
53For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

XML Messaging with the
SAP Business Connector Part 1:
Direct IDoc-XML Data Exchange and Outbound
IDoc-to-XML Data Mapping with Flow Services

Robert Chu

Robert Chu joined SAP
at the end of 1996.
He currently works for
the Integration and
Certification Center at
SAP Labs. His current
focus is the SAP integration
technologies. Robert has
been regularly teaching
classes in this area at SAP
training centers, and is the
main author of the BIT531
training course and a few
other internal workshops.

The Business Connector (BC) is SAP’s current solution for enabling
SAP components to participate in the exchange of XML messages via
the Internet, mainly for the purpose of integrating SAP components with
other solutions.1

XML messaging between your SAP system and, say, your business
partner’s system typically involves exchanging Intermediate Documents
(IDocs2) between your SAP system and your SAP Business Connector,
mapping data between the IDocs and the desired external XML format,
and then exchanging the XML documents between the BC and the
business partner’s system.

While the Business Connector does provide an overwhelming
amount of documentation, the coverage of XML messaging is difficult
to follow and confusing. This article and the one that follows (“XML
Messaging with the SAP Business Connector Part 2: Outbound IDoc-
to-XML Data Mapping with XSLT and Java Services, and Inbound
XML-to-IDoc Data Mapping”) address this lack and provide an in-depth
examination of how to use the BC in real-world projects to enable IDoc-
based XML messaging with your business partners.3 These two articles
will help SAP Business Integration Consultants, SAP Integration
Architects, and SAP Integration Developers understand the different
options available when it comes to IDoc-based XML communication,
and gives practical guidance on project implementation.

(complete bio appears on page 78)

1 At the time of writing, the SAP Exchange Infrastructure (XI) is still under restricted piloting.
2 IDocs are used for the asynchronous communication between SAP systems and other SAP

or non-SAP systems. Application Link Enabling (ALE) and the EDI interface both use IDocs.
3 SAP now offers the BIT531 training class (“SAP Business Connector Development”), which

is a three-day class that Paul Medaille and I coauthored. These two articles will offer details
in some areas that are not covered in the BIT531 class.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.54

Listing 1: An Example IDoc-XML Document

<?xml version="1.0" encoding="iso-8859-1"?>
<BOMMAT03>
 <IDOC BEGIN="1">
 <EDI_DC40 SEGMENT="1">
 <DOCNUM>0000000000281751</DOCNUM>
 <DIRECT>1</DIRECT>
 <IDOCTYP>BOMMAT03</IDOCTYP>
 <MESTYP>BOMMAT</MESTYP>
 <SNDPRT>LS</SNDPRT>
 <SNDPRN>YSPCLNT400</SNDPRN>
 <RCVPRT>LS</RCVPRT>
 <RCVPRN>SPJ_M</RCVPRN>
 <!-- other control record fields omitted -->
 </EDI_DC40>
 <E1STZUM SEGMENT="1">
 <MSGFN>009</MSGFN>
 <!-- other E1STZUM segment fields omitted -->
 <E1MASTM SEGMENT="1">
 <MSGFN>009</MSGFN>
 <!-- other E1MASTM fields omitted -->
 </E1MASTM>
 <E1STKOM SEGMENT="1">
 <MSGFN>009</MSGFN>
 <!-- other E1STKOM fields omitted -->
 </E1STKOM>
 <E1STPOM SEGMENT="1">
 <MSGFN>009</MSGFN>
 <!-- first E1STPOM segment, other fields omitted -->
 </E1STPOM>
 <E1STPOM SEGMENT="1">
 <MSGFN>009</MSGFN>
 <!-- second E1STPOM segment, other fields omitted -->
 </E1STPOM>
 <E1STPOM SEGMENT="1">
 <MSGFN>009</MSGFN>
 <!-- third E1STPOM segment, other fields omitted -->
 </E1STPOM>
 </E1STZUM>
 </IDOC>
 <IDOC BEGIN="1">
 <!-- second IDoc instance in the IDoc packet, details omitted -->
 </IDOC>
 <!-- other IDoc instances in the IDoc packet, omitted -->
</BOMMAT03>

Here in this first article, I will walk you through
how you and your business partners can use the
IDoc-XML format to send and receive XML docu-
ments directly. However, not all of your partners will

have this capability, so in the latter sections of this
article, I will show you how to send documents to
your business partners in other XML formats using a
Business Connector flow service, which is a widely

55For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

used technique. It is also possible to use XSLT trans-
formation or Java services to send non-SAP XML
documents to your business partners. These two
techniques require additional knowledge of XSLT
and Java, respectively, so I will discuss them in the
second article of this two-part discussion, as well as
show you how to enable your system to receive non-
SAP XML documents from your business partners.

To get the most out of these articles, you will find
the following prior knowledge very helpful:

• Basic understanding of SAP IDoc technology

• Basic understanding of Business Connector
concepts and operations

• Basic understanding of the HTTP protocol

• Basic understanding of XML and XSLT

• Basic understanding of the Java programming
language

Note that I will be using SAP Business Connector
4.6 in the discussion, since it is the latest recom-
mended version from SAP.4

For your reference, sample BC services, along
with Java source code and files, have been developed
to illustrate all the major points in the articles. You
can find those files, as well as the instructions to use
them, at www.SAPpro.com.

SAP IDoc-XML or Not?

Out-of-the-box, the SAP Business Connector sup-
ports the so-called IDoc-XML vocabulary for
IDocs. IDoc-XML is a straightforward mapping
of IDoc data to XML: the IDoc type becomes the
root element, with multiple IDoc children elements
representing the multiple IDocs in an IDoc packet.
Each IDoc segment becomes an XML element, with
all its data fields and nested segments becoming
children elements. The IDoc field value becomes
the text content of the corresponding XML element.
Listing 1 is an example IDoc-XML document for
IDoc type BOMMAT03.

If your business partner is able to support the
IDoc-XML vocabulary, whether through prior agree-
ment or because the partner is also running an SAP
system, you can use the IDoc-XML documents
directly for XML messaging. In this case, there is
no development work that needs to be done in the
Business Connector. You need only configure the
routing rules appropriately in the BC to route the
IDoc message to the desired destination. The transla-
tion between the IDoc-XML document and the IDoc
message is performed automatically by the BC.

Inbound IDoc Communication
Using IDoc-XML

Figure 1 is a diagram showing inbound IDoc com-
munication using SAP IDoc-XML (with the SAP
system as the receiver).

Figure 1 Inbound IDoc Communication Using IDoc-XML

4 There is a new version (4.7) planned for Q1 2003.

��������	�
��

���	�������

�

���	��������
��������

�

����	�
��	����

���� ����
�������
!"���#

��� ����
���������

!$�
!"���#

���� �%
��&��

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.56

The major steps involved in inbound communica-
tion using IDoc-XML are as follows:

1. The business partner’s system composes an
IDoc-XML document and posts it to the BC
IDoc InboundProcess service (URL path
/pub.sap.transport.ALE/InboundProcess).

2. The BC IDoc InboundProcess service extracts the
sender/receiver/msgType information from the
IDoc-XML message and forwards it to the BC
gateway manager.5 With this information, the
BC gateway manager looks up and executes the
predefined routing rule, using the tRFC6 protocol
to transmit the IDoc (translated from the IDoc-
XML document) to the SAP system.

