XML Messaging with the SAP Business Connector Part 2

XML Messaging with the
SAP Business Connector Part 2:

Outbound IDoc-to-XML Data Mapping with XSLT and
Java Services, and Inbound XML-to-IDoc Data Mapping

Robert Chu

Robert Chu joined SAP

at the end of 1996.

He currently works for

the Integration and
Certification Center at
SAP Labs. Hiscurrent
focus is the SAP integration
technologies. Robert has
been regularly teaching
classesin this area at SAP
training centers, and is the
main author of the BIT531
training course and a few
other internal workshops.

(complete bio appears on page 102)

As most of us know all too well, a smooth information flow between
your business partner’s system and your own can have alarge impact on
the success of your business processes. The SAP Business Connector
(BC) solution enables you to easily and reliably exchange IDocs with
your business partners via XML messaging over the Internet.

Thefirst article of this two-part discussion (“XML Messaging
with the SAP Business Connector Part 1: Direct IDoc-XML Data
Exchange and Outbound IDoc-to-XML Data Mapping with Flow Ser-
vices") demonstrated how you can use the SAP IDoc-XML format to
exchange data directly with your business partner, if your business
partner is able to support this format. However, thisis not always
something your business partners will be able to do, so you need to be
able to exchange documents in formats other than SAP IDoc-XML. As
you learned in the previous article, there are three data-mapping options
available to you for such cases:

e Perform data mapping using a custom BC flow service.

e Perform data mapping using XSLT transformation with
acustom XSLT stylesheet.

e Perform data mapping using a custom Java service.
In the discussion of outbound data mapping with non-SAP XML in

thefirst article, | focused on the first option, which iswidely adopted
in Business Connector projects. Herein thisarticle, | will discuss the

1 At the time of writing, the SAP Exchange Infrastructure (X1) is still under restricted piloting.

For site licenses and volume subscriptions, call 1-781-751-8699. 79

SAP Professional Journal March/April 2003

remaining two options for sending outbound commu-
nication to your business partners (which require
additional knowledge of XSLT and Java, respec-
tively), and | will also walk you through how to
receive inbound communication from your business
partners.

To illustrate the points of this article, sample BC
services, along with Java source code and files, are
available for download at www.SAPpro.com.

Before diving right in to the XSLT transforma-
tion technique for outbound data mapping, let’ s take a
step back and review some XSLT basics.

An Introduction to XSLT

Extensible Stylesheet Language Transformation
(XSLT) is designed to transform XML documents
into other XML documents. XSLT isaW23C recom-
mendation as of November 1999, and is a natural
choice for XML-to-XML transformation.

The following are the main characteristics of
XSLT:

e |tisXML-based.

* LikeSQL, XSLT isdeclarative. SQL utilizes
SELECT statements while XSLT utilizes
XPath expressions (more on XPath in an upcom-
ing section).

» Itisafunctional language and has no side effects
(i.e., no variable updates take place).

e Atruntime, the XSLT processor both constructs
atree representation of the source document and
produces a tree representation of the results
document.

e ltisrule-based. Processing takes place when
patterns in the stylesheet are matched with ele-
ments in the source document.

e With built-in functions, it is capable of perform-
ing selection, aggregation, and grouping as well
as string and arithmetic data manipulation.

To perform an XSLT transformation, an XSLT
processor (a.k.a. an XSLT engine) isrequired. An
XSLT processor isthe piece of software that reads
both the source XML document and the XSLT
stylesheet, performs the actual transformation accord-
ing to the instructions in the stylesheet, and produces
the resulting XML document. There are many open
source and commercial XSLT processors available on
the market. SAP also hasitsown XSLT processor
implementation available as part of the SAP XML
Toolkit for Java.?

An XSLT stylesheet document contains template
rules. A template rule has a pattern specifying the
nodes it matches, along with the template body to be
instantiated and output when the pattern is matched.
When an XSLT processor transforms an XML docu-
ment using an XSL styleshest, it walks through the
source XML document tree, looking at each nodein
turn. Aseach node in the XML document is read, the
processor compares it with the pattern of each tem-
plate rule in the stylesheet. When the processor finds
atemplate rule with a pattern that best matches the
node, it instantiates and outputs the rule’s body. The
template rule’ s body generally includes some markup,
some literal data, and some data copied from the
source XML document.

XSLT Elements

XSLT defines many elements that can be used in the
XSLT stylesheet.

The <xdl:stylesheet> element is the root
element for XSLT stylesheets. It specifiesthe XSL
namespace prefix as well as the version, as you can
seeinListing 1.

The <xdl:template> element defines atemplate
rule. The match attribute of the <xsl:template>

2 Formerly known as the INnQMy XML Toolkit.

80 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 1: The <xdl:stylesheet> Element Specifies the Namespace and Version

<xsl : styl esheet version="1.0" xm ns: xsl="http://ww.w3. org/ 999/

XSL/ Tr ansf or mi' >

</ xsl : styl esheet >

Listing 2: The <xd:template> Element Defines the Template Rule

<xsl : tenpl at e mat ch="BOMVAT03" >

</ xsl :tenpl at e>

Listing 3: The <xdl:call-template> Element Calls the Template for Further Processing

<xsl:tenpl ate name="convert -date">
<xsl : param name="i nstring"/>

</ xsl :tenpl at e>

<xsl:call-tenpl ate name="convert-date">

<xsl :wi t h- param name="i nstri ng" sel ect ="E1STZUM DATUV/ text ()"/>

</xsl:call-tenpl at e>

element contains a pattern against which nodes from
the source tree are compared as they are processed
(seeListing 2). If the pattern isthe best match for a
node, then the content of the template rule is instanti-
ated and inserted into the results tree.

The <xd:apply-templates> element causes the
immediate children of the source element to be pro-
cessed further recursively.

The <xdl:template> element can also be used
to define a named template, which can be called by
the <xd:call-template> element. Asthe examplein
Listing 3 shows, first, a named template convert-date
with parameter instring is defined. Then the template
is called with the actual parameter value taken from
the source document.

An arbitrary element (not in the XSL namespace)

For site licenses and volume subscriptions, call 1-781-751-8699.

81

SAP Professional Journal March/April 2003

Listing 4: An Element |s Directly I nserted into the Results Tree

<Pl ant >

<xsl : val ue- of sel ect ="E1STZUM E1MASTM WERKS/ t ext ()" />

</ Pl ant >

Listing 5: The <xdl:attribute> Element Adds an Attribute

<Bi || Of Vat eri al >

<xsl :attribute name="Materi al Nunber" >

<xsl : val ue- of sel ect ="E1STZUM E1MASTM MATNR/ t ext ()" />

</xsl:attri bute>

</Bill O Mat eri al >

will be inserted into the results tree directly, like the
<Plant> element in the example shown in Listing 4.
The <xdl:value-of> element extracts a specific value
from the source XML document and copiesit to the
results document. The select attribute may be afull
or relative (to the current node) path expression.

