
27For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

Repositories in the
SAP Java Connector
(JCo)
Thomas G. Schuessler

Thomas G. Schuessler is
the founder of ARAsoft, a
company offering products,
consulting, custom
development, and training
to customers worldwide,
specializing in integration
between SAP and non-SAP
components and applications.
Thomas is the author of
SAP’s BIT525 and BIT526
classes. Prior to founding
ARAsoft in 1993, he worked
with SAP AG and SAP
America for seven years.

to know a thing and not expresse it,
is all one as if he knewe it not.

Robert Burton, The Anatomy of Melancholy

The SAP Java Connector (JCo) is the premier middleware for connect-
ing non-SAP components written in Java to ABAP-based SAP systems
like R/3. The non-SAP components can be clients (Java calls ABAP) or
servers (ABAP calls Java). In both cases, you need a repository object
that represents the metadata (parameters and exceptions) for the func-
tions to be invoked. Using JCo repositories properly is a key contribu-
tor to stable and performance-optimized applications. This article will:

• Show you the recommended use of repositories in client
components

• Explain why it is important to have only one repository object
for each SAP system you connect to

• Explain the value of subclassing the standard JCo repository
class (JCO.Repository)

• Show you how to avoid hard-coded repositories in server
components

• Introduce a concept for managing repositories in web server
applications

• Discuss two utility classes1 that manage repositories for you

(complete bio appears on page 40)
1 The complete source code for these classes is contained in the appendices to this article.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.28

This article presupposes that you already
know Java. Some familiarity with JCo would be
beneficial.2

The Role of the Repository
in JCo Client Programming

JCo provides an encapsulation of the SAP Remote
Function Call (RFC) protocol for Java developers.
Functions to be invoked in an SAP system are called
RFC-enabled Function Modules (RFMs) and are
represented by an object of type JCO.Function. In
order to create a function object you need a repository
that knows the metadata of the RFM.

JCo defines an interface, IRepository, that
must be implemented by all repository classes.
There are two such repository classes available
in JCo, JCO.BasicRepository and its subclass,
JCO.Repository.

JCO.BasicRepository is an abstract class that
provides basic capabilities such as metadata caching
and persistence. The class — being abstract — can-
not be instantiated and only serves as a starting point
for JCO.Repository or custom-developed subclasses.

JCO.Repository is the standard repository used in
most JCo applications. It retrieves the required RFM
metadata from an SAP system dynamically and
caches them to avoid additional roundtrips to SAP.
Listing 1 shows a code snippet that creates a
JCO.Repository object with a connection pool.

Unless you develop a single-user desktop applica-
tion with JCo, it is highly recommended that you
always use a connection pool for the repository,
although direct connections are also supported.
Using a pool ensures that multiple connections are
available for metadata retrieval and thus improves the
performance of multi-user applications.

As you can see, the constructor for
JCO.Repository takes two parameters. The first one
is an arbitrary name assigned to the repository; the
second one is the name of the connection pool to be
used for the actual metadata retrieval. The name you
assign to a repository is stored in the repository and
can be accessed using the getName() method, but JCo
makes no further use of the name. You can even
create multiple repositories with the same name with-
out JCo complaining, in other words the name of the
repository is totally devoid of any socially redeeming
value. Particularly, JCo does not provide a capability
to access a repository by its name3, which has the
following implications:

Listing 1: Creating a JCO.Repository Object

static final String POOL_NAME = "Pool";
IRepository mRepository;
mRepository = new JCO.Repository("ARAsoft", POOL_NAME);

2 For a general introduction to client JCo programming see my JCo
tutorial that ships with JCo itself. If you are interested in the latest
version of this tutorial, send me an email.

3 This is different from the way in which JCo treats connection pools.
The JCO.PoolManager class allows you to access any connection
pool by its name.

29For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

• The application you are building must keep a
reference to the repository in order to be able to
use it later.

• Checking whether a repository already exists for
a given SAP system — useful in web applications
connecting to the same SAP system — cannot be
achieved without a suitable utility class4.

• Unless proper steps are taken, applications could
easily create additional, unnecessary repositories.
This would lead to a severe performance degrada-
tion since the individual repositories would
potentially all request the same metadata from
the SAP system.

After you have created the repository, you can
create function objects. This is best encapsulated in a
utility method so that proper error handling is guaran-
teed. Listing 2 shows source code that makes use of
the utility method createFunction(). Listing 3 con-
tains the utility method itself.