3. The BC sends the HTTP response, with a status
code indicating the success or failure of the
inbound IDoc transmission, back to the business
partner’s system.

To guarantee the once-and-only-once delivery of
the IDoc, a transaction ID (TID) must be used. The
business partner’s system needs to generate a TID
before posting the IDoc-XML document to the BC.

A TID is a globally unique string consisting
of 24 characters (similar to a GUID7). The business
partner’s system can ask the BC to generate a TID
via posting to URL path /invoke/pub.sap.client/
createTID, or it can calculate a TID using its own
routine. After the TID is created, it must be attached
to the initial posting of the IDoc-XML document
using the HTTP header field X-tid. In case of failure,
the TID must also be attached to all the subsequent
repostings of the IDoc-XML document. Once the
IDoc posting is successful, the business partner’s
system should confirm the TID by posting to the
URL path /invoke/pub.sap.client/confirmTID.

When posting the IDoc-XML document to the
BC, the following HTTP request header fields need to
be set:

• Content-type: application/x-sap.idoc

• X-tid: the_24_chars_tid

The sender/receiver/msgType routing information
must be specified using the following IDoc control
record fields:

• SNDPRN: sender

• RCVPRN: receiver

• MESTYP: msgType

The routing rule must be configured as follows:

• Transport: ALE

• Specify SAP Destination:
the_SAP_system_to_post

If the IDoc is posted successfully to the SAP
system, the BC will return HTTP status code 200.
Any other status code indicates an error. If the
BC answers with status code 200, the business
partner’s system should confirm the TID. If the
BC answers with any other status code, the business
partner’s system needs to schedule reposting with the
same TID.

Outbound IDoc Communication
Using IDoc-XML

Figure 2 is a diagram showing outbound IDoc com-
munication using IDoc-XML (with the SAP system
as the initiator).

The major steps involved in outbound communi-
cation using IDoc-XML are as follows:

1. In SAP ALE customizing, the BC is considered a
logical system. Based on the ALE configuration,
the SAP system sends the IDoc to the BC via the

5 The gateway manager is a BC component responsible for the routing
of the messages.

6 Transactional RFC (tRFC) guarantees the once-and-only-once
delivery of IDoc (and other) messages.

7 Globally Unique IDentifier.

57For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

tRFC protocol.8 (For an overview of setting
up the ALE configuration, please refer to the
upcoming section “Configure SAP to Send IDocs
to the BC.”)

2. The BC looks up and executes the predefined
routing rule, converts the IDoc to an IDoc-XML
document, and posts it to the business partner’s
system via HTTP request.

3. The business partner’s system receives and pro-
cesses the IDoc-XML document, and then sends
the appropriate HTTP status code back to the BC.

The routing rule must be configured as follows:

• Transport: XML

• Specify URL:
the_target_URL_of_the_business_partner_system

• XML dialect: SAP-XML

The business partner’s system needs to handle the
TID correctly by performing the following tasks:

• Extract the TID from the HTTP request header
field X-tid.

• Use some kind of persistent storage medium
(e.g., a database table or an operating system file)
to store the processed TIDs.

• Check for duplicate TIDs to detect any possible
retransmissions:

- For a TID received for the first time, process
the IDoc and log the TID in the chosen TID
storage medium.

- For a TID already received and processed,
it is a retransmission, discard it.

The business partner’s system needs to answer
with a positive HTTP response (status code 200) to
indicate successful processing, including those of
duplicate transmissions. If an unrecoverable error
occurs, the system needs to send a negative HTTP
response (a status code other than 200).

XML messaging based on IDoc-XML is easy to
implement. However, in many cases, your business
partners will want to exchange XML documents in
formats other than SAP IDoc-XML — e.g., xCBL,
RossettaNet, or ebXML. In this case, you will need
to perform additional data mappings between IDocs
and the external XML formats in your BC service.

Outbound IDoc Communication
with Non-SAP XML

For the remainder of this article, we will look at
outbound IDoc communication using non-SAP
XML, where your SAP system sends IDocs to the
Business Connector, the Business Connector maps
them to some external non-SAP XML format, and the

Figure 2 Outbound IDoc Communication Using IDoc-XML

8 It is also possible to use the EDI interface to send EDI IDocs from the
SAP system to the BC. However, using the ALE configuration is
easier and more common.

��������	�
��

���	�������

�

���	��������
��������

�

����	�
��	����

���� ����
�������
!"���#

��� ����
���������

!$�
!"���#

���� �%
��&��

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.58

Business Connector then sends them to the business
partner’s system.

There are several main tasks involved in
outbound IDoc communication when using non-
SAP XML:

• Configure SAP to send IDocs to the BC.

• Configure the BC to receive IDocs from SAP.

• Capture a sample IDoc for development and
testing.

• Perform the actual mapping of the data.

• Post the XML document to the external system.

So let’s begin at the beginning.

Configure SAP to Send IDocs
to the BC

As I mentioned earlier, from the SAP IDoc transmis-
sion perspective, the BC is considered a logical sys-
tem. This means that setting up the SAP system to
exchange IDocs with the BC is no different from
setting up SAP to exchange IDocs with other systems
in the ALE scenario.9

The following ALE configuration tasks must be
in place in order to send IDocs from the SAP system
to the BC:

• An RFC destination that points to the Business
Connector must be defined inside the SAP system
(transaction SM59).

• A logical system must be defined for the BC. In
order to generate partner profiles automatically,
the names of the logical system and the RFC
destination should be the same.

• An ALE distribution model view must be created.

The desired IDoc message type, sender, and
receiver need to be defined in the view.

• The partner profile needs to be generated for
the distribution model view and the partner
system.

This ALE configuration provides information to
the ALE layer on how to distribute the IDoc once it
is created.

Configuring the SAP system to create the IDocs
is another issue. This depends on the IDoc you want
to transmit and the application module involved:

• For master data IDocs (e.g., MATMAS), a change
pointer can be activated to record all the changes
to the master data. Later, the change pointers can
be processed to generate the IDocs.

• For master data IDocs, there are also SAP
transactions available to manually generate
IDocs. These transactions are available under
Tools → ALE → Master Data Distribution.
They are useful for initial data synchronization
and for testing.

• For MM/SD IDocs (e.g., ORDERS), the message
control (a.k.a. output determination) mechanism
is used to generate the IDoc automatically, once
the corresponding application document (e.g.,
sales order or purchase order) is posted.

• For some other applications, special transactions/
reports can be executed to generate the IDoc.

Once you’ve configured your system to create
and send IDocs to the BC, you have to enable the BC
to accept the IDocs. We will look at this task next.

Configure the BC to Receive
IDocs from SAP

When the Business Connector receives an IDoc from
the SAP system, by default it will use the following
information for routing:

9 The details of setting up ALE distribution are beyond the scope of this
article. Please refer to the corresponding SAP documentation and
training courses for more information. For your convenience, I
provide a high-level overview here.