The <xdl:attribute> element adds an attribute
with the given name to an element in the results tree.
In the example shown in Listing 5, the resulting
element will ook like the following:

<Bi || Of Mat eri al Materi al Nunmber
=" ">

The <xdl:for-each> element allows for looping
through the nodes that match the select expression
(see the example shown in Listing 6). For each
node in the matching node set, the body of the
<xdl:for-each> will be instantiated once.

The <xdl:choose> element, together with the
<xd:when> element, can be used for multiple condi-
tion tests. The examplein Listing 7 checks the value

of the variable named key. If itsvaueisK, then
Class itemwill be chosen as the result; if its value
is L, then Sock item will be chosen.

XPath

XSLT utilizes XPath to query the source tree, which
is analogous to SQL’s utilization of SELECT state-
ments to retrieve data from a database. The following
are examples of XPath expressions:

* The match expression of the <xdl:template>
element

» Thesdlect expression of the <xsl:value-of>
element

» The select expression of the <xd:with-param>
element

» The select expression of the <xdl:for-each>
element

XPath is a W3C recommendation. XPath
provides syntax for locating anode in an XML

82 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 6: The <xdl:for-each> Element Enables L ooping

<xsl|l :for-each sel ect ="E1STZUM E1STPOM' >

<xsl :cal |l -tenpl ate name="process-elst poni'/>

</ xsl : f or - each>

Listing 7: The <xdl:choose> and <xsl:when> Elements for Condition Tests

<xsl : choose>
<xsl : when t est =" $key
<xsl : when t est =" $key
</ xsl : choose>

document tree. In XPath, alocation path describes
the location of something in an XML document. [t
takes its inspiration from the syntax used to denote
paths in file systems such as Unix.

Everything you do in XPath is interpreted with
respect to the context — a concept similar to that of
the current directory in afile system. Most of the
time, you can think of the context as the node in the
tree from which an expression is evaluated. The
context for an XPath expression is the current node
being processed. For example, take alook at the
following code sample:

<xsl :tenpl ate mat ch="para">

</ xsl : tenpl at e>

The context of the XPath expressions found in
the body of this template rule will be the selected
para elements.

Here is an example X Path expression:

E1STZUM E1MASTM WERKS/ t ext ()

'K ">Cl ass itenx/xsl:when>
"L'">Stock itenx/xsl:when>

This expression selects the text of the element
WERKS in the element ELIMASTM in the element
E1STZUM in the current context node.

XSLT and XPath also define many functions® that
can be used inside X Path expressions. These func-
tions fall into the following categories:

» Dataconversion

» String manipulation

* Node name/identifier
» Context-related

* Processor description
* Arithmetic

» Aggregation

 Nodesearch

3 The details of these functions are beyond the scope of this article.
Please refer to the book XSLT Programmer’s Reference by Michael
Kay (ISBN 1861005067). In my opinion, thisis one of the best XSLT
books available.

For site licenses and volume subscriptions, call 1-781-751-8699.

83

SAP Professional Journal March/April 2003

So, now that you have a basic understanding of
XSLT, let’sroll up our sleeves and examine the
details of mapping your IDoc data to the desired
XML format using this technique.

Data Mapping Using XSLT
Transformation

In the 4.6 Business Connector, the SAP XML Toolkit
for Javais plugged in asthe XSLT processor, which
enables the BC to offer native XSLT support.

The service pub.sap.xdt.transformation:
XS Transformation takes as its input parameters an
XML source, a stylesheet name, and optional global
parameters to be used in the transformation. The
service executes the necessary transformations based
on the XSL stylesheet and produces the output plus
any output parameters.

Y ou can use the xmlString input parameter to
pass the source XML string to the service. Alterna-
tively, you can use the xmlRecord parameter to pass
the source XML in arecord structure, and use param-
eter inRecordDefName to specify the record defini-
tion to use for parsing the source XML record. With
input parameter stylesheetFilename, you specify the
file name of the stylesheet to use in the transforma-
tion. You can use either an absolute path starting
from the root of the file system, or arelative path
starting from the BC installation directory (e.g.,
C:\sapbc46\server).*

Input parameter outRecordDefName specifies the
name of the record definition to use when building
the resulting record structure. |f provided, the result
will be arecord containing the transformed XML
results in output parameter transformedXmlRecord.

If outRecordDefName is not provided, then the results

4 Using therelative path isusually agood idea. You can put the XSLT
stylesheets in the file system subfolder (e.g., the resources subfolder)
of the corresponding BC package and use the relative path to address
them. Thus you can achieve portability of the path.

will be in the form of a string, in the output parameter
transformedXmlString.

Using XSLT to perform data transformation in
the BC has the following advantages:

e XSLT isthe emerging® standard for XML
transformations.

* No proprietary technologies are needed.

e The XSLT stylesheet is portable across different
XSLT processors and platforms. This means that
the stylesheet can be reused in completely differ-
ent environments and your investments will not
be lost.®

Potential disadvantages with XSL T-based data
mapping include the following:

* The upfront learning curve associated with adopt-
ing XSLT can be steep if the XSLT knowledgeis
not readily available to you.

e The XSLT stylesheets have to be carefully
designed and tested to optimize transformation
performance. Otherwise, potential performance
issues may arise.

Since its introduction in Business Connector 4.6,
X SLT-based data mapping has been garnering more
and more interest. For example, version 3.0 of the
SAP MarketSet Connector, which connects mySAP
backends with MarketSet-based marketplaces, uses
mainly XSLT transformation for data mapping.

Mapping IDoc data to an XML format using
XSLT transformation typically involves these steps:

1. Develop and test the XSLT stylesheet.

5 XSLT indeed is already a W3C recommendation. Many people
consider it an established standard for XML transformation and |
would agree with that sentiment. The term “emerging” is used herein
arelative sense.

6 Thisisone of the most attractive benefits of using XSLT transforma-
tion. For example, the new SAP Exchange Infrastructure (X1)
supports XSLT transformation, which means your current XSLT
stylesheets can be reused in future X|-based projects.

84 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 8: Command Line for Testing the XSLT Stylesheet with the SAP XSLT Processor

java -cp C:\sapbc46\ Server\ packages\ SAP\ code\j ars\stati c\

i ngnyxm . jar;.
-xsl <styl esheet >

2. Create aBC service to execute the XSLT
transformation.

Let’stake a closer look at these two steps.

