Repositories in the SAP Java Connector (JCo)

Repositories In the
SAP Java Connector
(JCo)

Thomas G. Schuessler

Thomas G. Schuessler is
the founder of ARAsoft, a
company offering products,
consulting, custom
development, and training
to customers worldwide,
specializing in integration
between SAP and non-SAP
components and applications.
Thomas is the author of
SAP'sBIT525 and BIT526
classes. Prior to founding
ARAsoft in 1993, he worked
with SAP AG and SAP
America for seven years.

to know a thing and not expresseit,
isall one asif he knewe it not.
Robert Burton, The Anatomy of Melancholy

The SAP Java Connector (JCo) is the premier middleware for connect-
ing non-SAP components written in Java to ABAP-based SAP systems
like R/3. The non-SAP components can be clients (Java calls ABAP) or
servers (ABAP calls Java). In both cases, you need arepository object
that represents the metadata (parameters and exceptions) for the func-
tions to be invoked. Using JCo repositories properly is a key contribu-
tor to stable and performance-optimized applications. This article will:

Show you the recommended use of repositories in client
components

Explain why it isimportant to have only one repository object
for each SAP system you connect to

Explain the value of subclassing the standard JCo repository
class (JCO.Repository)

Show you how to avoid hard-coded repositoriesin server
components

Introduce a concept for managing repositories in web server
applications

Discuss two utility classes! that manage repositories for you

1 The complete source code for these classes is contained in the appendices to this article.

(complete bio appears on page 40)

For site licenses and volume subscriptions, call 1-781-751-8699. 27

SAP Professional Journal March/April 2003

Listing 1. Creating a JCO.Repository Object

static final String POOL_NAME = "Pool ";

| Repository nRepository;

nmRepository = new JCO Repository("ARAsoft", POOL_NAME);

This article presupposes that you already
know Java. Some familiarity with JCo would be
beneficial .2

The Role of the Repository
in JCo Client Programming

JCo provides an encapsulation of the SAP Remote
Function Call (RFC) protocol for Java developers.
Functions to be invoked in an SAP system are called
RFC-enabled Function Modules (RFMs) and are
represented by an object of type JCO.Function. In
order to create a function object you need a repository
that knows the metadata of the RFM.

JCo defines an interface, IRepository, that
must be implemented by all repository classes.
There are two such repository classes available
in JCo, JCO.BasicRepository and its subclass,
JCO.Repository.

JCO.BasicRepository is an abstract class that
provides basic capabilities such as metadata caching
and persistence. The class — being abstract — can-
not be instantiated and only serves as a starting point
for JCO.Repository or custom-devel oped subclasses.

2 For ageneral introduction to client JCo programming see my JCo
tutorial that shipswith JCo itself. If you areinterested in the latest
version of thistutorial, send me an email.

JCO.Repository is the standard repository used in
most JCo applications. It retrieves the required RFM
metadata from an SAP system dynamically and
caches them to avoid additional roundtripsto SAP.
Listing 1 shows a code snippet that creates a
JCO.Repository object with a connection pool.

Unless you develop a single-user desktop applica-
tion with JCo, it is highly recommended that you
aways use a connection pool for the repository,
although direct connections are also supported.

Using a pool ensures that multiple connections are
available for metadata retrieval and thus improves the
performance of multi-user applications.

Asyou can see, the constructor for
JCO.Repository takes two parameters. The first one
is an arbitrary name assigned to the repository; the
second one is the name of the connection pooal to be
used for the actual metadataretrieval. The name you
assign to arepository is stored in the repository and
can be accessed using the getName() method, but JCo
makes no further use of the name. Y ou can even
create multiple repositories with the same name with-
out JCo complaining, in other words the name of the
repository istotally devoid of any socially redeeming
value. Particularly, JCo does not provide a capability
to access arepository by its name®, which has the
following implications:

3 Thisisdifferent from the way in which JCo treats connection pools.
The JCO.PoolManager class allows you to access any connection
pool by its name.

28 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Repositories in the SAP Java Connector (JCo)

Listing 2: Creating a JCO.Function Object
JCO. Function function = createFunction("DDl F_FI ELDI NFO GET");

Listing 3: Utility Method to Create a JCO.Function Object

public JCO. Function createFunction(String nane)
t hrows ARAsof t Exception {
try {
| FunctionTenpl ate ft =
nmReposi t ory. get Functi onTenpl at e(name. t oUpper Case());
if (ft == null)
return null;
return ft.getFunction();
}
catch (Exception ex) {
t hr ow new ARAsof t Excepti on

("Problemretrieving JCO Function object.", ex);
}
}
The application you are building must keep a After you have created the repository, you can
reference to the repository in order to be able to create function objects. Thisis best encapsulated in a
useit later. utility method so that proper error handling is guaran-
teed. Listing 2 shows source code that makes use of
Checking whether arepository already exists for the utility method createFunction(). Listing 3 con-

agiven SAP system — useful in web applications tains the utility method itself.
connecting to the same SAP system — cannot be
achieved without a suitable utility class'. Creating a function object is a two-step process:
Unless proper steps are taken, applications could
easily create additional, unnecessary repositories.
Thiswould lead to a severe performance degrada-
tion since the individual repositories would
potentially all request the same metadata from
the SAP system.

1. First you access the function template (defined in
interface | FunctionTemplate) by invoking the
repository’s getFunctionTemplate() method. A
function template contains the RFM’ s metadata
(parameters and exceptions), but not the data (the
parameters themselves). JCo caches the metadata

See the section “Repositories in Web Applications” later in this article after retrievi ng it from SAP, so thereis no need

for adiscussion of such a utility class. to provide your own caching scheme. Method

For site licenses and volume subscriptions, call 1-781-751-8699. 29

SAP Professional Journal March/April 2003

Figure 1

Required Authorizations for the Repository Access

Ohject: S_RFC, ACTVT: 16, FUGR).