59For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

The routing rule controls what the BC does
with the IDoc. Some typical routing configurations
include the following:

• Use XML transport to forward the IDoc-XML
directly to an external HTTP server. As dis-
cussed previously, if the business partner agrees

to receive the IDoc-XML document directly, you
can set up the routing rule using the transport
type XML and specify the URL of the business
partner’s system.

• Route the IDoc to a BC service (that you have
created), where it will be further processed. In
the BC service, you can perform any tasks that
are desired (e.g., mapping the IDoc data to a
different XML vocabulary) and then transmit the
document to the business partner.

Figure 3 shows an example routing rule of type
B2B Service where the BOMMAT IDocs received by
the SPJ BC from the IDRCLNT800 system are routed
to a BC service called
processBommat03PacketWithFlow in the
spjexamples.idoc.outbound folder.

Figure 3 An Example Routing Rule Specification

The folder name of
the selected service

Routing Key Value

sender Logical system name of the
SAP client

receiver Logical system name of the BC

msgType The IDoc message type

The service name

Use B2B Service as
the transport type

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.60

Now that the BC is configured to route the IDocs
it receives, it is a good time to capture a sample IDoc
in the pipeline10 and use it later to develop and test
the BC service. Doing this now will save you a lot of
time and effort later — you will not need to generate
and send an IDoc from the SAP system each and
every time you want to test your service!

Capture a Sample IDoc for
Development and Testing

To capture the sample IDoc, you can invoke
the pub.flow:savePipeline service from within your
flow service11 to save the contents of the pipeline
(which includes the IDoc that the partner manager
routes to this service) into memory, identified by the
$name parameter value. (Alternatively, you can use
pub.flow:savePipelineToFile service to save the
pipeline to a file, identified by the fileName param-
eter value, which will survive any BC restarts.)

In the SAP system, you need to generate and send
to the BC the comprehensive sample IDoc that con-
tains all the necessary segments and fields. When the
BC partner manager receives the IDoc, it invokes
your flow service, which will capture the IDoc by
saving the pipeline.

After successfully capturing the IDoc pipeline,
you can delete or disable the savePipeline (or
savePipelineToFile) step from the flow, then
insert an invocation to pub.flow:restorePipeline (or
pub.flow:restorePipelineFromFile). When you run
the flow service, you will see the restored pipeline
containing the IDoc data.

In the example download, the file
Bommat03PacketPipeline.xml is a saved pipeline
file containing three BOMMAT03 IDocs received

from the SAP system. The file
Bommat03SinglePipeline.xml is another saved pipe-
line file containing one BOMMAT03 IDoc received
from the SAP system.

Perform the Actual Mapping
of the Data

With your SAP system configured to send IDocs and
the BC configured to receive them, and with a sample
IDoc at your disposal for testing, you are now ready
to perform the actual data mapping that converts the
IDoc data into the desired XML format. There are
three options available for this task:

• Perform data mapping using a custom
BC flow service.

• Perform data mapping using XSLT transforma-
tion with a custom XSLT stylesheet.

• Perform data mapping using a custom
Java service.

In the following sections, I will discuss in detail
the first option, which is the most widely adopted one
in XML messaging scenarios. The other two options,
which require additional knowledge of XSLT and
Java, will be covered in the second article of this two-
part discussion. Let’s now take a detailed look at
what’s involved in using a custom BC flow service to
map your IDoc data to an external XML format.

Data Mapping Using
a BC Flow Service

A flow service is a service that is written in the BC
“flow” language. This simple yet powerful language
lets you encapsulate a sequence of BC services within
a single service and manage the flow of data between

10 With the BC, “pipeline” refers to the data container that contains all
the input data available to a BC service, as well as all the results data
produced by the execution of the BC service.

11 Using a flow service is the easiest way to capture a sample IDoc in
the pipeline.

61For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

them. Over the past few years, many data mapping
projects have taken advantage of BC flow services.
For example, version 2.0 of the SAP MarketSet
Connector12 was developed using mainly flow ser-
vices for the data mapping.

Using a flow service to perform data mapping in
the BC has the following advantages:

• BC flow services were developed using the BC
Developer, which provides a capable and easy-
to-use development environment. No additional
development tools are needed.

• BC flow services were developed in an intuitive,
graphical, drag-and-drop fashion, so very little,
if any, coding is necessary.

• A flow service allows for easy manipulation of
the data in the pipeline, which is very useful in
performing data mapping.

• There are many built-in services readily available,
which you can easily use in your own flow
service.

The main potential disadvantage of using a
BC flow service for data mapping is that it is
a proprietary Business Connector technology.
Thus it is difficult to port the flow-service-based
mapping to other environments (e.g., the future SAP
Exchange Infrastructure).

Mapping IDoc data to an XML format using
a BC flow service typically involves the following
four steps:

1. Create a record definition for the IDoc type.

2. Create a record definition for the XML target.

3. Transform the IDoc into a hierarchical structure.

4. Map the IDoc to the target XML format. This
step includes the following considerations:

- MAP and LOOP operations

- Handling an IDoc packet or recurring
IDoc segments

- Generating XML from the mapping results

- Performing value lookups

Let’s take a closer look at each of these four steps
and the related considerations involved in each.

Step 1: Create a Record Definition
for the IDoc Type

To perform data mapping using a flow service, you
first need to create the BC record definition13 for the
source IDoc type. A BC record definition (also
known simply as a BC record) can be used to specify
input and output parameters for a BC service, and can
also be used to build a record variable (an instance) or
a record list variable (an array of instances) in the
service. There are several different ways to create a
record definition for an IDoc.

Reference the IDoc Schema Available
from the SAP IFR

The SAP Interface Repository (IFR) is a public web
site (http://ifr.sap.com) containing XML schema
documents for all the SAP standard interfaces, includ-
ing all the standard SAP IDoc types. The following
is the procedure for creating a BC record definition
based on an IFR schema:

1. Download the appropriate version14 of the XML
schema document for the IDoc type from the
SAP IFR site.

12 The SAP MarketSet Connector is a connectivity tool that enables
mySAP backend systems to connect with MarketSet-based market-
places via the Internet.

13 A BC record definition is essentially a type definition.

14 The 4.6 BC release supports the W3C XML Schema Recommendation
(May 2001).

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.62

2. In the BC Developer, create a new record (not
schema!). Select XML Schema in the Select a
source for the XML format dialog box, then select
the downloaded schema file. A new record defi-
nition and a new schema15 will be created.

3. Modify the created record definition by changing
the type of the element IDOC (which is directly
below the top-level element corresponding to the
IDoc type) from a record to a record list. This is
necessary because the IFR IDoc schema incor-
rectly marks the IDOC element as occurring only
once, although it may actually occur multiple
times in an IDoc packet.

� Note!

The SAP Interface Repository contains schemas
only for SAP standard IDocs.

Reference the DTD of the IDoc Generated
from Transaction WE60

The IFR does not contain schemas for custom-
developed IDocs or extended/reduced IDocs. In this
case, if you have a 4.6 or later SAP system, you can
generate a DTD for the IDoc type in the SAP system
using transaction WE60:

1. In the initial screen, enter the name of the IDoc
type, choose menu path Documentation → Create
DTD, select the path and file name for your DTD,
and choose Save.