Step 1: Develop and Test the
XSLT Stylesheet

Using XSLT to perform data transformation is
quite easy, once you’ ve done the work to develop
the XSLT stylesheet to perform the desired transfor-
mation. This can be done outside the BC, even
with the help of some third-party XSLT stylesheet
design tools.”

To facilitate stylesheet development and testing,
you can capture sample instances of the source XML
document. For example, to capture a sample IDoc-
XML document instance, follow these steps:

1. Inthe BC Administrator, select Routing —
Transactions.

2. Click on the transaction ID (TID) of the relevant
IDoc.

3. Right-click on View As XML and select Open in
New Window.

7 XML Spy, by Altova, isone of the best XML IDEs available. It
provides an XSL editor and debugger, among other features.

com i ngmy.lib.xsl.xslt.CommandLi ne -xm <sourceXM.>

4. |nthe new browser window, select File —
Save As and then specify the file name for the
captured sample.

Now you can focus on the development of the
stylesheet. Using the sample source XML document
that you captured (as described in the first article),
you can also test the stylesheet outside the BC by
executing the XSLT transformation and then check-
ing the resulting XML document. The XSLT proces-
sor delivered with the 4.6 BC can be executed
standalone,® using a command line like Listing 8.

The <sourceXML> element in Listing 8 isthe
source XML document file name, and <stylesheet> is
the XSLT stylesheet file name.

Step 2: Create a BC Service to
Execute the XSLT Transformation
Once you have devel oped and tested the XSLT

stylesheet, you can create a BC service to execute the
XSLT transformation as follows:

1. Prepare the source XML to be used as the input to
the transformation service.

8 You can also use other XSLT processors. However, since the SAP
XSLT processor will be used by the BC to execute the XSLT transfor-
mation at runtime, it isagood idea to also use it to test your stylesheet
at design time.

For site licenses and volume subscriptions, call 1-781-751-8699.

85

SAP Professional Journal March/April 2003

Listing 9: An Example Template Rule for Handling Multiple IDOC Elements

<xsl :tenpl ate mat ch="1DOC' >

<xsl :cal | -t enpl at e nane="process- bomat 03i doc"/ >

</ xsl : tenpl at e>

2. Invoke the transformation service, specifying the
source XML and the XSLT stylesheet file names.

Depending on the desired input XML format of
the XSLT transformation service, you need to prepare
the source XML accordingly. Let's assume that you
want to transform an SAP IDoc-XML document into
another XML format, and that you have devel oped
the XSLT stylesheet to take an IDoc-XML document
asinput. Beforeinvoking the XSLT transformation
with the stylesheet, you need to prepare the IDoc-
XML document. The built-in BC service
pub.sap.idoc: encode can be used for this purpose. It
converts aflat-structured IDoc to an XML string in
accordance to the SAP IDoc-XML specification.

Y ou can then feed the output argument xmlData
of the pub.sap.idoc: encode service as source XML to
the XSLT transformation service
pub.sap.xdlt.transformation: XSLTransformation, and
specify the XSLT stylesheet file name.

After the execution, the resulting XML is avail-
ablein the pipeline. You can then retrieve the result-
ing XML and transmit it to the desired destination.

Additional Considerations for
XSLT Transformation

When you design the XSLT stylesheet for the data
mapping, you often need to answer these questions:

e How can | handle an IDoc packet with XSLT?

e How can | perform value lookups with XSLT?

| will address these considerations next.

Handling an I Doc Packet with XSLT

When performing mapping with XSLT, you must
also take into account that in some cases the SAP
system will send multiple IDocs in one packet.

In this case, the XML document produced by the
pub.sap.idoc: encode service will contain multiple
IDOC elements, and the XSLT stylesheet will need to
be designed to handle these multiple IDOC elements.

This can be easily donein XSLT using atemplate
rule similar to the one shown in Listing 9. Here, you
can see that for each occurrence of the IDOC element,
the named template process-bommat03idoc will be
executed once. Within the template, you only need to
process asingle IDOC element.

Performing Value Lookups with XSLT

There are two options when it comes to performing
value lookupsin XSLT transformation: you can use
<xgl:choose> and <xd:when> elements, or you can
use Java extension functions.

86 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

The <xdl:choose> and <xd:when> Elements

The <xgl:choose> element, together with the
<xs:when> element, can be used for multiple condi-
tion tests, as discussed earlier. If the possible entries
for the value lookup are limited, you can build the
value lookup into the XSLT stylesheet, as you saw
back in Listing 7 (shown again in Listing 10 for
your convenience).

Obviously, this only works with a small number
of possible lookup entries. It requires modifications
to the XSLT stylesheet whenever the lookup entries
need to be changed, and it will be tedious to write the
stylesheet for alarge lookup.

Java Extension Functions

The current quasi-standard of XSLT, the W3C
XSLT 1.1 working draft, defines a mechanism for

the XSLT processor to support invoking extension
functions from the XSLT stylesheet. The extension
functions can be written in a number of languages,
with Java being a popular choice. The XSLT proces-
sor used in the 4.6 BC, as part of the SAP XML
Toolkit for Java, supports this extension function
mechanism.

Y ou can first write the Java code separately from
the BC, performing value lookup using a text file or
database table. After compiling the Java code and
making the Java classes accessible to the BC's XSLT
processor, you can invoke these Java extension func-
tions from within the XSLT stylesheet during the
XSLT transformation.

Inthefirst article, | showed you a Java code
sample using a properties file for value lookup. Now
let’s look at some sample code for performing data-
base lookup using JDBC (Listing 11).

Listing 10: Building the Value Lookup into the XSLT Stylesheet

<xsl : choose>
<xsl : when t est =" $key
<xsl : when t est =" $key
</ xsl : choose>

Listing 11: Database Lookup via JDBC

1 package com spj.sbhcarticle;

N

i nport java.sql.*;
public class Lookup {

String value = "not found";

'K ">Cl ass itenx/xsl:when>
"L'">Stock itenx/xsl:when>

3
4
5
6 public static String | ookup(String key) {
7
8
9

/1 use JDBC to | ookup val ue

(continued on next page)

For site licenses and volume subscriptions, call 1-781-751-8699.

87

SAP Professional Journal March/April 2003

(continued from previous page)

10 try {

11 C ass. f or Name(" sun. j dbc. odbc. JdbcCOdbcDri ver") ;

12 Connection con =
Dri ver Manager . get Connecti on("j dbc: odbc: SbcLookup", "", "");

13 Statenment stnt = con.createStatenment();

14 String queryStr = "select value from SbcLookupTabl e where
key = '" + key + "'";

15 Result Set rs = stnt.executeQuery(queryStr);

16 if (rs !'=null) {

17 rs.next();

18 value = rs.getString("val ue");

19 }

20 rs.close();

21 stnt.close();

22 con. cl ose();

23 } catch (Exception ex) {

24 ex. printStackTrace();

25 }

26 return val ue;

27 }

28 }

Let’s take acloser look at what's happening in
Listing 11. (Note that I've added line numbers for
your convenience.)