Creating a function object is a two-step process:

1. First you access the function template (defined in
interface IFunctionTemplate) by invoking the
repository’s getFunctionTemplate() method. A
function template contains the RFM’s metadata
(parameters and exceptions), but not the data (the
parameters themselves). JCo caches the metadata
after retrieving it from SAP, so there is no need
to provide your own caching scheme. Method

Listing 2: Creating a JCO.Function Object

JCO.Function function = createFunction("DDIF_FIELDINFO_GET");

Listing 3: Utility Method to Create a JCO.Function Object

public JCO.Function createFunction(String name)
 throws ARAsoftException {
 try {
 IFunctionTemplate ft =
 mRepository.getFunctionTemplate(name.toUpperCase());
 if (ft == null)
 return null;
 return ft.getFunction();
 }
 catch (Exception ex) {
 throw new ARAsoftException
 ("Problem retrieving JCO.Function object.", ex);
 }
}

4 See the section “Repositories in Web Applications” later in this article
for a discussion of such a utility class.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.30

getFunctionTemplate() returns null if the speci-
fied RFM does not exist in the SAP system. An
exception is thrown if JCo has problems while
trying to retrieve the metadata (possible reasons
include communication problems and insufficient
authorizations).

2. You then use the function template’s
getFunction() method to create a new function
object. It is highly recommended that you create
a fresh function object for each function invoca-
tion. Otherwise you might easily forget to clear
some parameters from the previous invocation
and get different results than you expect.

Authorizations and Repository
Access

The userid defined for the pool that the repository
object uses to access the metadata in SAP must have
sufficient authorizations. The specific authorizations
required in the different SAP releases are listed in the
Javadoc for class JCO.Repository. Figure 1 is a
screenshot of the pertinent text.

Many customers are of the opinion that normal

users should not have these authorizations and hence
use a separate pool based on a special userid for the
repository. I believe that this is an excellent idea, but
would like to extend it. I would also use the reposi-
tory pool for other purposes of a more technical
nature like retrieving extended metadata, retrieving
Helpvalues, converting values between the internal
and external formats, etc.

Summary of Recommendations
for Clients

� Only use one repository per connected SAP sys-
tem.5 Otherwise you should not be surprised when
performance suffers.6

� Always create a fresh function object for each
function call.

Figure 1 Required Authorizations for the Repository Access

5 You do not need one repository per SAP client (here in the meaning
of the three-digit number SAP uses to logically partition one physical
database, as opposed to a JCo Client connection object) since the
metadata is client-independent.

6 We have even seen cases where a customer created a new repository
before each function call. This is a surefire way to make your
hardware vendor very happy.

31For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

Subclassing the JCO.Repository
Class

As explained before, class JCO.Repository retrieves
the RFM’s metadata from SAP. This includes the
exceptions and all parameter metadata. Parameters
can be simple fields, structures, and tables, so JCo
needs the metadata for each field. This is accom-
plished by invoking the RFM
DDIF_FIELDINFO_GET. This RFM delivers very
extensive metadata for each field, but JCo is only
interested in the metadata required for the RFC proto-
col. The additional metadata is “lost”. An applica-
tion can, of course, call DDIF_FIELDINFO_GET
itself in order to obtain the other metadata, some of
which is very useful for providing state-of-the-art user
interfaces (e.g., the various texts available for each
field in all installed languages allow you to build a
multi-lingual application without having to adminis-
ter your own texts).

If you want to use this approach, you should
build a component to encapsulate access to
DDIF_FIELDINFO_GET, cache the retrieved val-
ues, and provide an easy-to-use object model for
the actual application. Still, you would make addi-
tional calls to SAP! Fortunately, the designers of

JCo were very clever people and foresaw the need for
additional metadata.

Class JCO.Field has a method
getExtendedFieldMetaData(). This method allows
you to access any additional metadata stored via the
setExtendedFieldMetaData() method available on
class JCO.Metadata. The trick to avoid additional
roundtrips to SAP for retrieving the extended
metadata is to subclass JCO.Repository and exploit
the values obtained by its call to
DDIF_FIELDINFO_GET. Writing a subclass for
JCO.Repository is not exactly trivial, and certainly
beyond the scope of this article, but if you are a JCo
expert and have a few dull weekends to kill, you
might give it a try.

Listing 4 shows code utilizing a subclass of
JCO.Repository called JCoRepository. This class
provides its own createFunction() method (the source
code for this is Listing 3). Class XField contains the
extended metadata. The final three statements in
Listing 4 retrieve the long screen label (SAP main-
tains three different sizes in its Data Dictionary), the
name of the conversion exit, and whether mixed case
is supported, respectively, all without additional
roundtrips to SAP.