2. Indicate the root element by creating an XML
wrapper file for the DTD (e.g., assume we have
a DTD file for IDoc type BOMMAT03 called
BOMMAT03.DTD) as follows:

<?xml version="1.0"?>
<!DOCTYPE BOMMAT03 SYSTEM
 "BOMMAT03.DTD">
<BOMMAT03/>

3. Create the record definition in the BC Developer
by selecting XML in the Select a source for the
XML format dialog box, and then selecting the
XML wrapper file for the DTD. A new record
definition and a new schema will be created.

Capture a Sample IDoc Instance in a Flow

If you are working with non-standard IDocs, and the
SAP system release is 4.5 or earlier, the only option
left for creating a record definition for the IDoc type
is to capture a representative sample IDoc instance
in a flow service, as described earlier in the section
“Capture a Sample IDoc for Development and Test-
ing.” You can create the record definition for the
IDoc type by copying and pasting the IDoc data
structure from the captured IDoc sample.

The BC record definition for the IDoc type has
the following characteristics:

• The IDOC element is a record list, representing
the IDoc packet.

• The control record of the IDoc is either the
EDI_DC40 element for version 3 IDocs (as used
by R/3 4.0 and later) or the EDI_DC element for
version 2 IDocs. They contain all the control
record fields.

• Data segments are organized in the correct hierar-
chy as defined by the IDoc type.

• Each data segment contains all its data fields and
nested segments (if any).

• The dimension of a data segment is either
a record, if the segment occurs only once, or
a record list, if it can occur multiple times.

15 The BC schema is different from the XML schema. It is a byproduct
of creating the BC record definition, and can be used to validate an
XML document.

63For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

This IDoc record definition can be used to derive
other record definitions if necessary — for example,
by copying the data structure of a particular segment
to create a new record definition. These derived
record definitions can be useful in dealing with
recurring elements using the LOOP operation. (For
details, please refer to the upcoming discussion of the
LOOP operation in Step 4.)

In the example BC package SPJ included with the
download, you can find the following examples of
BC record definitions for IDocs:

• spjexamples.records:Alereq01Rec — The
record definition for IDoc type ALEREQ01

• spjexamples.records:Bommat03Rec — The
record definition for IDoc type BOMMAT03

• spjexamples.records:Orders02Rec — The
record definition for IDoc type ORDERS02

Once you’ve created a record definition for
the source IDoc type, using one of the options just
described, you next need to create a definition for
the target XML format.

Step 2: Create a Record Definition
for the XML Target

If your business partners require a non-SAP XML
format, normally they will provide you with the XML
schema document, the DTD of the desired XML
format, or a sample XML document. To create the
BC record definition, you would refer to the schema
document, DTD, or XML sample accordingly. This
target record definition can then be used as a record
reference in the pipeline of your flow service to
define a Pipeline Out variable.16 You will map the
IDoc data to this variable.

In the example package SPJ, the record definition
spjexamples.records:ExtBomRec is created by refer-
ring to the DTD file ExtBom.dtd. The record defini-
tion spjexamples.records:MaterialDataRequestRec is
created by referring to the DTD file
MaterialDataRequest.dtd.

With the record definitions now in place for the
source IDoc and the target XML structure, you must
now transform the IDoc into a structure that is com-
patible for mapping between them. We’ll look at this
task next.

Step 3: Transform the IDoc
into a Hierarchical Structure

Once the BC receives the IDoc from the SAP
system via tRFC, it will apply the predefined
routing rule to route the IDoc to the BC flow
service that you want to use. The BC flow
service will receive the IDoc in a “flat” structure,
which contains IDOC_CONTROL and IDOC_DATA
in the pipeline for version 2 IDocs, or
IDOC_CONTROL_REC_40 and
IDOC_DATA_REC_40 for version 3 IDocs.
IDOC_CONTROL and IDOC_CONTROL_REC_40
are Table objects containing the IDoc control
record’s data. IDOC_DATA and
IDOC_DATA_REC_40 are Table objects
containing the IDoc data records.

This flat structure cannot be used directly
in the mapping. To map from or to an IDoc, you
need to transform the IDoc into a “hierarchical”
structure.17 To do this, insert the BC built-in service
pub.sap.idoc:transformFlatToHierarchy into the flow

16 In other words, you declare a Pipeline Out variable as an instance of
the record definition.

17 One IDoc packet can contain multiple IDoc instances; a single IDoc
instance typically contains multiple segments; and one IDoc segment
typically contains multiple fields. Some segments also contain nested
segments. All of these together form a hierarchical tree structure. The
IDoc in its hierarchical structure allows mapping from or to the IDoc
segments and fields.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.64

(see Figure 4). This service transforms the IDoc
into a boundNode variable, which contains the
contents of the IDoc in a format that you can map
from and to. The service has an optional parameter
called conformsTo, which is the fully qualified
name18 of the record definition of the IDoc (for
example, spjexamples.records:Bommat03Rec). It
is highly recommended that you always specify
this parameter. With the conformsTo parameter
providing the record structure of the IDoc, the
pub.sap.idoc:transformFlatToHierarchy service will
be able to distinguish between an IDoc segment that
occurs only once and one that occurs multiple times,
and will thus correctly transform any segment into a

record or a record list. Otherwise, the IDoc segments
will always be transformed into a record list.

To access the segments and fields of the IDoc at
design time, you also need to apply (bind) the IDoc
record definition to the boundNode output variable of
pub.sap.idoc:transformFlatToHierarchy. This makes
the IDoc segments and fields accessible in the subse-
quent flow steps at design time. You can do this by
adding a Pipeline Out variable as a record reference to
the IDoc record definition, and then linking the Service
Out variable boundNode to it (shown in Figure 4).

With the IDoc now in a workable format, you are
finally ready to tackle the actual mapping process,
which involves several considerations.

Figure 4 Converting the IDoc to a Hierarchical Structure

18 With the format folder.subfolder:record.

65For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

Step 4: Map the IDoc to
the Target XML Format

Before you can implement the mapping in the BC
service, you need to carefully study the source IDoc
structure and the target XML format, identify the
relationship between the available data in each, and
determine the transformation necessary to produce the
desired format. Once you have made these determi-
nations, you can then implement the transformation
with BC flow operations.

Among the different flow operations to consider,
the following are particularly useful in implementing
the transformation: the MAP operation and the LOOP
operation.

The MAP Operation

The BC MAP operation lets you adjust the contents
of the pipeline at any point in a flow service. By
selecting the Pipeline tab for the MAP operation, you
can access the Pipeline Editor. The Pipeline Editor
offers a graphical representation of all your data. In
the Pipeline Editor of the MAP operation, you can
map input variables to output variables (i.e., create
links) or insert transformers.

The Pipeline Editor of the MAP flow step dis-
plays two sets of variables: Pipeline In and Pipeline
Out. Between these sets of variables, the Pipeline
Editor displays transformers.19 Let’s take a closer
look at these three columns:

• The Pipeline In column represents input to the
MAP flow step. It contains the names of all the
variables in the pipeline at this point in the flow.

• The Transformers column displays any services
inserted into the MAP flow step to perform value
transformations.

• The Pipeline Out column represents the output
of the MAP flow step. It contains the names of
variables that will be available in the pipeline
when the MAP flow step completes.