Asyou can see, the Java class is called Lookup,
and it resides in the com.spj.sbcarticle package.
First we import the necessary Java packages (line 3),
including java.sgl for JDBC. In the class, we define
a static method called lookup(), which takes a string
argument key, and then returns a string (line 6).
Within the try block of the method, we first load the
JDBC driver class — sun.jdbc.odbc.JdbcOdbceDriver
in this case (line 11). Y ou can use any supported
JDBC driver for your database, aslong asit is
accessible in the classpath. We then use the
getConnection() factory method of the class
DriverManager, specifying the connection properties
as arguments, to instantiate a Connection object
named con (line 12). Then the createStatement()
method of the Connection object isinvoked to instan-
tiate a Statement object stmt (line 13). We then com-

pose the SQL query string by concatenating the
method argument key to the SQL select statement
(line 14). Next, we execute the SQL query by invok-
ing the executeQuery() method of the Satement
object, passing the query string as the argument. The
results will bein a ResultSet named rs (line 15). If
the database table lookup is successful, there should
be one row in the ResultSet object; otherwise, the
ResultSet object will be null. So, we first check

that there is data returned as the result of the query
(line 16), then we move the cursor to the first row

of the ResultSet (line 17) and retrieve the value of
the appropriate field (in this case value) as a string
(line 18), and finally return it as the result of the
lookup() method (line 26). In case the SQL query
did not return anything, we simply return the default
value not found as the result of the method (lines 7
and 26).

After compiling and testing this JDBC-based
lookup class, you can create a JAR file containing the

88 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 12: Calling an Extension Function in XSLT

<xsl : styl esheet
<xsl : scri pt

...xm ns: | ookup="j ava: com spj . shcarticl e. Lookup" >
i mpl enent s- prefi x="1 ookup"

| anguage="j ava"

src="j ava: com spj . sbcarticl e. Lookup"/ >

<xsl : val ue- of sel ect ="| ookup: | ookup(string($key))"/>

</ xsl : styl esheet >

class and al the necessary supporting classes. This
JAR file then must be placed in the directory

< shcserver>\packages\SAP\codé\jars (e.g.,
C:\sapbc46\Server\packages\SAP\code\jars).®

After restarting the BC server, the JAR file will
be loaded automatically and the Java classes and
methods contained within will be accessible to the
BC'sbuilt-in XSLT processor.

Now we can follow the XSLT 1.1 extension
function rules to invoke the extension functions from
the XSLT stylesheet (see Listing 12).

First, we declare an XML namespace
java: com.spj.shcarticle.Lookup with the namespace
prefix lookup. Inthe <xdl:script> element, we indi-
cate that the namespace
java: com.spj.shcarticle.Lookup associated with the
namespace prefix lookup is actually implemented by
Java extension functions contained in Java class
com.spj.shcarticle.Lookup. In the select expression
of the <xdl:value-of> element, we invoke the Java
extension function, calling the static method
lookup() in the com.spj.sbcarticle.Lookup class,
passing the current value of the XSLT variable key
asthe argument. The return value of the lookup()

¢ All the JARs in this directory will be loaded by the BC during startup,
so the SAP XSLT processor will have access to the Java extension
functionsin the JAR file during XSLT transformation. Y ou have to
restart the BC server to haveit load the new JAR.

method will then become the result of the
<xdl:value> element, as part of the XSLT transfor-
mation result.

Using the XSLT extension function mechanism
invoking Java extension functions, among other
things, allows you to implement value lookup using
Java code accessing atext file or a database table.
This gives you the flexibility to change the lookup
entries without touching the stylesheet itself. Also,
the database-table-based |ookup approach scales well
and offers good performance.

An Example XSLT Transformation

The BC service spjexamples.idoc.outbound:
processBommat03PacketWithXslt contained in the
SPJ package (which isincluded in the download
available at www.SAPpro.com) is provided as an
example of data mapping with XSLT transformation.
It usesthe XSLT stylesheet file

BommatO3Packet ExtBomXml.xslt, which residesin
the resource directory of the SPJ package (e.g.,
C:\sapbc46\Server\packages\SPJ\resour ces).

The source code of a Java extension functionis
provided in file com\spj\sbcarticle\Lookup.java. The
compiled classes arein JAR file SpjSocArticlejar.

To use the Java extension functions from the XSLT

For site licenses and volume subscriptions, call 1-781-751-8699.

89

SAP Professional Journal March/April 2003

stylesheet, the JAR file needs to be copied to the
code\jars directory of the SAP package (e.g.,
C:\sapbc46\Server\packages\SAP\code\jars). Then
the BC server must be restarted to load the JAR file.

To run the example, you can follow the
same steps for the BC flow service example
(spjexamples.idoc.outbound:
processBommat03PacketWithFlow) described in the
first article. Note that you will need to modify the
routing rule to route the IDocs to the new service
for XSLT.

Data Mapping Using a Java
Service

Javais the native language of the SAP Business
Connector. The BC provides a Java API that you can
use in your Java services to perform many tasks (e.g.,
pipeline manipulation, service invocation, etc.). In
addition, all the standard and optional JDK APIs, as
well as third-party Java APls, can be used. TheBC
also provides an IDoc-Java API that enables the
processing of SAP IDocs. You can build your own
Java service to perform the data transformation to
extract data from the source and compose the result-
ing format as desired.

Performing data transformation in Java has the
following advantages:

» ltispotentialy faster.

» It can handle very complex logic and heavy
computation with relative ease.

e |t can utilize the BC Java APl and the IDoc-Java
API, aswell as other third-party Java APIs.

However, it also has the following disadvantages:

1 Thisisthe IDoc-Java API for Java services running on the BC. Do

not confuse it with the new SAP Java|Doc Class Library, based on the

Java Connector (JCo), which is still in beta at the time of writing.

» Coding in Javarequires Java programming
expertise.

e ThelDoc-Java APl supportsonly asingle IDoc;
it does not support IDoc packets.