In order to retrieve the necessary information from the SAF system's data dictionary, the repository
needs to call a number of RFMs for which the access rights have to be granted (Autharization

|R13 Release | Function Groups

lsince 3.1H |RFC1, 8600, SRFC, SUNI, SYST

|Sin|:E 4.0A |RFC1, SDIF, 3G00, SRFC, 5Y5T, SY5LU, SUNI

lsince 464 [RFC1, SDIF, 5G00, SRFC, §vST, SvsU

|Sin|:E 4 6D |HFC1, SDIFRUNTIME, SG0O0, SEFC, 5Y3T, S¥5U

getFunctionTemplate() returns null if the speci-
fied RFM does not exist in the SAP system. An
exception is thrown if JCo has problems while
trying to retrieve the metadata (possible reasons
include communication problems and insufficient
authorizations).

2. You then use the function template’s
getFunction() method to create a new function
object. It ishighly recommended that you create
afresh function object for each function invoca-
tion. Otherwise you might easily forget to clear
some parameters from the previous invocation
and get different results than you expect.

Authorizations and Repository
Access

The userid defined for the pool that the repository
object uses to access the metadata in SAP must have
sufficient authorizations. The specific authorizations
required in the different SAP releases are listed in the
Javadoc for class JCO.Repository. Figurelisa
screenshot of the pertinent text.

Many customers are of the opinion that normal

users should not have these authorizations and hence
use a separate pool based on a special userid for the
repository. | believe that thisis an excellent idea, but
would like to extend it. | would also use the reposi-
tory pool for other purposes of a more technical
nature like retrieving extended metadata, retrieving
Helpvalues, converting values between the internal
and external formats, etc.

Summary of Recommendations
for Clients

] Only use one repository per connected SAP sys-

tem.> Otherwise you should not be surprised when
performance suffers.®

vl Always create a fresh function object for each
function call.

5 You do not need one repository per SAP client (here in the meaning
of the three-digit number SAP uses to logically partition one physical
database, as opposed to a JCo Client connection object) since the
metadata is client-independent.

5 We have even seen cases where a customer created a new repository
before each function call. Thisis a surefire way to make your
hardware vendor very happy.

30 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Repositories in the SAP Java Connector (JCo)

Listing 4: Using Extended M etadata

private static final
JCoReposi tory mRepository;

String POOL_NAME = "ARAsoft";

mRepository = new JCoRepository(POOL_NAME) ;

JCO. Function function =

nReposi tory. creat eFuncti on(" BAPI _CUSTOVER GETDETAI L2") ;

JCO. Field custField =

function. getl nport ParaneterList().getField("CUSTOVERNO') ;
XFi el d xCustField = (XField) custField.get ExtendedFi el dMet aDat a() ;
String screenLabel = xCustFi el d. getFi el dText s() . get Label Long();
String conversi onExit = xCustFiel d. get Conver si onExit();
bool ean m xedCase = xCustField.i sM xedCaseSupported();

Subclassing the JCO.Repository
Class

As explained before, class JCO.Repository retrieves
the RFM’s metadata from SAP. Thisincludes the
exceptions and all parameter metadata. Parameters
can be simple fields, structures, and tables, so JCo
needs the metadata for each field. Thisis accom-
plished by invoking the RFM

DDl F_FI ELDI NFO_GET. ThisRFM deliversvery
extensive metadata for each field, but JCo is only
interested in the metadata required for the RFC proto-
col. The additional metadatais“lost”. An applica-
tion can, of course, call DDI F_FI ELDI NFO_GET
itself in order to obtain the other metadata, some of
which is very useful for providing state-of-the-art user
interfaces (e.g., the various texts available for each
field in al installed languages allow you to build a
multi-lingual application without having to adminis-
ter your own texts).

If you want to use this approach, you should
build a component to encapsul ate access to
DDI F_FI ELDI NFO_GET, cache the retrieved val-
ues, and provide an easy-to-use object model for
the actual application. Still, you would make addi-
tional callsto SAP! Fortunately, the designers of

JCo were very clever people and foresaw the need for
additional metadata.

Class JCO.Field has a method
getExtendedFieldMetaData(). This method allows
you to access any additional metadata stored viathe
setExtendedFieldMetaData() method available on
class JCO.Metadata. The trick to avoid additional
roundtrips to SAP for retrieving the extended
metadata is to subclass JCO.Repository and exploit
the values obtained by its call to
DDI F_FI ELDI NFO_GET. Writing a subclass for
JCO.Repository is not exactly trivial, and certainly
beyond the scope of this article, but if you are a JCo
expert and have afew dull weekends to kill, you
might giveit atry.

Listing 4 shows code utilizing a subclass of
JCO.Repoasitory called JCoRepository. This class
provides its own createFunction() method (the source
code for thisis Listing 3). Class XField contains the
extended metadata. The final three statementsin
Listing 4 retrieve the long screen label (SAP main-
tains three different sizes in its Data Dictionary), the
name of the conversion exit, and whether mixed case
is supported, respectively, al without additional
roundtrips to SAP.

For site licenses and volume subscriptions, call 1-781-751-8699.

31

SAP Professional Journal

March/April 2003

Figure 2

Extended Metadata Available in Class XField

String getName()

Returns the field name.

String getStructureName()

Returns the structure name.

String getCheckTable()

Returns the check table name.

String getConversionExit()

Returns the GUI conversion routine name.

String getDataElementName()

Returns the data element name.

String getDataTypeABAP()

Returns the ABAP 1-byte data type.

String getDataTypeDD()

Returns the Data Dictionary data type.

int getDecimals()

Returns the number of decimals.

String getDomainName()

Returns the domain name.