When you first insert a MAP step into your flow,
the contents of the Pipeline In and Pipeline Out col-
umns are identical. Using the Pipeline Editor, you
can insert pipeline modifiers, which are special com-
mands you can use to adjust the contents of the pipe-
line at runtime (see Figure 5).

Figure 5 Pipeline Modifiers

Use this modifier… With this icon… To…

Map Map a source variable to a target variable. The Map
modifier lets you resolve variable name and data structure
differences by mapping (copying) the value of one variable
to another at runtime.

Drop Drop a variable from the pipeline. The Drop modifier
removes extraneous variables from the pipeline.

Set Value Assign a value to a variable. The Set Value modifier hard-
codes a value or sets the default value for a variable.

Insert Insert a variable in the pipeline as a Pipeline In/Out
variable, or, for a transformer, as a Service In/Out variable.
When adding a variable, you must select a type for it (e.g.,
string, record reference, record reference list, etc.).

19 Transformers in MAP operations are actually invocations of other BC
services to convert certain input data to the pertinent output data (i.e.,
to perform a value transformation).

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.66

In the Pipeline Editor, you can perform many
mapping tasks, including mapping variables, adding
variables to the pipeline, adding transformers to the
MAP flow step, and so on.

You can copy the value of a variable to another
variable by creating an explicit link between them
using the Map modifier (). This is how you
accomplish name and structure transformations
required in a flow.

When executing a mapping between variables at
runtime, the BC does one of the following:

• Copies the value from the source variable to
the target variable: This is called copying by
value. The BC copies by value when the source
or target variable is a string.

• Creates a reference to the source variable and
assigns it to the target variable: This is called

copying by reference. When executing mappings
between all other types of variables, the BC
copies by reference.

When you map to or from an array variable,20 you
can indicate which element in the array you want to
map to or from. To do this, access the Link Proper-
ties dialog box shown in Figure 6 by right-clicking
on the link. On the Indexing tab, specify the index
value that represents the position of the element in the
array. As you can see in Figure 6, the array index
numbering begins at zero.

You can also specify a conditional expression
(e.g., Copy only if…) on the General tab of the Link
Properties dialog box. At runtime, the BC will then
evaluate the condition expression and execute the
mapping (e.g., copy the value) only if the condition
evaluates to true.

Figure 6 The “Link Properties” Dialog Box

20 Also known as a record list variable.

67For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

Sometimes you may want to add variables that
were not declared as input or output parameters of
the flow service, add input or output variables for
services that the flow service invokes as transformers,
or create temporary variables for use within the flow.
To do this, highlight the Pipeline In or Pipeline Out
column, click on the Insert modifier (), select the
desired type, and then specify the variable name. If
the record definition already exists for the variable
you want to add, add the variable as a record refer-
ence or a record reference list.

� Note!

If you create a new variable in a flow, you must
immediately map to or from it, set a value for
it, or drop it. Otherwise the Pipeline Editor
automatically clears it from the mapping the next
time it refreshes the Pipeline tab.

Often you need to execute some code or logic to
perform value transformations — that is, you need to
invoke a service. You can insert invocations to other
services as transformers in the Pipeline Editor.

You can use any existing service as a transformer.
You can also add multiple transformers (i.e., invoke
multiple services) in a single MAP step. The BC
provides many built-in services specifically designed
to translate values between formats. These services
can be found in the following BC folders: pub.date,
pub.list, pub.math, pub.record, and pub.string. They
are often used as transformers. Of course, you can
write your own services and use them as transformers
as well.

When you insert a transformer (see Figure 7),
you need to map variables between the pipeline
and the transformer (i.e., create links between the
Pipeline In/Out variables and the transformer Service
In/Out variables).

Figure 7 Inserting a Transformer in a MAP Flow Step

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.68

The LOOP Operation

The LOOP operation repeats a sequence of child
steps once for each element in an array that you
specify. To specify the sequence of steps that make
up the body of the loop, you indent those steps
beneath the loop.

The LOOP operation requires you to specify an
input array that contains the individual elements to be
used as input to the one or more steps in the body. At
runtime, the LOOP operation executes one pass of the
loop for each member in the specified array. You
specify the name of the input array in the in-array
field on the LOOP operation’s Properties tab.

When you design your flow, bear in mind that the
services within the loop operate against individual
elements in the specified input array; they must there-
fore be designed to take elements of the array as
input, not the entire array.

If one iteration of your loop produces an output
variable that you want to collect, you can use the out-
array field on the LOOP operation’s Properties tab
to specify the name of the variable. At runtime, the
server will automatically create an array (a record list)
variable that contains the output of each iteration of
the loop.

Most of the time, the IDoc segment you will want
to loop over and the resulting record list you will
want to collect with the loop are embedded in a
deeply nested tree-like hierarchy of the actual source
and target pipeline variables. It will be a lot easier to
create some temporary, top-level pipeline variables to
hold the record list you want to loop over and the
resulting list to be produced. The typical steps for
performing an effective loop are as follows:

1. Create the necessary record definitions, describ-
ing both the structure of the source record and the
structure of the target record, for one loop itera-
tion. You can copy and paste the record elements
from the existing record definitions of the actual
source and target variables.

2. Prepare the pipeline for the loop. Create a top-
level Pipeline Out variable as a record reference
list, and reference the source record definition
you just created. Map the original embedded
record list that you want to loop over to this new
top-level variable.

3. Add the LOOP operation and specify the tempo-
rary top-level source variable as the in-array.

4. Add the loop body. Within the loop body, add a
new Pipeline Out variable as a record reference,
and reference the target record definition. Add
the necessary operations in order to map from the
source record data to the target record data within
the loop body.

5. Specify the target variable name as the out-array
for the loop. After the loop, all the target records
produced during the loop iterations will be col-
lected into an array with the same name.

6. Clean up the pipeline and assign the out-array
variable to the embedded element of the actual
target variable in the pipeline.

The example flow service included with the
download, spjexamples.idoc.outbound:
processBommat03PacketWithFlow, uses this tech-
nique to loop over multiple IDocs and recurring
IDoc segments.

Handling the IDoc Packet or Recurring
IDoc Segments

When performing mapping with a BC flow service,
you must also take into account that the SAP system
can be configured to send either a single IDoc to the
BC or multiple IDocs together in one package (i.e.,
an IDoc packet). Because this cannot be predicted in
advance, the pub.sap.idoc:transformFlatToHierarchy
service always produces the IDOC element of the
resulting boundNode as a record list.

If you know that only one individual IDoc will be

69For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

received, you can access that one IDoc in the record
list by specifying an index value of 0 in the Link
Properties dialog box (refer back to Figure 6) when
you map from the IDoc data.

If you know that multiple IDocs will be received
in a package, or if you are not sure, you need to use
a LOOP operation to loop through all the occurrences
of the IDoc. In the first loop iteration, the first
instance of the IDoc will be available for processing
in the pipeline; in the second loop iteration, the sec-
ond IDoc instance will be available for processing in
the pipeline; and so on, until all IDoc instances in the
package are processed.