If you need to process multiple IDocs in a packet,
there are workarounds available to separate the indi-
vidual IDocs from the IDoc packet, so they can be
processed by the Java service using the BC's IDoc-
Java API. However, these workarounds typically add
overhead and are not efficient in terms of perfor-
mance. That means that Java services based on the
IDoc-Java API are mainly suitable only for process-
ing single IDocs, not IDoc packets. If you need to
process | Doc packets and want to use Java code for
some complex computation, usually it will be better,
in terms of performance, to use a BC flow service and
only invoke custom Java services when necessary (the
BC flow service technique was described in detail in
the first article, “XML Messaging with the SAP
Business Connector Part 1: Direct IDoc-XML Data
Exchange and Outbound IDoc-to-XML Data Map-
ping with Flow Services’). Alternatively, you could
mainly use XSLT transformation, discussed in the
previous section, and invoke Java extension functions
only when necessary.

Of course in BC projects, a Java service approach
is still worth considering if only single IDocs are
involved and performance is a high priority.

A Java service that processes a single IDoc typi-
cally has the following code blocks:

1. Instantiate the IDOC Java object based on the
data of asingle IDoc in the pipeline.

2. Find the relevant IDoc segments and retrieve
the IDoc field values of interest.

Listing 13: I nstantiate a New | Doc I nstance

Val ues idoc_pipeline = in;
| DOC i doc = new | DOC(i doc_pi pel i ne);

90 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 14: Access | Doc Segments and Fields
| DOCSegnent segE1STZUM = nul | ;

segE1STZUM = i doc. fi ndSegnent (" E1STZUM') ;
category = segE1STZUM get SDATA(" STLTY");

Listing 15: Perform Value Transformation

st rDATUV = segE1STKOM get SDATA(" DATUV") ;
val i dFronDat e = strDATUV. substring(2, 4) + "-"

"-" + strDATUV. substring(6, 8);

3. Compose the resulting data format using the
data retrieved from the IDoc and generate the
XML document.

4. Transmit the resulting XML document to the
target system.

Note that the BC' s IDoc-Java APl requires the
Java service to be created using the old Values signa-
ture.* You can change the Java service signature
preferencein the BC Developer. Select Edit —
Preferences — Services, and then select the desired
Java service signature in the Default Java service
signature section.

I will now discuss the important segments
of asample Java service that processes asingle
BOMMATO3 IDoc instance, maps it to an external
XML document, and transmits the results to the target
system. The complete example service is contained
in the SPJ download package.

First we make a copy of the pipeline input, and
then we use the copy asinput to the constructor of

1 The SAP BC supports two Java service signatures: Values and | Data.
The SAP BC 4.6 uses | Data by default.

+ strDATUV. substring(4, 6) +

v" Notel

Snce we will be using the BC IDoc-Java API here,
we need to specify com.wm.pkg.sap.idoc.* as an
imported package in the Imports section of the Java
service's Shared tab, together with all the other Java
packages/classes that need to be imported.

the IDOC class in order to instantiate a new IDOC
instance using the data contained in the pipeline (see
Listing 13).

In Listing 14, we declare an IDOCSegment
instance variable named segE1STZUM. Then we use
the findSegment(String segmentName) method of the
IDOC classto find the first occurrence of the segment
E1STZUM. After finding the segment, we access the
field values by using the getSDATA(String
fieldName) method of the IDOCSegment class.

In Listing 15 we perform a value transformation
for the date field. The DATUV field in the ELSTKOM
segment contains the date in the yyyymmdd format.
We want to change the format to yy-mm-dd, so we are

For site licenses and volume subscriptions, call 1-781-751-8699.

91

SAP Professional Journal March/April 2003

Listing 16: Process All Segmentswith a “while” Loop

| DOCSegnent segE1STPOM = nul [;
Vect or vecConmponent = new Vector();
int index = 0;

while ((segELSTPOM = idoc. findSegnment ("ELSTPOM', index)) != null) {

i ndex = segE1STPOM get | ndex() + 1;

Listing 17: Compose the Record Object

conponent | t enNunber = segE1STPOM get SDATA(" POSNR") ;

Val ues val Conponent = new Val ues();

val Conponent . put (" @t emunber", conponent|tenNunber);

vecConponent . add(val Conponent) ;

using the substring() method of the String class to
extract the two-digit year, month, and day values, and
then concatenate them with “-” as the separator.

In the IDoc, the ELSTPOM segment may
occur multiple times. To process al the ELSTPOM
segments, we use awhile loop in Listing 16.
First we set the integer variable index to 0, so
idoc.findSegment("EL1STPOM", index) will find and
return the first instance of the ELSTPOM segment.
After processing the first instance, we set index to the
value that points to the first segment after the current
E1STPOM segment, and repeat findSegment() to find
the next occurrence. This processis repeated until all
the ELISTPOM segments are found and processed
(i.e., when findSegment() returns null).

Within each loop iteration, we use the
getSDATA() method of the segment object to
retrieve the field values we are interested in and
compose arecord object called val Component
(seeListing 17). We then add the record object

to the vector vecComponent instantiated earlier
(refer back to Listing 16) before we enter the
while loop.

After the while() loop, the vector vecComponent
will collect all the valComponent record objects
created, each mapped from one occurrence of the
E1STPOM segment. We use Vector here because we
do not know how many ELISTPOM segments there
will be at runtime.

In Listing 18, we convert the vector of
Values objects to an array of Values objects (i.e.,
arecord list).

Now, with all the data available, we can assemble
a Values object in the desired record format (see
Listing 19).

We then use the pub.web: recordToDocument
built-in service to convert the record to an XML
string (Listing 20). By using the Values object and

92 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 18: Convert the Vector to a Record List

int size = vecConponent. size();
Val ues[] conmponent = new Val ues[si ze] ;
for (int i=0; i < size; i++) {
conmponent[i] = (Val ues) vecConponent. el enent At (i);

}

Listing 19: Format the Values Object

Val ues val Bil | O Material = new Val ues();

val Bi | | O Mat eri al . put (" @vat eri al Nunber", baseMat eri al Nunber) ;
val Bi | | O Mat eri al . put (" Cat egory"”, category);

val Bi | | O Mat eri al . put (" Conponent s", conponents);

Val ues val XML = new Val ues();
val XML. put ("Bi | | O Material", valBill O Material);

Listing 20: Convert the Record to an XML String

i n. put ("boundNode", val XM.) ;
Servi ce. dol nvoke(" pub. web", "recordToDocunent", in);
String xm String = in.getString("xnl data");

Listing 21: Initiate the HTTP POST

in.put("url", "http://local host: 4242");
i n. put ("nmet hod", "POST");

Val ues data = new Val ues();

data. put("string", xm String);

in. put("data", data);

Val ues headers = new Val ues();

headers. put ("Content-type", "text/xm");
i n. put ("headers", headers);

Servi ce. dol nvoke("pub.client", "http", in);
the recordToDocument service, we can create XML InListing 21, we initiate the HTTP POST using
data easily without using the rather complex Docu- the pub.client: http built-in service. Please note that
ment Object Model (DOM) API. we set the Content-type HT TP header to text/xml.