FieldTexts getFieldTexts()

Returns the texts for this field.

int getinternalLength()

Returns the internal field length.

int getLength()

Returns the number of characters without formatting.

int getOutputLength()

Returns the number of characters with formatting.

boolean isFixedValuesListDefined()

Checks whether this field (i.e., its domain) has a fixed values list.

boolean isMixedCaseSupported()

Checks whether this field supports mixed case, not just upper
case.

boolean isSearchHelpSupported()

Checks whether this field has search help (F4) in SAPGUI.

boolean isSignedNumber()

Checks whether this field is a signed number.

For those of you who want to build your own
subclass of JCO.Repository, Figure 2 contains
atable of the metadata properties that | would

recommend.

Putting all information concerning the texts
available for afield in its own class, FieldTexts (see
Figure 3 for its methods), makes things easier for the

application programmer.

Method getText() is a convenience method
because there is no guarantee that all texts are avail-
ablein all languages for all fields. Using this method

Repositories in JCo Server
Components

While the majority of all applications developed with

JCo are client applications, more and more customers

need to access Java components from ABAP, i.e.,
develop JCo server components. When you instanti-
ate your server class (which must be a subclass of

JCO.Server) you need to pass arepository object so
that JCo can interpret the function call from the SAP

nent wants to be able to process.

ensures that the application gets atext at all aslong as

any of the texts have been maintained.

JCo provides two sample programs for server

32

www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

system correctly. This repository object must contain
the metadata for all functions that your server compo-

Repositories in the SAP Java Connector (JCo)

Figure 3

Class FieldTexts

String getColumnHeading()

Returns the column heading.

int getColumnHeadingMaxLength()

Returns the column heading maximum length.

String getDescription()

Returns the Data Dictionary description.

String getLabellLong()

Returns the long screen label.

int getLabelLongMaxLength()

Returns the maximum length of the long screen label.

String getLabelMedium()

Returns the medium screen label.

int getLabelMediumMaxLength()

Returns the maximum length of the medium screen label.

String getLabelShort()

Returns the short screen label.

int getLabelShortMaxLength()

Returns the maximum length of the short screen label.

String getText()

Returns the first non-empty text using the following priority list:
e getLabelLong()

e getLabelMedium()

» getLabelShort()

» getColumnHeading()

» getDescription()

Returns an empty string if all texts are empty.

programming, Example5.java and Example7.java.
Exampleb.java uses a hard-coded repository while
Example7.java uses a client connection to SAP to
retrieve the required metadata dynamically. | highly
recommend the latter approach, for several reasons:

e Setting up a hard-coded repository is difficult
and error-prone.

* You have two, potentially different, definitions
of the function interface (one in the SAP system,
and one in your server component). If the func-
tion interface changes in the SAP system, your
server component will most likely fail, unless you
remember to change the source code for the hard-
coded repository.

* When you use an SAP system configured to

support Unicode you will need to change your
source code for the hard-coded repository.

Using anormal client repository with a connec-
tion pool solves all these issues, but raises two
new questions:

1. What do | doif the function called from ABAP s
not defined in the SAP Function Builder (transac-
tion code SE37)?

2. How does using a client connection from my
server component affect the restart behavior of
my server?

The answer to the first question isthat | consider
it bad practice to make function calls where the func-
tion interface is not defined in the SAP Function

For site licenses and volume subscriptions, call 1-781-751-8699.

33

SAP Professional Journal March/April 2003

Builder. It istoo easy to change the source code of
the function call without taking into account the
consequences in the server component. Adding the
function definition in the Function Builder does not
take very much time. Remember that you do not
have to implement the function (i.e., write ABAP
source code). All you do is define the parameters
and exceptions.

To answer the second question, | first need to
explain what happens if a server thread loses its con-
nection to the SAP system. (Remember that you have
two types of connectionsif you employ the approach
| suggested earlier: server connections waiting for
SAPto cal, and client connections only used to
retrieve function metadata.) JCo automatically tries
to reconnect the failed server connection, starting one
second after it recognizes the failure, and doubling
the interval before each subsequent reconnect attempt
(up to amaximum value’).

But what happens to our client connection pool
for the repository? Doesit also reconnect automati-
cally? Wéll, sort of. Without going into gruesome
implementation details, the answer isthat it is pos-
sible, albeit not likely, that a metadata retrieval
request by JCo on behalf of acall from SAPtoa
server will fail. Do not despair, though, there is
an easy work-around for thisissue: Before starting
your server threads, but after the instantiation of the
repository, retrieve the metadata for all functions
supported by your server by calling
getFunctionTemplate() for each function. This
ensures that no further client calls to SAP will ever be
required again for as long as your server is running.

Summary of Recommendations
for Servers

] Definetheinterfaces of al the functions your
servers implement in the SAP Function Builder.

7 This value can be changed by setting JCo property
jco.server.max_startup_delay.

V] Useaclient connection to SAP to dynamically

retrieve the required metadata for your servers
from SAP.

v Alwaysretrieve the function templates of al
functions available in your server at start-up time.

Repositories in Web Applications

Many customers use JCo to build HTML-based front-
endsto SAP systems. A web application written in
Java usually contains a mixture of Servlets and
JavaServer Pages.2 One application could use one or
more Servlets. How do you ensure that you only
create one repository to be shared by all Servlets? As
mentioned earlier, for connection poolsthisis easy to
accomplish since JCo contains a pool manager that
controls all connection pools. Listing 5 shows source
code that first checks whether a pool with a given
name already exists and, if not, creates a new one.

A similar feature for repositoriesis sorely lacking
from JCo. Time to rectify thisand build our own
repository manager!

A Repository Manager for
JCO.Repository

Our implementation will follow the approach SAP
has used for its JCO.PoolManager class and employ
the singleton pattern®. The complete source code for
our repository manager, called
StandardRepositoryManager, can be found in
Appendix A on page 41. Before discussing portions
of the source code, let us look at the methods offered
by this class (see Figure 4).