To make the loop easier, you can use a temporary
top-level variable (e.g., Idoc) as the alias for the

embedded IDOC variable (see Figure 8). So, later in
the flow — e.g., when specifying the in-array of the
loop — you can simply refer to the IDoc record list
by Idoc instead of by the lengthy multi-level name
(e.g., Bommat03/BOMMAT03/IDOC 21). This will
also make the loop body much cleaner.

Within each loop iteration, a single IDoc instance
is processed. Typically, this processing will produce
a results record (e.g., BillOfMaterial). You can indi-
cate that you want to collect all the results records
into a record list as the output of the LOOP operation
by specifying the record name in the out-array prop-
erty of the LOOP operation.

Figure 8 Use a Temporary Top-Level Variable to Simplify Looping

21 The BC notation for elements embedded in a variable. Bommat03/
BOMMAT03/IDOC means the IDOC element in the BOMMAT03
element that is embedded in the Bommat03 pipeline variable.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.70

In the IDoc type definition, a segment can be
defined either as occurring once and only once, or
occurring multiple times. If a segment can occur
only once, it will be transformed into a record by the
pub.sap.idoc:transformFlatToHierarchy service.
Otherwise, it will be transformed into a record list.

To access a particular instance of an IDoc seg-
ment for which there may exist multiple instances,
you access the particular record from the record list.
Again, if you know the index value of the record
that you want to access, you can specify the index
value in the Link Properties dialog box for the link in
your MAP flow step (e.g., if you know for sure that
the segment will appear only once at runtime, even if
the IDoc type definition specifies that it occur mul-
tiple times, you can access this single instance
directly by specifying an index value of 0 when map-
ping from the segment data).

If you want to access only a particular instance of
the IDoc segment that matches certain criteria (e.g.,
with the qualifier field equaling a certain value), you
can specify the MAP condition (e.g., the Copy only
if… expression) in the Link Properties dialog box.

If you need to process all the occurrences of an
IDoc segment, you can use a LOOP operation to loop
through all of the records in the record list of the
IDoc segment and process one record — i.e., one
segment occurrence — at a time within the loop
iteration. The technique discussed earlier for LOOP
operations can also be applied here to simplify the
process of looping over the multiple occurrences of
the IDoc segment.

Generating XML from the Mapping Results

In the flow service, you map the IDoc data to a target
record format. However, most of the time an XML
document is needed as the end result of the transfor-
mation. The BC built-in service
pub.web:recordToDocument can be used to convert
the record variable to an XML string.

The service recursively traverses through the given
record variable, building an XML string from the
values. Record keys are turned into XML tag names,
and record values are turned into the tag bodies. Key
names starting with the attribute prefix (i.e., @) are
turned into attributes of the parent XML tag.

After converting the mapping results to the
target XML document, you can transmit the docu-
ment to the desired destination (e.g., your business
partner’s system). This will be discussed in the
upcoming section “Post the XML Document to the
External System.”

Performing Value Lookups

Quite often, you need to perform value lookups dur-
ing the mapping. For example, your business partner
may be using a different set of codes for material
numbers, item categories, etc.

There are a few options available for performing
value lookups in the flow service.

The pub.string:lookupTable Service

You can pre-populate the input parameter
lookupTable (which has the type string table) with
name/value pairs. When you invoke the service
pub.string:lookupTable with the lookup key, it will
return the lookup results in the output parameter
value of type string.

This option is suitable for a lookup with a small
number of possible entries; it would be very expen-
sive for lookups with thousands of possible entries.
Also, keep in mind that changing the lookup table
requires a modification to the flow service itself.

A Simple Text File

You can put the name/value pairs of the lookup
entries in a simple text file, using the popular Java
properties file format, as follows:

71For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

Listing 2: Using a Static Data Member to Cache Lookup Data

// use static data member to cache the lookup data
private static Properties lookupProp;

// use static initializer to pre-load the lookup data from the file
static {
 try {
 String lookupFilename =
 "c:/sapbc46/Server/packages/SPJ/resources/SbcLookupFile.txt";
 FileInputStream fis = new FileInputStream(new File(lookupFilename));
 lookupProp = new Properties();
 lookupProp.load(fis);
 fis.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}

Listing 3: Executing a Lookup Using a Java Properties Object

// get pipeline input
IDataCursor pipelineCursor = pipeline.getCursor();
String key = IDataUtil.getString(pipelineCursor, "key");

// perform the lookup using the pre-loaded lookupProp
String value = lookupProp.getProperty(key, "not found");

// pipeline output
IDataUtil.put(pipelineCursor, "value", value);
pipelineCursor.destroy();

name1=value1
name2=value2
…

Then you can write a simple Java service, taking
the lookup key as an input argument, performing the
lookup using the file, and returning the results as the
output argument. To avoid unnecessarily reading

the file from the file system multiple times, you can
use the static Java initializer construct, putting the
code in Listing 2 into the Shared Source section of
the Java service.

The code in Listing 2 will be executed only once
at the service startup. The properties file will be read,
and its contents will be loaded into the lookupProp
static data member. The actual Java lookup service is
very simple, as you can see in Listing 3.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.72

This sample Java service has one input argument
that is the lookup key. The input argument is
retrieved from the input pipeline. It then performs
the lookup with the getProperty() method of the
preloaded lookupProp properties object, specifying
the lookup key and the default value not found as
arguments. Finally, the lookup results are returned to
the output pipeline in the value argument.

By using a file to store the lookup contents, you
can easily change the lookup entries without modify-
ing your service. This approach is suitable for look-
ups with hundreds of possible entries.

Database Tables

You can alternatively store the lookup entries in the
table of a relational database and then create a BC
service to access the database table and perform the
lookup. You will need to maintain a relational data-
base and make sure that the lookup table is populated
with the lookup entries. You will also need to find a
suitable JDBC driver for the database and make it
accessible to the BC.22

Since the BC provides built-in database access to
flow services, you can actually create a flow service
that accesses the database lookup table without any
coding by following these steps:

1. Define a database alias (data source) for the
database. Open your browser and access the
BC Administration screen (the location is typi-
cally http://<sbchost>:5555). Select Adapters
→ Database → Alias management → Add and
specify the alias (e.g., SbcLookup); the database
URL (e.g., jdbc:odbc:SbcLookup); the database
user name and password (optional); and the data-
base driver (e.g., sun.jdbc.odbc.JdbcOdbcDriver).
Click Submit to add the data source to the list.

2. Create a flow service for the database lookup.
Select Database → Service Generation, choose
the data source, and specify the package, folder
name, service name, and ACL group for the
flow service. Click Generate from SQL and type
in the SQL statement for the lookup, which will
look something like the following:

select value from SbcLookupTable

 where key =?

Click on the Evaluate button and specify
the parameter name (e.g., key) and type (e.g.,
VARCHAR). Click on the Generate button,
and a new flow service will be automatically
generated.

3. Modify the generated service in the BC Devel-
oper. Open the service in the BC Developer.
You may need to lock the service (right-click on
the service and select Lock) before you can make
any changes to it. In the generated flow service,
the results of the SQL query are stored in the
output argument results, of type record list. If the
SQL query found the lookup results, it should be
the only record in the results record list. If the
lookup did not find any matching results, results
will be empty. To make using the lookup service
easier, you can add a MAP operation after the
SQL query step to return the lookup results if
there are any, and the default value if no match-
ing results were found.