Listing 4: Using Extended Metadata

private static final String POOL_NAME = "ARAsoft";
JCoRepository mRepository;
mRepository = new JCoRepository(POOL_NAME);
JCO.Function function =
 mRepository.createFunction("BAPI_CUSTOMER_GETDETAIL2");
JCO.Field custField =
 function.getImportParameterList().getField("CUSTOMERNO");
XField xCustField = (XField) custField.getExtendedFieldMetaData();
String screenLabel = xCustField.getFieldTexts().getLabelLong();
String conversionExit = xCustField.getConversionExit();
boolean mixedCase = xCustField.isMixedCaseSupported();

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.32

Access Method Description

String getName() Returns the field name.

String getStructureName() Returns the structure name.

String getCheckTable() Returns the check table name.

String getConversionExit() Returns the GUI conversion routine name.

String getDataElementName() Returns the data element name.

String getDataTypeABAP() Returns the ABAP 1-byte data type.

String getDataTypeDD() Returns the Data Dictionary data type.

int getDecimals() Returns the number of decimals.

String getDomainName() Returns the domain name.

FieldTexts getFieldTexts() Returns the texts for this field.

int getInternalLength() Returns the internal field length.

int getLength() Returns the number of characters without formatting.

int getOutputLength() Returns the number of characters with formatting.

boolean isFixedValuesListDefined() Checks whether this field (i.e., its domain) has a fixed values list.

boolean isMixedCaseSupported() Checks whether this field supports mixed case, not just upper
case.

boolean isSearchHelpSupported() Checks whether this field has search help (F4) in SAPGUI.

boolean isSignedNumber() Checks whether this field is a signed number.

For those of you who want to build your own
subclass of JCO.Repository, Figure 2 contains
a table of the metadata properties that I would
recommend.

Putting all information concerning the texts
available for a field in its own class, FieldTexts (see
Figure 3 for its methods), makes things easier for the
application programmer.

Method getText() is a convenience method
because there is no guarantee that all texts are avail-
able in all languages for all fields. Using this method
ensures that the application gets a text at all as long as
any of the texts have been maintained.

Repositories in JCo Server
Components

While the majority of all applications developed with
JCo are client applications, more and more customers
need to access Java components from ABAP, i.e.,
develop JCo server components. When you instanti-
ate your server class (which must be a subclass of
JCO.Server) you need to pass a repository object so
that JCo can interpret the function call from the SAP
system correctly. This repository object must contain
the metadata for all functions that your server compo-
nent wants to be able to process.

JCo provides two sample programs for server

Figure 2 Extended Metadata Available in Class XField

33For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

programming, Example5.java and Example7.java.
Example5.java uses a hard-coded repository while
Example7.java uses a client connection to SAP to
retrieve the required metadata dynamically. I highly
recommend the latter approach, for several reasons:

• Setting up a hard-coded repository is difficult
and error-prone.

• You have two, potentially different, definitions
of the function interface (one in the SAP system,
and one in your server component). If the func-
tion interface changes in the SAP system, your
server component will most likely fail, unless you
remember to change the source code for the hard-
coded repository.

• When you use an SAP system configured to

support Unicode you will need to change your
source code for the hard-coded repository.

Using a normal client repository with a connec-
tion pool solves all these issues, but raises two
new questions:

1. What do I do if the function called from ABAP is
not defined in the SAP Function Builder (transac-
tion code SE37)?

2. How does using a client connection from my
server component affect the restart behavior of
my server?

The answer to the first question is that I consider
it bad practice to make function calls where the func-
tion interface is not defined in the SAP Function

Figure 3 Class FieldTexts

Access Method Description

String getColumnHeading() Returns the column heading.

int getColumnHeadingMaxLength() Returns the column heading maximum length.

String getDescription() Returns the Data Dictionary description.

String getLabelLong() Returns the long screen label.

int getLabelLongMaxLength() Returns the maximum length of the long screen label.

String getLabelMedium() Returns the medium screen label.

int getLabelMediumMaxLength() Returns the maximum length of the medium screen label.

String getLabelShort() Returns the short screen label.

int getLabelShortMaxLength() Returns the maximum length of the short screen label.

String getText() Returns the first non-empty text using the following priority list:

• getLabelLong()

• getLabelMedium()

• getLabelShort()

• getColumnHeading()

• getDescription()

Returns an empty string if all texts are empty.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.34

Builder. It is too easy to change the source code of
the function call without taking into account the
consequences in the server component. Adding the
function definition in the Function Builder does not
take very much time. Remember that you do not
have to implement the function (i.e., write ABAP
source code). All you do is define the parameters
and exceptions.