8 ltis, of course, possible to use only Servlets or only JavaServer Pages,
if you feel so inclined.

¢ For an excellent introduction to design patterns in Java, see Mark
Grand' s three-volume series Patterns in Java, published by John
Wiley & Sons.

34 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Repositories in the SAP Java Connector (JCo)

Listing 5: Creating a Connection Pool |f Necessary

JCO. Pool pool ;
pool = JCO. get d i ent Pool Manager (). get Pool (POOL_NAME) ;
if (pool == null) {
Order edProperties | ogonProperties =
Order edProperties. | oad("/I ogon. properties");
JCO. addd i ent Pool (POOL_NAME, /1 pool nane
5, [/ maxi mum nunmber of connections
| ogonProperties); // connection properties
pool = JCO. get Cl i ent Pool Manager (). get Pool (POOL_NAME) ;

}

Figure 4 Class StandardRepositoryManager

static StandardRepositoryManager
getSinglelnstance()

Returns the singleton instance of this class.

JCO.Repository
createRepository(JCO.Pool pool)

Creates a JCO.Repository object for the SAP system to
which the pool is connected.

boolean existsRepository(JCO.Pool Checks whether a JCO.Repository object for the SAP
pool) system to which the pool is connected already exists.

boolean existsRepository(String
systemld)

Checks whether a JCO.Repository object for the
specified SAP system already exists.

JCO.Repository
getRepository(JCO.Pool pool)

Returns the JCO.Repository object for the SAP system
to which the pool is connected.

JCO.Repository getRepository
(JCO.Pool pool, boolean
createlfltDoesNotEXist)

Returns the JCO.Repository object for the SAP system
to which the pool is connected. If no repository exists
and createlfltDoesNotEXxist is true, a new repository is
created; otherwise an exception is thrown.

JCO.Repository getRepository(String
systemld)

Returns the JCO.Repository object for the specified
SAP system.

void removeRepository(JCO.Repository

repository)

Removes the specified JCO.Repository object.

For site licenses and volume subscriptions, call 1-781-751-8699.

35

SAP Professional Journal March/April 2003

Listing 6: Method createRepository()

public synchroni zed JCO. Repository creat eRepository(JCO Pool pool)

t hrows ARAsof t Excepti on {
JCO.dient client = null;

try {

client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();

JCO.releaseCient(client);

client = null;

if (itens.contai nskey(nane))
t hrow new ARAsof t Excepti on

("A repository for system'"

+ nane + "'

al ready exists.");

JCO. Repository repository = new JCO. Repository

(name, pool . getNane());
i tems. put (name, repository);
return repository;
}
catch (Exception ex) {
t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO. rel easeC ient(client);
}
}

Method getSinglel nstance() accesses the single-
ton instance of the repository manager. The first time
itiscaled, theinstanceis created. Subsequent calls
just return the reference to the object.

Method createRepository() creates a new reposi-
tory for the pool passed as an argument. There are
two aspects in the implementation of this method
(Listing 6) that | want to draw to your attention.

In order to avoid the creation of more than
one repository per SAP system we need to assign
a unique name to each repository and keep track of
the names used so far. The names are maintained as
keysinthe TreeMapi t ens. We use the system ID
of the SAP system asthe key. This system ID can
be obtained by calling the getSysteml D() method of
JCO.Attributes (available on a JCO.Client object that
we get from the connection pool).

36 www.SAPpro.com

©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Repositories in the SAP Java Connector (JCo)

Listing 7: Creating a Pool and a Repository If Necessary

JCO. Pool pool ;
| Repository repository;
pool
if (pool == null) {

Or der edProperties | ogonProperties =

= JCO. get Cl i ent Pool Manager () . get Pool (POOL_NAME)

Order edProperties. | oad("/I ogon. properties");

JCO. addd i ent Pool (POOL_NAME

S,

| ogonProperties);
pool

}

/1 pool
[/ maxi mum nunber of connections
/1 connection properties

= JCO. get d i ent Pool Manager () . get Pool (POOL_NAME)

name

repository = Standar dRepositoryManager. get Si ngl el nst ance()

Thefi nal | y clause makes sure that the client
connection is returned to the pool even if an error
occurs earlier. Thisis extremely important since we
would otherwise run out of usable client connections
sooner or later.

The two flavors of existsRepository() allow a
client program to check whether arepository aready
exists for agiven pool or SAP system ID.

We offer three flavors of the getRepository()
method. Normal applications will use the one with
two parameters (see Figure 4). It will return an exist-
ing repository and allows the application to specify
whether a new one will be created if none existed
before. Using this method in all your applications
will ensure that no unnecessary repositories will
be created.

Method removeRepository() allows you to
remove arepository from the repository manager.

. get Reposi t ory(pool ,

true);

We can now extend Listing 5 so that, in addition
to the connection pool, the repository is also created
if necessary (see Listing 7). This code would typi-
cally be used in the init() method of each Servlet that
needs to access SAP.

A Repository Manager for
JCoRepository

If we want to use a subclass of JCO.Repository

that provides additional metadata, we need a

slightly more intelligent repository manager. Class
ExtendedRepositoryManager (see Appendix B on
page 45 for the complete source code) fills this
requirement. Since the texts stored for each field are
language-dependent we need a different repository
for each language/SAP system combination. That is,
if the application isat all interested in the texts.

For site licenses and volume subscriptions, call 1-781-751-8699.

37

SAP Professional Journal March/April 2003

Figure 5 Class Extended

RepositoryManager

static ExtendedRepositoryManager
getSinglelnstance()

Returns the singleton instance of this class.

JCoRepository createRepository(JCO.Pool
pool)

Creates a JCoRepository object for the SAP system to
which the pool is connected. An exception is thrown if
a repository for this system exists — regardless of the
language used.