Alternatively, you can write a simple Java
service that uses the JDBC API and SQL statements
to access the database lookup table directly. I
will discuss this in more detail in the next article
(“XML Messaging with the SAP Business Connector
Part 2: Outbound IDoc-to-XML Data Mapping with
XSLT and Java Services, and Inbound XML-to-IDoc
Data Mapping”) when I discuss Java extension func-
tions for XSLT.

Obviously, performing lookups with a database
table is the most scalable approach and has the best

22 Please refer to the chapter “Configuring Access to Database Systems”
in the SAP Business Connector Administration Guide for details on
setting up the JDBC driver. The guide can be found in the doc folder
of your BC server installation.

73For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

performance results for lookups with thousands of
possible entries.

� Tip

No matter which approach you use to build the
lookup service, you can always invoke it as a
transformer from the main flow service.

An Example BC Flow Service

A flow service called spjexamples.idoc.outbound:
processBommat03PacketWithFlow is provided
with the downloadable SPJ package (available at
www.SAPpro.com) as an example of IDoc outbound
processing with flow. The flow service is designed
to illustrate all the important techniques discussed
in this article, and can be used as a reference for
building your own IDoc processing flow service.
Here, I will briefly walk you through the example.

The example flow service will map the
BOMMAT03 IDoc packet received from the SAP
system to an external XML document, as described
by the DTD ExtBom.dtd. After the mapping, it will
transmit the resulting XML document to an external
HTTP server listening at http://localhost:4242.

In the beginning of the flow, the service
pub.sap.idoc:transformFlatToHierarchy is invoked
to transform the IDocs from a flat structure to a
hierarchical structure. Please note that in the
Pipeline Out, we bind the record definition
spjexamples.records:Bommat03Rec to the boundNode
Service Out variable.

In the next MAP flow step, we first define a
temporary top-level record list variable called Idoc
as a record reference list to the record definition

spjexamples.records:Bommat03IdocRec (created by
copying and pasting the relevant portion from
spjexamples.records:Bommat03Rec), and then link
the embedded Bommat03/BOMMAT03/IDOC element
to it.

In the following outer loop, we loop over
the Idoc record list and collect BillOfMaterial as
an out-array.

In the MAP operation at the beginning of the
outer loop, we define a Pipeline Out variable called
BillOfMaterial as a record reference to
spjexamples.records:BillOfMaterialRec (created by
copying and pasting the relevant portion from
spjexamples.records:ExtBomRec). We then map the
header-level data from the record variable Idoc to the
record variable BillOfMaterial. A transformer is used
to invoke the pub.data:dateTimeFormat built-in
service to convert the date format for field
BillOfMaterial/ValidFromDate. To prepare for the
inner loop over the line items, we also define a top-
level variable E1sptom as a record reference list
to spjexamples.records:E1stpomRec (created by
copying and pasting the relevant portion from
spjexamples.records:Bommat03IdocRec), and link the
embedded Idoc/E1STZUM/E1STPOM element to it.

In the inner loop that follows, we loop over
the E1stpom record list and collect Component as an
out-array.

In the MAP step within the inner loop, we
first define a new Pipeline Out variable called
Component as a record reference to
spjexamples.records:ComponentRec (created by
copying and pasting the relevant portion from
spjexamples.records:BillOfMaterialRec), and then
perform the mapping from the record variable
E1stpom to the record variable Component.

Another transformer is used here to invoke the
custom service spjexamples.util:lookupStringTable
to perform string-table-based value lookup for the
Component/ItemCategory field. You can replace this

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.74

service with spjexamples.util:lookupFile for file-
based value lookup, or spjexamples.util:lookupDB
for database-table-based value lookup. The Java
service spjexamples.util:lookupFile reads the file
SbcLookupFile.txt in the resource directory of the
SPJ package. This file contains the lookup entries.
To use spjexamples.util:lookupDB, you need to
define a database alias with the name SbcLookup.
The file SbcLookup.mdb in the resource directory of
the SPJ package is a Microsoft Access Database file,
which contains one table called SbcLookupTable. It
can be used for database-table-based value lookup.
To use it, you first need to define an ODBC data
source pointing to the MDB file; after that you need
to specify the JDBC-ODBC bridge as the JDBC
driver when defining the database alias.

In the next MAP operation, which is a child of
the outer loop, we copy the Component record list (an
out-array of the inner loop) to the embedded element
BillOfMaterial/Components/Component.

In the following top-level MAP operation, we
copy the BillOfMaterial record list (an out-array of
the outer loop) to the embedded element ExtBom/
BillOfMaterials.

Then the built-in service
pub.web:recordToDocument is invoked to convert the
results record ExtBom into an XML document.

Finally, the XML document is transmitted to the
business partner’s system via HTTP POST using the
pub.client:http built-in service.23

The PerlServer.exe file can be used as a test
HTTP server. By default, it will listen at TCP port
4242 and dump all the HTTP request data received to
the console.

To send BOMMAT IDocs from the SAP
system, you need to configure the ALE distribution

using transaction SALE. After the ALE configuration
is complete, you can send the IDoc by using transac-
tion BD30.

You need to configure the routing rule to route
the BOMMAT IDoc message to the BC service by
specifying the following (refer back to Figure 3):

• Transport: B2B Service

• Folder: spjexamples.idoc.outbound

• Service: processBommat03PacketWithFlow

Remember to enable the routing rule after
saving it!

Alternatively, a captured pipeline containing
a sample IDoc packet is provided as file
Bommat03PacketPipeline.xml. You can use
restorePipelineFromFile as the first step in the flow
to restore the pipeline from it, thus simulating the
receipt of the IDoc packet from the SAP system.

Post the XML Document
to the External System

So, now that you’ve converted your SAP IDoc to the
desired XML format, how do you get it from the
Business Connector to your business partner?

There are two ways to send XML data out from
the BC:

• Use the XML transport in the routing rule for
the outgoing IDoc (as described earlier in the
discussion of outbound communication with
IDoc-XML).

• Build a BC service that invokes the
pub.client:http service to post the XML document
to an arbitrary target URL.

23 How to transmit the XML document to a business partner’s system
will be discussed in detail in the next section “Post the XML Docu-
ment to the External System.”

75For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

The XML transport can be used only if the busi-
ness partner is able to accept the SAP IDoc-XML
document directly as it is.

If a different XML vocabulary is expected,
you will need to use a BC service to map the data
to the desired format, as I just described.24 After
that, you can use the built-in service pub.client:http
to HTTP POST the resulting XML document to
the target URL by specifying the following argument
values:

• url: The target URL, which usually begins with
http: or https:

• method: The HTTP method you want to use,
which is typically POST

• data/string: The mapped XML document that
needs to be transmitted

• headers: Any HTTP request headers you wish to
specify, like specifying Content-type and text/xml
as a name/value pair, for example

Let’s take a look of some of the considerations
involved when posting an XML document to a busi-
ness partner’s system.

Guaranteed Delivery of the Communication

What happens if, at the time of HTTP transmission,
the target HTTP server of the business partner is
unavailable? Or the network breaks down during the
HTTP transmission?

