depicted back in Figure 1, in
the introductory section of this article. Figure 28
shows the German-language version of the
HelloSAP iView.

Figure 27 The Resource Bundle in the
HelloSAP Development Project

Rebuild and Redeploy the Portal Archive

After you modify the HelloDispatcher class and
create the corresponding resource files in src, you
must rebuild and redeploy the PAR file. Once again,
select the File → Export… menu path. The default
settings should match your original deployment, so
you can simply finish the wizard. Now go back to
the PDK and start the HelloSAP iView on the My
Personal Components tab. As a test, change the
language settings for your PDK user to German and
restart Tomcat. Finally, start the portal component
again to view the German-language column names:
Buchungskreis and Firmen-Bezeichnung.

Conclusion

As SAP continues to move its mySAP Enterprise
Portal to a pure J2EE-based environment, the role of

Figure 28 The German-Language
HelloSAP iView

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.136

custom-developed iViews in Java will only increase
in importance for your EP projects. Now that you
have walked through the complete development
process for an example Java iView, you should be
ready to start on your own development projects in
Eclipse. While the HelloSAP example iView only
makes use of basic functionality from the DynPage
framework and the HTMLB tag library, it still out-
lines the basic structure to access data from SAP.
More advanced iViews might include dropdown lists
or input fields, where users can insert data for BAPI
input parameters. Going a step further, you could
then set up personalization to save and restore these
parameters for individual users. Further information
on how to implement these features, as well as
examples of other portal component services, is avail-
able in the PDK.

Carl Vieregger is a senior consultant with IBM
Business Consulting Services. Since 1998 he
has been a member of the Global SAP Centre of
Expertise (GCOE) based in Walldorf, Germany.
After starting as a certified ABAP developer and
business workflow specialist, his current focus is
on portals and portlet application development.
Recently, he co-delivered a lecture and workshop
on the PDK at the SAP TechEd conference.
Prior to moving to Germany, he graduated from
Northwestern University in Evanston, Illinois,
with a B.A. in International Studies and Slavic
Languages & Literature. You can reach him at
carl.vieregger@computer.org.