JCoRepository createRepository
(JCO.Pool pool, boolean ignoreLanguage)

Checks whether a JCO.Repository object for the SAP
system to which the pool is connected already exists.
If ignoreLanguage is true, an exception is thrown if any
repository for this system exists. If ignoreLanguage is
false, an exception is thrown if a repository for this
system and the language used in the pool exists.

boolean existsRepository(JCO.Pool pool)

Checks whether a JCoRepository object for the SAP
system to which the pool is connected already exists —
regardless of language.

boolean existsRepository(JCO.Pool pool,
boolean ignoreLanguage)

Checks whether a JCoRepository object for the SAP
system to which the pool is connected — and with the
language used by the pool (unless ignoreLanguage is
true) — already exists.

boolean existsRepository(String systemlid)

Checks whether a JCoRepository object for the specified
SAP system exists — regardless of language.

boolean existsRepository(String systemild,
String language)

Checks whether a JCoRepository object for the specified
SAP system and language exists.

Therefore, we give the application control over
whether it needs a language-specific repository
or not.

Figure 5 shows the methods offered by the
ExtendedRepositoryManager class.

The source code in Appendix B should be quite
easy to understand, but | would like to point out why
we need the private getLanguage() method shown in
Listing 8. When connecting to SAP you do not need
to specify alanguage key. In that case, the default
system language defined by the administrator will be
used. JCo does not know which language that is, so a

call to the getLanguage() method of JCO.Attributes
returns a string with one blank. There are severa
ways to determine the actual language, but the one

| prefer isacall to DDI F_FI ELDI NFO_GET since
this RFM existsin all ABAP-based SAP systems;
in other words it works not only in R/3, but also in
CRM, etc.

Conclusion

Proper use of repositories guarantees high-performance,

38 www.SAPpro.com ©200

3 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Repositories in the SAP Java Connector (JCo)

Figure 5 (continued)

JCoRepository getRepository (boolean Returns the JCoRepository object for the SAP system
ignoreLanguage, JCO.Pool pool) to which the pool is connected. Throws an exception if
no repository at all exists for this system. Throws an
exception if ignoreLanguage is false and no repository
for the language used in the pool exists.

JCoRepository getRepository (boolean Returns the JCoRepository object for the SAP system
ignoreLanguage, JCO.Pool pool, boolean to which the pool is connected. If no repository exists
createlfltDoesNotEXxist) and createlfltDoesNotEXxist is true, a new repository

is created; otherwise an exception is thrown. If
ignoreLanguage is true, the language used in the pool

is ignored.
JCoRepository getRepository(JCO.Pool pool) Returns the JCoRepository object for the SAP
system to which the pool is connected. Ignores the
language.
JCoRepository getRepository (JCO.Pool pool, Returns the JCoRepository object for the SAP system
boolean createlfltDoesNotEXist) to which the pool is connected. If no repository exists

and createlfltDoesNotEXist is true, a new repository is
created; otherwise an exception is thrown. Ignores the
language.

JCoRepository getRepository(String systemlid) Returns the JCoRepository object for the specified SAP
system. Ignores the language and throws an exception
if no repository for this system exists.

void removeRepository(JCoRepository Removes the specified JCoRepository object.
repository)

Listing 8: The getLanguage() Utility Method

static private String getlLanguage(JCO Cient client,
| Repository repository)
throws Exception {
String lang = client.getAttributes().getlLanguage();
if (lang == null || lang.equals("") || I|ang.equals(" ")) {
JCO. Function function =
repository. get Functi onTenpl at e(" DDl F_FI ELDI NFO_GET")
. get Function();
function. getl nport Paramet er Li st (). set Val ue("DFI ES", "TABNAMVE");
function. getl nport Paramet er Li st (). set Val ue("LANGJ', "FI ELDNAMVE");
client.execute(function);
| ang = function. get Tabl ePar anet er Li st (). get Tabl e(" DFl ES_TAB")
.getString("LANGU") ;
}

return | ang;

}

For site licenses and volume subscriptions, call 1-781-751-8699. 39

SAP Professional Journal March/April 2003

stable applications. For all multi-user applications, a

repository manager relieves the applications from
having to deal with the issue of creating unnecessary
repositories.

Thomas G. Schuessler is the founder of ARAsoft
(www.arasoft.de), a company offering products,
consulting, custom development, and training to
a worldwide base of customers. The company
specializes in integration between SAP and non-
SAP components and applications. ARAsoft offers
various products for BAPI-enabled programs on
the Windows and Java platforms. These products
facilitate the development of desktop and Internet
applications that communicate with R/3. Thomas
is the author of SAP’s BIT525 “ Devel oping BAPI-
enabled Web Applications with Visual Basic”

and BIT526 “ Developing BAPI-enabled \Web
Applications with Java” classes, which he teaches
in Germany and in English-speaking countries.
Thomasis a regularly featured speaker at SAP
TechEd and SAPPHIRE conferences. Prior to
founding ARAsoft in 1993, he worked with SAP
AG and SAP America for seven years. Thomas
can be contacted at thomas.schuessler @sap.com
or at tgs@arasoft.de.

40 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix A: Class StandardRepositoryManager

Appendix A: Class
StandardRepositoryManager

package de. arasoft.sap.jco;

i mport java.util.TreeMap;
i mport com sap. mw. j co. *;
i nport de. arasoft.java. ARAsof t Excepti on;

/*

* Copyright (c) 2002 ARAsoft GrbH
* All Rights Reserved.

*/

/**

* A singleton object that nanages JCO Repository objects.
*

* @ut hor ARAsoft GrbH

* @ersion 2.5

* @ince 2.5

*/

public class StandardRepositoryManager {

static private StandardRepositoryManager repositoryManager = null;
static private TreeMap itenms = null;

protected Standar dRepositoryManager () {
itenms = new TreeMap();

}

/**

* Returns the singleton instance of this class.
* @eturn The singleton instance.