HTTP is a simple, stateless protocol; it does not
provide guaranteed delivery. This shortcoming ide-
ally should be addressed at the protocol level in the
future. In the meantime, while such a protocol is not

available, a simple “handshake agreement” can be
implemented between the BC and the target HTTP
server to safeguard the HTTP transmission.

For the outbound IDoc scenario, if the
pub.client:http service cannot establish the connection
to the target HTTP server, if the connection is broken
before the transmission is complete, or if the HTTP
response code indicates an error, the Business Con-
nector will automatically feed the error status back to
the SAP system. In the SAP system’s tRFC monitor
(transaction SM58), you will see these errors logged.
The SAP system will automatically schedule a back-
ground job to retry the outbound IDoc transmission at
a later time. So, in this way, data will not be lost due
to HTTP errors.

But there is still a risk that data transmission
may be duplicated. Let’s say the target HTTP server
successfully received the HTTP request, but before
it can send back HTTP status 200, the network con-
nection is broken. In this case, the BC and SAP
system will consider the transmission a failure and
will retransmit the same data again at a later time —
but we are now facing a problem of duplicate data
transmission!

To avoid this kind of duplication, you can use
the handshake agreement. For example, suppose in
the HTTP request header you’ve attached a unique
“transaction identifier” field. The target HTTP server
application, when receiving an incoming HTTP
request, will first check the transaction identifier
against its log of already processed transaction identi-
fiers. If the transaction identifier indicates that it has
been received and processed before (which means the
transmission is a duplicate), the HTTP server applica-
tion will simply send back HTTP status 200 without
further processing. If the transaction identifier is a
new one, the HTTP server application can log it and
process it normally.

On the SAP BC side, you need to make sure that
the same transaction identifier will be used for all
retransmissions. This is actually quite easy. When

24 Up to now, I’ve discussed mapping with a BC flow service. I will
discuss mapping with XSLT transformation and mapping with a Java
service in the second article of this two-part discussion.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.76

Helpful Hints

The following is a quick reference of the helpful hints presented throughout the discussions in
this article.

IDoc-XML Messaging

� If your business partner is able to create and accept IDoc-XML documents, use this approach.
It is the easiest to implement, and no BC development is needed.

� Simply set up the routing rules correctly to route the IDoc message or IDoc-XML document to its
desired destination.

Outbound IDoc Communication Using Non-SAP XML

� Capture a sample IDoc for development and testing purposes, using the savePipelineToFile
and restorePipelineFromFile services (or the savePipeline and restorePipeline services).

Data Mapping Using a BC Flow Service (Outbound)

� Create an IDoc record definition by loading from an IFR schema, from an XML-wrapped DTD,
or by copying and pasting from a captured sample IDoc in the pipeline.

� Use the transformFlatToHierarchy service to convert the outbound IDoc to a record, and
bind the IDoc type record definition to it to enable it for mapping.

the SAP system sends an IDoc to the BC, it uses the
tRFC protocol, which means there is already a trans-
action ID (TID) created and used by the SAP system
— the $tid variable in the pipeline. It will always
contain the same value for all the subsequent retrans-
missions initiated by the SAP system for the same
IDoc. You can simply propagate the $tid value to the
target HTTP server as the transaction identifier of the
HTTP transmission. By doing so, you now have a
unique transaction ID protecting the entire end-to-end
transmission, from the SAP system to the BC, then
from the BC to the target HTTP server.

There is third-party software available that pro-
vides queuing functionality and supports guaranteed
delivery over the Internet. These solutions can also
be used together with the Business Connector to
guarantee the transmission of the XML document.
However, they are typically expensive, and using
them will add another layer of overhead to the solu-
tion. Depending on your requirements, the simple
handshake approach discussed here may or may not
be adequate for implementing guaranteed delivery in
your own outbound IDoc-based XML communication
project. You make the call!

77For site licenses and volume subscriptions, call 1-781-751-8699.

XML Messaging with the SAP Business Connector Part 1

Sending XML Documents to Multiple Targets

Sometimes it is necessary to send the same trans-
formed XML document to multiple target systems.
At other times an IDoc needs to be transformed into
different XML documents and sent to different target
systems. These tasks can be easily accomplished
using BC services.

For the former case, you first need to perform the
necessary transformation. After that, you can use
multiple flow steps, each invoking the pub.client:http

service with the unique URL for one target system.
After all the flow steps are executed, the transformed
XML document is then transmitted to all the target
systems.

For the latter case, you can create several flow
services, each performing one unique transformation.
Then, from the main flow (the BC service specified
in the routing rule), you can invoke all the transfor-
mation flows one-by-one, each followed by the
invocation to pub.client:http to post the results
to the appropriate target system.

� Create temporary top-level pipeline variables in the flow for easy looping. Create the
necessary record definitions for these temporary top-level variables by copying and pasting
the relevant portions from the existing record definitions.

� Use transformers in the MAP operation to perform value transformation. Any existing services,
including your own custom services, can be used as transformers.

Performing Value Lookup

� The options available for performing value lookups include the string-table-based, text-file-based,
and database-table-based approaches.

� When using text-file-based lookup, avoid unnecessary reading of the file by using a static
initializer.

� Database-table-based lookup is the most scalable approach to value lookup with good
performance results.

Guaranteed Delivery (Outbound)

� For outbound transmission, the SAP system will automatically retransmit the IDoc at a later
time in case of error.

� To implement a simple handshake agreement with the business partner’s system for tracking
and guaranteed delivery, the TID of the tRFC call from the SAP system to the BC can be used
as a transaction identifier for the outgoing HTTP transmission.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.78

Conclusion

The SAP Business Connector is the current tool of
choice for enabling SAP components to participate
in XML messaging over the Internet. Mostly, this
involves the use of IDocs.

Here, I discussed when to use the IDoc-XML
format for direct communication and when to develop
a BC service to map the IDoc to an external XML
format, including how to use a custom flow service
to perform the mapping. You can also perform the
mapping using XSLT transformation or a Java ser-
vice. In the article that follows (“XML Messaging
with the SAP Business Connector Part 2: Outbound
IDoc-to-XML Data Mapping with XSLT and Java
Services, and Inbound XML-to-IDoc Data Map-
ping”), I will explore these additional mapping
options and also outline the special considerations
involved in inbound IDoc communication using
non-SAP XML.

By trying the sample solutions provided in the
download, and using what you have learned in the

discussion, my hope is that you will be able to
jumpstart your own XML messaging projects.

Robert Chu joined SAP at the end of 1996.
He currently works for the Integration and
Certification Center at SAP Labs in Palo Alto,
California. Prior to this, he worked in technical
consulting and training at SAP America and
SAP Asia. Robert’s current focus is the SAP
integration technologies. He has been regularly
teaching classes in this area at SAP training
centers and is the main author of the BIT531
training course, as well as a few other internal
workshops. Robert has spoken at the past three
SAP TechEd events. In addition to his SAP
expertise, he is also an SCEA (Sun Certified
Enterprise Architect) for J2EE, an MCSD
(Microsoft Certified Solution Developer), and an
MCSE (Microsoft Certified System Engineer).
Robert can be reached at robert.chu@sap.com.