For site licenses and volume subscriptions, call 1-781-751-8699. 93

SAP Professional Journal March/April 2003

v" Performing Value Lookup in a
Java Service

Since we are programming in Java, performing
value lookup when using a Java service is quite
easy. You can write Java code that performs
the text-file-based lookup, or JDBC database-
table-based lookup, as static methods defined
in the Shared Source section of the Java
service's Shared tab. These static methods can
then be invoked from the code of the Java
service.

An Example Java Service

The BC service spjexamples.idoc.outbound:
processBommat03SngleWithJava, available with the
download, is an example Java service that maps a
single BOMMATO3 IDoc to an external XML docu-
ment and transfers the XML document to the external
HTTP server using HTTP POST.

Y ou can use transaction BD30 to send a
single BOMMAT IDoc from the SAP system and
configure the BC routing rule to route the IDoc to
the Java service.

Alternatively, a captured pipeline containing
asingle BOMMATO3 |IDoc instance is provided
as file Bommat03SinglePipeline.xml. You can
use the spjexampl es.idoc.outbound:
testProcessBommat03S ngleWithJava flow service
to restore the pipeline from the file and test the
Javaservice.

Inbound IDoc Communication
Using Non-SAP XML

With everything you have learned so far in this two-
part discussion, you are now familiar with the concept

of outbound IDoc communication using non-SAP
XML, and the various considerations involved in this
process, including the different data-mapping options
available to you. Armed with thisinformation, let’s
now examine inbound IDoc communication using
non-SAP XML, where the document travels from the
business partner’ s system, to the Business Connector,
and then to your SAP system.

There are three main tasks involved in inbound
IDoc communication when using non-SAP XML:

¢ Send an external XML document to the
BC service.

* Map the data from the XML document to
an IDoc.

* Post the IDoc to the SAP system.

Let'stake alook at each of these tasksin turn.

Send an External XML Document
to the BC Service

The Business Connector provides the following
automated mechanisms for receiving arbitrary XML
documents, parsing them, and passing them as input
to aspecified service:

» A client can submit an XML document to a ser-
vice in astring variable of any name.

» A client can submit an XML document to a ser-
vice in aspecial string variable named $xmldata.
The BC will automatically parse the XML string
into anode (a parsed XML document) and pass
the node to the service.

* A client can post an XML document to a service
viaHTTP. The BC will automatically parse the
XML document into a node (a parsed XML docu-
ment) and pass the node to the service. Thisis

94 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Figure 1

Built-In Services for Incoming XML Documents

pub.web:stringToDocument

Converts a text string representing an XML document into a
node object (a parsed XML document).

pub.web:documentToRecord

Converts a node object (a parsed XML document) to a
Values object (a record variable). This service transforms
each element and attribute in the source document to an
element in a Values object.

probably the most practical option. The
HTTP header Content-type needs to be set to
text/xml. The XML document is sent in the
HTTP request body.

* A client can FTP an XML document to a service.

* A client can email an XML document to a
service.

The BC provides several built-in services that can
be used to deal with the incoming XML document
(seeFigure1).

The BC Developer can provide some help in
creating flow services that receive an XML docu-
ment. The starter flow Receive an XML Document
can be used by providing a sample instance of the
XML document, DTD, or XML schema of the XML
document. The generated flow and record definition
can then be used as a starting point for further devel-
oping the flow.

Within the flow, you can also perform data
validation of the received XML data. There are
mainly two types of datavalidations as far as the
incoming XML datais concerned: XML validation
and record validation.

XML Validation

XML validation verifies the structure and content of
the XML document against a BC schema. A BC

schema is afreestanding element in the BC that acts
as a blueprint or model against which you validate an
XML document. It can be generated fromaDTD, an
XML schemadefinition, or an XML document that
references an existing DTD.

To perform XML validation, the
pub.schema: validate service needs to be invoked with
the following parameters:

e object — The node object (the parsed XML
document) to be validated

e conformsTo — The fully qualified name of the
BC schemathat you want to validate against

Record Validation

Record validation verifies the structure and content of
an individual record variable in the pipeline against a
BC record definition.

This can be useful if the incoming XML docu-
ment is already converted to arecord variable by
pub.web: documentToRecord.

To perform record validation, the
pub.schema: validate service needs to be invoked with
the following parameters:

» object — The record variable to be validated

» conformsTo — The fully qualified name of the
record definition that you want to validate against

For site licenses and volume subscriptions, call 1-781-751-8699.

95

SAP Professional Journal March/April 2003

v" Notel

Before we discuss the options for mapping an
external XML document to an IDoc, let’s first
look at the IDoc format required for posting to
the SAP system. The easiest way to post IDocs
to the SAP system from a BC service is to use the
built-in pub.sap.transport.ALE: OutboundProcess
service. This service expects the IDoc data in
the flat structure format — IDOC_CONTROL
and IDOC_DATA for version 2 IDacs, or
IDOC_CONTROL_REC 40 and
IDOC_DATA REC 40 for version 3 IDocs. The
service supports posting of both single IDocs and
IDoc packets.

Map the Data from
the XML Document to an IDoc

Since the pub.sap.transport.ALE: OutboundProcess
service expects the IDoc datain the flat structure
format, that is the target IDoc format you must map
the external XML document to. This mapping isthe
reverse of mapping from the IDoc to the external
XML format (detailed in the discussion on outbound
IDoc communication with non-SAP XML). The
techniques used for the data mapping are the same,
so in the following sections, | will point out the few
things that need specia attention for inbound XML-
to-IDoc mapping.

Again, you can use aBC flow service, XSLT
transformation, or a Java service for inbound map-
ping, just as with outbound mapping. With inbound
mapping, each technique also has the same pros and
cons that it had with outbound mapping.

Data Mapping Using a BC Flow Service

The following are the main steps necessary for using
aflow service:

1. Receivethe external XML data as anode
(aparsed XML document).

2. Invoke pub.web:documentToRecord to convert
the node to arecord and bind the record definition
for the external XML document to it (to make it
expandable for mapping in subsequent steps).

3. Map the external datato arecord that corresponds
to the hierarchical structure of the IDoc, using
MAP operations with transformers, LOOP opera-
tions, etc., as necessary.

4. Invoke pub.sap.idoc:transformHierarchyToFlat
to transform the IDoc to aflat structure.

5. Theflat-structured IDoc is then ready to be
posted to the SAP system.

An IDoc packet can be handled easily in the flow
mapping. |If there are multiple IDocs that need to be
posted to the SAP system in an IDoc packet, the
hierarchically structured target variable of the map-
ping will contain multiple IDOC elements. The
L OOP operation can be used to collect the multiple
IDOC elements, one IDOC element at atime, within
one loop iteration.