*/
static public synchroni zed Standar dReposit or yManager get Si ngl el nstance() {
if (repositoryManager == null)
reposi t oryManager = new St andar dReposi t or yManager () ;
return repositoryManager;
}
/**

For site licenses and volume subscriptions, call 1-781-751-8699. 41

SAP Professional Journal March/April 2003

Creates a JCO Repository object for the SAP systemto which the pool is
connect ed.
Throws an exception if a repository for this system al ready exists.
@eturn The created repository object.
@ar am pool The JCO. Pool object.
/
publ i c synchroni zed JCO. Repository creat eRepository(JCO Pool pool)
t hrows ARAsoft Exception {
JCO.dient client = null;
try {
client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();
JCO. rel easeCient(client);
client = null;
if (itens.containsKey(nane))
t hrow new ARAsof t Excepti on
("A repository for system + name + al ready exists.");
JCO. Repository repository = new JCO. Repository(nane, pool.getNane());
i tems. put (name, repository);
return repository;

E I R R T

}
catch (Exception ex) {

t hrow new ARAsoft Excepti on(ex);
}

finally {
if (client '= null) {
JCO.rel easeClient(client);
}
}
}

/**
* Checks whether a JCO Repository object for the specified SAP system al r eady
* exists.
* @eturn Does a repository for the specified SAP system exist?
* @aram systemid The system I D of the SAP system
*/
publ i c bool ean exi stsRepository(String systemd) {
JCO. Repository repository = (JCO Repository) itens.get(systemd);
return (repository !=null);

}

/**

* Checks whether a JCO Repository object for the SAP systemto which the pool
* i s connected al ready exists.

* @eturn Does a repository for this system exist?

* @aram pool The JCO. Pool object.

*/

publ i c bool ean exi st sReposi tory(JCO. Pool pool) throws ARAsoftException {

42 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix A: Class StandardRepositoryManager

JCO.dient client = null;
try {
client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();
JCO. rel easeCient(client);
client = null;
return this.existsRepository(nane);
}
catch (Exception ex) {
t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO.rel easeClient(client);
}
}

}

*

/
Ret urns the JCO Repository object for the SAP systemto which the pool
i s connect ed.

Throws an exception if no repository exists.
@eturn The repository object.
@ar am pool The JCO. Pool object.
/
publ i c synchroni zed JCO Repository get Repository(JCO. Pool pool)
t hrows ARAsoft Exception {
return this.getRepository(pool, false);

}

E I R R T R R

*

Ret urns the JCO. Repository object for the SAP systemto which the pool is

connected. If no repository exists and <code>createl flt DoesNot Exi st </ code>

i s <code>true</code> a new repository is created, otherw se an exception

is thrown.

@eturn The repository object.

@ar am pool The JCO. Pool object.

@aram createl fltDoesNot Exi st Should a new repository be created if none
exi sts?

E I R T R B

~

public synchroni zed JCO. Repository get Repository
(JCO. Pool pool, bool ean createlfltDoesNot Exi st)
t hrows ARAsoft Exception {
JCO.dient client = null;
try {
client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();
JCO. rel easeCient(client);
client = null;

For site licenses and volume subscriptions, call 1-781-751-8699.

43

SAP Professional Journal March/April 2003

try {
return this.getRepository(nane);
}

catch (ARAsoft Exception ax) {
if (createlfltDoesNotExist) {
return this.createRepository(pool);
} else {
t hr ow ax;
}
}

}
catch (Exception ex) {

t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO.rel easeClient(client);
}
}
}
/**

* Returns the JCO Repository object for the specified SAP system
* | f no repository exists an exception is thrown.
* @eturn The repository object.
* @aram systemid The system I D of the SAP system
*/
public synchroni zed JCO. Repository get Repository(String system d)
t hrows ARAsoft Exception {
JCO. Repository repository = (JCO Repository) itens.get(systemd);
if (repository == null)
t hrow new ARAsof t Excepti on
("No repository exists for system
return repository;

}

/**

* Renpbves the specified JCO Repository object.
* @aramrepository The repository to be renpved.
*/
publ i c synchroni zed voi d renpbveRepository(JCO Repository repository) {
String nane = repository. get Nane();
if (items.containsValue(repository)) {
i tems. renove(nane);
}
}

+ systemd + "' .");

}

44 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix B: Class ExtendedRepositoryManager

Appendix B: Class
ExtendedRepositoryManager

package de. arasoft.sap.jco;

i mport java.util.Hashtabl e;

i mport java.util.TreeMap;

i mport java.util.Vector;

i mport com sap. mw. j co. *;

i mport de. arasoft.java. ARAsof t Excepti on;
i nport de. arasoft.sap.jco.JCoRepository;

/*

* Copyright (c) 2002 ARAsoft GrbH
* All Rights Reserved.

*/

/**

* A singleton object that nanages JCoRepository objects.
*

* @ut hor ARAsoft GrbH

* @ersion 2.5

* @ince 2.5

*/

public class ExtendedRepositoryManager {
static private ExtendedRepositoryManager repositoryManager = null;

static private TreeMap itenms = null;
static private Hashtable systems = null;

static private final String EXCEPTI ON_1A

"No repository exists for system'";
static private final String EXCEPTI ON 1B

prot ect ed ExtendedRepositoryManager () {
itenms = new TreeMap();
systens = new Hashtabl e();

}

/**

For site licenses and volume subscriptions, call 1-781-751-8699. 45

SAP Professional Journal March/April 2003

* Returns the singleton instance of this class.
* @eturn The singleton instance.