Data Mapping Using XSLT Transformation

The main steps necessary for using XSL T transforma-
tion to perform the inbound mapping are:

1. Receivethe externa XML document as a string.

2. Transform the external XML document to
an IDoc-XML document by invoking the service
pub.sap.xdlt.transformation: XSL Transfor mation
and providing the XSLT stylesheet file name.
The XSLT stylesheet must be developed and
tested outside the BC, possibly by using some
third-party XSLT editor tool.

3. Invoke the service pub.sap.idoc: decode to convert
the IDoc-XML document to aflat-structured 1Doc.

96 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

Listing 22: Get the Control Record and Set the Control Fields

| DOCCont r ol

ctrl.setField("D RECT", "2");

ctrl = idoc. getControl Record();

Listing 23: Create and Populate the Data Segments

| DOCSegnent segE1ALERL = new | DOCSegrent (" ELALERL") ;

segEL1ALERL. set SDATA(" MESTYP",

" MATMAS") ;

segE1ALEQL. set SDATA("LOW, materi al Nunmber);

4. Theflat-structured IDoc is then ready to be
posted to the SAP system.

An IDoc packet can be handled easily using
XSLT transformation. If there are multiple IDocs
that need to be posted to the SAP system in an
IDoc packet, the XSLT stylesheet can be devel oped
accordingly to produce multiple IDOC el ements
in the resulting IDoc-XML document. After
pub.sap.idoc: decode, these multiple IDocs will
be packaged together and can then be posted to the
SAP system.

Data Mapping Using a Java Service

The BC'sIDoc-Java APl can also be used to compose
an |IDoc based on data provided in the external XML
document. Again, this API supports only single
IDocs. IDoc packets are not directly supported.

We can devel op the Java service to take a node (a
parsed XML document) asinput. Inthe Java service,
we can invoke the pub.web: documentToRecord ser-

vice to convert the node to arecord. We can then
easily access the data in the record by using the meth-
ods of the Values class. Thisis easier than parsing
the XML document using the standard DOM or SAX
APIsfor XML.

With the data from the external XML document
available, we can start constructing the IDoc.

The following code instantiates a new version 3
IDOC object called idoc:

| DOC i doc = new | DOC(true);

We can then get the control record of the IDoc
and set the necessary control fields, as shownin
Listing 22.

In Listing 23, we create the data segments. The
setSDATA(Sring fieldName, String value) method of
the IDOCSegment class can be used to set the data
field values. The value may be a hard-coded value,
may come from the external XML document, or may
be some intermediate computation result.

For site licenses and volume subscriptions, call 1-781-751-8699.

97

SAP Professional Journal March/April 2003

Listing 24: Assemble the I Doc from Data Segments

i doc. append(segE1ALER1) ;

i doc.insert ("E1ALER1", segElALEQL, true);

Now we can assemble the IDoc by putting all
its data segments together in the correct hierarchical
order, as shown in Listing 24.

The getValues() method of the IDOC class
returns the IDoc in the flat structure, which is now
ready for posting to the SAP system:

Val ues pi pel i nel DOC =
i doc. get Val ues();

v Value Lookup for Inbound
Data Mapping
Value lookup for inbound data mapping can be

done using the same techniques detailed in the
outbound data-mapping discussion.

Post the IDoc to the SAP System

As noted on page 96, the built-in service
pub.sap.transport. ALE: OutboundProcess is the
easiest way to post the flat-structured | Doc to the
SAP system.

The input parameter transportParams/server
contains the name of the SAP server entry (defined
using the BC Administrator via Adapters — SAP -
SAP Servers) that should be used as the target for the
IDoc posting. Since different SAP systems are typi-

cally used for development, testing, and production, it
is not agood idea to hard-code the target SAP system
in the BC service. Instead, you can put thisinforma
tion in a configuration file and dynamically look up
the SAP server entry to be used at runtime.

Suppose you have a configuration file containing
the following data:

sapdest = SAPSyst eniToUse

Y ou can then create a simple Java service for
configuration lookup. It will be quite similar to the
Java service discussed for file-based value lookup
in the first article of this two-part discussion. This
configuration lookup Java service can then be used
in your main service, before the invocation of the
pub.sap.transport. AL E: OutboundProcess service, to
determine the target SAP server to be used for the
IDoc posting.

Guaranteed Delivery

The pub.sap.transport.ALE: OutboundProcess service
has an optional input parameter called $tid. If pro-
vided, it will be used asthe TID for the tRFC posting
of the IDoc to the SAP system. If not provided, the
pub.sap.transport.ALE: OutboundProcess service will
create anew TID and use it for the tRFC posting.

When the SAP system receives atRFC IDoc
posting, it will first check the TID value received
against its TID table. If the TID is new, the IDoc
posting will be processed. If the TID is marked as

98 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

previously processed, which indicates that it isa
duplicate, the IDoc posting will be discarded.

Depending on the business arrangement between
your company and your business partner, there are
two main scenarios for inbound guaranteed delivery:

e Your business partner’s system isresponsible:
In this case, your business partner’s system gen-
eratesa TID (aglobally unique 24-character
string) using their own routine, then attaches
the TID to the XML transmission to your BC
(e.g., asan HTTP header field of the HTTP
POST). Your BC service then uses this TID
as the $tid parameter value of the
pub.sap.transport.ALE: OutboundProcess invoca-
tion. If thereisany error during the processing
(from the business partner’ s system, to the BC,
and then to SAP), the business partner’s system
will be notified of the failure and should retrans-
mit the XML document with the exact same TID.
Thusthis TID protects the entire end-to-end
communication, achieving guaranteed delivery
and avoiding duplication.

e Your BC serviceisresponsible: In this case,
your business partner’s system will consider the
transmission successful once the XML document
is completely transmitted to the BC. Itisthen
your BC service' sresponsibility to make sure that
upon receiving the external XML document, the
IDoc will be posted to the SAP system once and
only once. To achieve this:

- The BC service that receives the incoming
XML document needs to confirm the success
of the transmission with the business
partner’s system, once the XML document is
fully received and stored in a persistent stor-
age medium (e.g., amessage queue, a data-
base table, afile, etc.).

- If thereisany problem during the data
mapping, the BC service that performs the
mapping should log the error to the persistent
storage medium and notify the administrator
(viaemail, for example) for troubleshooting.

- The BC service must be designed to
automatically repeat the
pub.sap.transport.ALE: OutboundProcess
posting in case of transient network or
SAP server problems. The reposting must
use the exact same TID asthe original post-
ing attempt.