*/
static public synchroni zed Ext endedReposit oryManager get Si ngl el nstance() {
i f (repositoryManager == null)
reposi t oryManager = new Ext endedReposit or yManager () ;
return repositoryManager;
}
/**
* Creates a JCoRepository object for the SAP systemto which the pool is
* connected. An exception is thrown if a repository for this system exists -
* regardl ess of the | anguage used.
* @eturn The created repository object.
* @aram pool The JCO. Pool object.
*

/
publ i c synchroni zed JCoRepository createRepository(JCO Pool pool)
t hrows ARAsoft Exception {
return this.createRepository(pool, true);

}
/**
* Creates a JCoRepository object for the SAP systemto which the pool is
* connected. |f <code>i gnorelLanguage</code> i s <code>true</code> an
* exception is thrown if any repository for this system exists.
* | f <code>i gnor eLanguage</ code> i s <code>fal se</code>, an
* exception is thrown if a repository for this systemand the | anguage used
* in the pool exists.
* @eturn The created repository object.
* @ar am pool The JCO. Pool object.
* @aram i gnor eLanguage Shoul d t he | anguage be i gnored?
*

~

publ i c synchroni zed JCoRepository createRepository
(JCO. Pool pool, bool ean ignorelLanguage) throws ARAsoft Exception {
JCO.dient client = null;
JCoRepository repository = null;
try {
client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();
if (ignorelLanguage) {
if (systens.containsKey(nane)) {
t hrow new ARAsof t Excepti on
("A repository for system
}

repository = new JCoRepository(pool);

String | ang = get Language(client, repository);
JCO.rel easeClient(client);

client = null;

Vect or | anguages = new Vector(1);

+ name + al ready exists.");

46 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix B: Class ExtendedRepositoryManager

| anguages. add(| ang) ;
syst ens. put (nane, | anguages);
i tens. put (creat eKey(nane, |lang), repository);
return repository;
} else { // |anguage not ignored
if (systens.containsKey(nane)) {
Vect or | anguages = (Vector) systens. get(nane);
repository = (JCoRepository) itens. get
(creat eKey(nane, (String)languages.get(0)));
String | ang = get Language(client, repository);
JCO.rel easeClient(client);
client = null
i f (contai nsLanguage(l anguages, |ang))
t hrow new ARAsof t Excepti on
("A repository for system + nane +
+ lang + "' already exists.");
el se {
| anguages. add(| ang) ;
repository = new JCoRepository(pool);

i tens. put (creat eKey(name, |ang), repository);

return repository;

}

} else { // no repository for this systemat al
repository = new JCoRepository(pool);

String |lang = this.getlLanguage(client, repository);

JCO.rel easeClient(client);
client = null
Vect or | anguages = new Vector(1);
| anguages. add(| ang) ;
syst ens. put (nane, | anguages);
i tems. put (creat eKey(nane, |lang), repository);
return repository;
}
}

}
catch (Exception ex) {

t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO.rel easeCient(client);
}
}
}
/**

* Checks whet her a JCoRepository object for the specified SAP system exists -

* regardl ess of |anguage.
* @eturn Does a repository for this system exist?

and | anguage

For site licenses and volume subscriptions, call 1-781-751-8699.

47

SAP Professional Journal March/April 2003

* @aram systemid The system I D of the SAP system
*/
publ i c bool ean exi stsRepository(String systemd) {
return systens. contai nskey(systenld);

}

*

Checks whet her a JCoRepository object for the specified SAP system and
| anguage exi sts.
@eturn Does a repository for this system and | anguage exi st?
@ar am system d The system | D of the SAP system
@ar am | anguage The 2-byte | anguage identifier.
/
publ i c bool ean exi stsRepository(String systemd, String |anguage) {
bool ean found = systens. cont ai nsKey(systenld);
if (! found) return fal se;
return contai nsLanguage((Vector) systens. get (systenm d), |anguage);

}

/**

* Checks whet her a JCoRepository object for the SAP systemto which the pool

* is connected already exists - regardl ess of |anguage.

* @eturn Does a repository for this system exist?

* @aram pool The JCO. Pool object.

*/

publ i c bool ean exi st sRepository(JCO. Pool pool) throws ARAsoftException {
return this.existsRepository(pool, true);

}

/

E R R R T R R

*

Checks whet her a JCoRepository object for the SAP systemto which the pool
is connected - and with the | anguage used by the pool

(unl ess <code>i gnor eLanguage</ code> i s <code>true</code>) - already exists.
@eturn Does a repository for this system exist?

@ar am pool The JCO. Pool object.

@ar am i gnor eLanguage Shoul d the | anguage be i gnored?

EE B I T

~

publ i c bool ean exi st sRepository(JCO Pool pool, bool ean ignorelLanguage)
t hrows ARAsoft Exception {
JCO.dient client = null;
try {
client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();
bool ean found = exi st sReposi tory(nane);
if (! found) return fal se;
i f (ignorelLanguage) {
return true;
} else {
JCoRepository repository = getRepository(true, pool, false);

48 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix B: Class ExtendedRepositoryManager

/

/

E I R R T R

E R I T T B

~

E I R R T R

String |ang = getLanguage(client, repository);
return existsRepository(nanme, |ang);
}

}
catch (Exception ex) {

t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO.rel easeClient(client);
}
}

}

*

Ret urns the JCoRepository object for the SAP systemto which the pool
i s connected. Ignores the |anguage.
Throws an exception if no repository exists.
@eturn The repository object.
@ar am pool The JCO. Pool object.
/
publ i c synchroni zed JCoRepository get Repository(JCO Pool pool)
t hrows ARAsoft Exception {
return this.getRepository(true, pool, false);

}

*

Returns the JCoRepository object for the SAP systemto which the pool is

connected. If no repository exists and <code>createl flt DoesNot Exi st </ code>

i s <code>true</code> a new repository is created, otherw se an exception

is throwmn. Ignores the |anguage

@eturn The repository object.

@ar am pool The JCO. Pool object.

@aram creat el fltDoesNot Exi st Should a new repository be created if none
exi sts?

publ i c synchroni zed JCoRepository get Repository
(JCO. Pool pool, bool ean createlfltDoesNot Exi st)
t hrows ARAsoft Exception {
return this.getRepository(true, pool, createlfltDoesNotExist);

}

*

Returns the JCoRepository object for the SAP systemto which the pool is
connected. Throws an exception if no repository at all exists for this
system Throws an exception if <code>i gnoreLanguage</code> is
<code>f al se</ code> and no repository for the | anguage used in the poo
exi st s.

@eturn The repository object.

For site licenses and volume subscriptions, call 1-781-751-8699. 49

SAP Professional Journal March/April 2003

*

*

*

E I R R T T I T R .

~

@ar am i gnor eLanguage Shoul d the | anguage be i gnored?
@ar am pool The JCO. Pool object.
/
publ i c synchroni zed JCoRepository get Repository
(bool ean i gnor eLanguage, JCO. Pool pool) throws ARAsoftException {
return this.getRepository(ignorelLanguage, pool, false);

}

*

Ret urns the JCoRepository object for the SAP systemto which the pool is

connected. If no repository exists and <code>createl flt DoesNot Exi st </ code>

i s <code>true</code> a new repository is created, otherw se an exception

is thrown. |If <code>i gnorelLanguage</code> i s <code>true</code>, the

| anguage used in the pool is ignored.

@eturn The repository object.

@ar am i gnor eLanguage Shoul d the | anguage be i gnored?

@ar am pool The JCO. Pool object.

@aram creat el fltDoesNot Exi st Should a new repository be created if none
exi sts?

publ i c synchroni zed JCoRepository get Repository
(bool ean i gnor eLanguage, JCO. Pool pool, bool ean createlfltDoesNot Exi st)
t hrows ARAsoft Exception {
JCO. Client client = null
try {
client = JCO getdient(pool.getNane());
String name = client.getAttributes().getSystem D();
bool ean found = systens. cont ai nsKey(nane) ;
if (found && ignorelLanguage) {
return this.getRepository(nane);
}
if (! found) {
if (createlfltDoesNotExist) {
return this.createRepository(pool, false);
} else {
t hrow new ARAsof t Excepti on(EXCEPTI ON_1A + nane + EXCEPTI ON_1B)
}
}
JCoRepository repository = this.getRepository(nane);
String | ang = get Language(client, repository);
Vect or | anguages = (Vector) systens. get(nane);
found = cont ai nsLanguage(| anguages, |ang);
if (found) {
return (JCoRepository) itens.get(createKey(nane, |ang));
} else if (createlfltDoesNot Exist) {
return this.createRepository(pool, false);
} else {
t hrow new ARAsof t Excepti on(EXCEPTI ON_1A + nane + EXCEPTI ON 1B);

50

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Appendix B: Class ExtendedRepositoryManager

}
catch (ARAsoft Exception ax) {

t hrow ax;

}
catch (Exception ex) {

t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO.rel easeClient(client);
}
}
}
/**

* Returns the JCoRepository object for the specified SAP system Ignores the
* | anguage and throws an exception if no repository for this system exists.
* @eturn The repository object.
* @aram systemid The system I D of the SAP system
*/
public synchroni zed JCoRepository get Repository(String systenld)
t hrows ARAsoft Exception {
bool ean found = systens. cont ai nsKey(systenld);
if (! found)
t hrow new ARAsof t Excepti on(EXCEPTI ON_1A + systenml d + EXCEPTI ON 1B);
Vect or | anguages = (Vector)systens. get(system d);
return (JCoRepository) itens. get
(createKey(systemd, (String)languages.get(0)));
}

/**

* Renpbves the specified JCoRepository object.
* @aramrepository The repository to be renpved.
*/
publ i c synchroni zed voi d renpbveRepository(JCoRepository repository)
t hrows ARAsoft Exception {
JCO.dient client = null
String pool Nane = repository. get Pool Nanes()[0] ;
try {
client = JCO getdient (pool Name) ;
String name = client.getAttributes().getSystem D();
String | ang = get Language(client, repository);
if (itens.containsValue(repository)) {
i tens. renmove(creat eKey(nanme, |ang));
Vect or | anguages = (Vector)systens. get (nane) ;
i f (languages.size() == 1) {
syst ens. r enove(nane) ;
} else {
| anguages. renove(l ang) ;

For site licenses and volume subscriptions, call 1-781-751-8699. 51

SAP Professional Journal March/April 2003

}
}

}
catch (Exception ex) {

t hrow new ARAsoft Excepti on(ex);

}
finally {
if (client '= null) {
JCO.rel easeClient(client);
}
}

}

static private bool ean contai nsLanguage(Vect or | anguages, String |ang) {
String s = null;
int size = | anguages. si ze();
for (int i =0; i < size; i++) {
s = (String) |anguages.get(i);
if (s.equals(lang)) return true;

}

return fal se;

}

static private String createKey(String systemid, String | ang) {
return systemd + ":" + |ang;

}

static private String getlLanguage(JCO Client client, |Repository repository)
throws Exception {
String lang = client.getAttributes().getlLanguage();
if (lang == null || lang.equals("") || |ang.equals(" ")) {
JCO. Function function =
reposi tory. get Functi onTenpl at e(" DDl F_FI ELDI NFO_GET") . get Functi on() ;
function. getl nport Paranet er Li st (). set Val ue("DFI ES", "TABNAME");
function. getl nport Paranet erList().setVal ue("LANGU', "FI ELDNAVE");
client.execute(function);
| ang = function. get Tabl ePar anet er Li st (). get Tabl e(" DFl ES_TAB")
.getString("LANGU") ;
}
return | ang;
}
}

52 www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.