In this scenario, depending on the requirements,
third-party queuing software may be useful for persis-
tently storing the incoming XML document, the
result of the data mapping, and the status of the
IDoc posting.

Examples of Inbound
XML-to-IDoc Mapping

The file Material DataRequestSamplel.xml is pro-
vided with the download as a sample external
XML document. ItsDTD isalso provided as
Material DataRequest.dtd.

To post the IDoc to the SAP system, the target
SAP system needs to be defined in the BC Adminis-
trator on the SAP Servers page (Adapters — SAP —
SAP Servers). The SAP server entry can be defined
with an arbitrary name. After that, you need to indi-
cate which SAP server should be used by the example
services by changing the value of the sapdest entry
in the config.txt file, which resides in the resources
directory of the SPJ package (e.g.,
C:\sapbc46\Server\packages\SPJ\resour ces).

An Example BC Flow Service

The BC service

spjexamples.xml.receiving: Xml2ldocWithFlow is an
example of inbound XML-to-1Doc mapping with a
flow. It takes a parsed XML document (node) as
input, maps the external XML document to the IDoc
type ALEREQOL, and postsit to the SAP system
specified. You can use the BC Developer menu path

For site licenses and volume subscriptions, call 1-781-751-8699.

99

SAP Professional Journal March/April 2003

Helpful Hints

this article.

Data Mapping Using XSLT Transformation

testing.

development.

lookups.

from the command line.

an IDoc-XML document.

Data Mapping Using a Java Service

Java APIs.

The following is a quick reference of the helpful hints presented throughout the discussions in

V] The 4.6 SAP Business Connector delivers a built-in XSLT engine and the built-in service
pub.sap.xslt.transformation:XSLTransformation.
V] Capture sample source and target XML documents for XSLT stylesheet development and

V] Use a third-party XSLT editor to improve the efficiency and productivity of stylesheet

V] Use XSLT Java extension functions for complex logic, heavy computation, or accessing
other Java APIs. It can also be used to perform file-based or database-table-based value

V] Test the XSLT stylesheet directly with the BC’s built-in XSLT processor by running it directly

V] The services pub.sap.idoc:encode and pub.sap.idoc:decode can be used to encode/decode

V] Java code can easily handle complex logic or heavy computation, as well as access other

Test - Send XML file to send the sample XML docu-
ment to this BC service. In the SAP system, transac-
tion WEQ5 can be used to display the posted IDoc.*?

2 Y ou may see that the IDoc has an error status code in your SAP
system. This meansthe IDoc is successfully posted to your SAP
system, but your SAP system is not configured to correctly process
the incoming IDoc. Ask your local ALE guru for help in getting the
IDoc processed by the application.

An Example XSLT Transformation

The BC service

spjexamples.xml.receiving: Xml2ldocWithXslt is an
example of inbound XML-to-IDoc mapping with
XSLT transformation. It uses the stylesheet file
Material DataRequest_Alereq01.xdlt, which resides
in the resources directory of the SPJ package, (e.g.,

100 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

XML Messaging with the SAP Business Connector Part 2

VI Java-service-only approaches are appropriate only for single IDocs.

' For IDoc packets, a flow/Java combination or XSLT/Java combination can be used if
necessary.

Inbound IDoc Communication Using Non-SAP XML

VI The easiest way to post IDocs to the SAP system from a BC service is to use the built-in
service pub.sap.transport.ALE:OutboundProcess.

VI The service pub.sap.transport.ALE:OutboundProcess expects the IDoc data in the flat
structure format. This is the target format of the BC service data mapping.

Data Mapping Using a BC Flow Service (Inbound)

 For incoming XML documents, use the pub.web:documentToRecord service to convert
the parsed XML document to a record, and bind the record definition to it to make it
“mappable.”

 For inbound IDocs, transformHierarchyToFlat can be used to convert the IDoc from a
hierarchical structure to a flat structure.

Guaranteed Delivery (Inbound)

VI The guaranteed delivery of inbound communication can be the responsibility of the business
partner’'s system or the responsibility of your BC service.

 Inbound guaranteed delivery by BC services is more complex. Third-party queuing software
may be useful in these cases.

C:\sapbc46\ Server\packages\SPJ\resources). This An Example Java Service

service takes the XML document asinput in its string

input parameter in_xml_string, maps the external The BC service

XML document to the IDoc type ALEREQOL, and spjexamples.xml.receiving: Xml2ldocWithJava is an
posts it to the SAP system specified. To test it, you example of inbound XML-to-IDoc mapping with a
can use the BC Developer menu path Test — Run, Java service. It takes a parsed XML document (node)
and copy and paste the contents of the external XML as input, maps the external XML document to the
document to the in_xml_string argument. IDoc type ALEREQO1, and postsit to the SAP system

For site licenses and volume subscriptions, call 1-781-751-8699. 101

SAP Professional Journal March/April 2003

specified. Totest it, you can use the BC Developer
menu path Test - Send XML file to send the sample
XML document to the service

spj exampl es.xml.receiving: testXml 2l docWithJava,
which will in turn execute the service
spjexamples.xml.receiving: Xml2ldocWithJava .

Conclusion

In thefirst article of this two-part discussion (“XML
Messaging with the SAP Business Connector Part 1:
Direct IDoc-XML Data Exchange and Outbound
IDoc-to-XML Data Mapping with Flow Services'),
you learned how to perform direct IDoc-XML mes-
saging with business partners, how to use a BC flow
service for outbound non-SAP XML messaging with
IDocs, and when to use which. Herein the second
part, | discussed the other two options for outbound
non-SAP XML messaging — XSLT transformation
and Java services — including pointers on the best
situations to use each. | also outlined the specia
considerations involved in inbound non-SAP XML
messaging with IDocs.

| hope the information provided in these articles
has provided you with the “big picture,” aswell as

enough detail on XML messaging with the SAP
Business Connector to get you started, and has
enabled you to take advantage of the SAP Business
Connector in your own |IDoc-based XML messaging
projects. Have fun!

Robert Chu joined SAP at the end of 1996.

He currently works for the Integration and
Certification Center at SAP Labsin Palo Alto,
California. Prior to this, he worked in technical
consulting and training at SAP America and
SAP Asia. Robert’s current focus is the SAP
integration technologies. He has been regularly
teaching classesin this area at SAP training
centers and is the main author of the BIT531
training course, as well as a few other internal
workshops. Robert has spoken at the past three
SAP TechEd events. In addition to his SAP
expertise, heisalso an SCEA (Sun Certified
Enterprise Architect) for J2EE, an MCSD
(Microsoft Certified Solution Developer), and an
MCSE (Microsoft Certified System Engineer).
Robert can be reached at robert.chu@sap.com.

102 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