To answer the second question, I first need to
explain what happens if a server thread loses its con-
nection to the SAP system. (Remember that you have
two types of connections if you employ the approach
I suggested earlier: server connections waiting for
SAP to call, and client connections only used to
retrieve function metadata.) JCo automatically tries
to reconnect the failed server connection, starting one
second after it recognizes the failure, and doubling
the interval before each subsequent reconnect attempt
(up to a maximum value7).

But what happens to our client connection pool
for the repository? Does it also reconnect automati-
cally? Well, sort of. Without going into gruesome
implementation details, the answer is that it is pos-
sible, albeit not likely, that a metadata retrieval
request by JCo on behalf of a call from SAP to a
server will fail. Do not despair, though, there is
an easy work-around for this issue: Before starting
your server threads, but after the instantiation of the
repository, retrieve the metadata for all functions
supported by your server by calling
getFunctionTemplate() for each function. This
ensures that no further client calls to SAP will ever be
required again for as long as your server is running.

Summary of Recommendations
for Servers

� Define the interfaces of all the functions your
servers implement in the SAP Function Builder.

� Use a client connection to SAP to dynamically
retrieve the required metadata for your servers
from SAP.

� Always retrieve the function templates of all
functions available in your server at start-up time.

Repositories in Web Applications

Many customers use JCo to build HTML-based front-
ends to SAP systems. A web application written in
Java usually contains a mixture of Servlets and
JavaServer Pages.8 One application could use one or
more Servlets. How do you ensure that you only
create one repository to be shared by all Servlets? As
mentioned earlier, for connection pools this is easy to
accomplish since JCo contains a pool manager that
controls all connection pools. Listing 5 shows source
code that first checks whether a pool with a given
name already exists and, if not, creates a new one.

A similar feature for repositories is sorely lacking
from JCo. Time to rectify this and build our own
repository manager!

A Repository Manager for
JCO.Repository

Our implementation will follow the approach SAP
has used for its JCO.PoolManager class and employ
the singleton pattern9. The complete source code for
our repository manager, called
StandardRepositoryManager, can be found in
Appendix A on page 41. Before discussing portions
of the source code, let us look at the methods offered
by this class (see Figure 4).

7 This value can be changed by setting JCo property
jco.server.max_startup_delay.

8 It is, of course, possible to use only Servlets or only JavaServer Pages,
if you feel so inclined.

9 For an excellent introduction to design patterns in Java, see Mark
Grand’s three-volume series Patterns in Java, published by John
Wiley & Sons.

35For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

Listing 5: Creating a Connection Pool If Necessary

JCO.Pool pool;
pool = JCO.getClientPoolManager().getPool(POOL_NAME);
if (pool == null) {
 OrderedProperties logonProperties =
 OrderedProperties.load("/logon.properties");
 JCO.addClientPool(POOL_NAME, // pool name
 5, // maximum number of connections
 logonProperties); // connection properties
 pool = JCO.getClientPoolManager().getPool(POOL_NAME);
}

Figure 4 Class StandardRepositoryManager

Access Method

static StandardRepositoryManager
getSingleInstance()

JCO.Repository
createRepository(JCO.Pool pool)

boolean existsRepository(JCO.Pool
pool)

boolean existsRepository(String
systemId)

JCO.Repository
getRepository(JCO.Pool pool)

JCO.Repository getRepository
(JCO.Pool pool, boolean
createIfItDoesNotExist)

JCO.Repository getRepository(String
systemId)

void removeRepository(JCO.Repository
repository)

Description

Returns the singleton instance of this class.

Creates a JCO.Repository object for the SAP system to
which the pool is connected.

Checks whether a JCO.Repository object for the SAP
system to which the pool is connected already exists.

Checks whether a JCO.Repository object for the
specified SAP system already exists.

Returns the JCO.Repository object for the SAP system
to which the pool is connected.

Returns the JCO.Repository object for the SAP system
to which the pool is connected. If no repository exists
and createIfItDoesNotExist is true, a new repository is
created; otherwise an exception is thrown.

Returns the JCO.Repository object for the specified
SAP system.

Removes the specified JCO.Repository object.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.36

Listing 6: Method createRepository()

 public synchronized JCO.Repository createRepository(JCO.Pool pool)

 throws ARAsoftException {

 JCO.Client client = null;

 try {

 client = JCO.getClient(pool.getName());

 String name = client.getAttributes().getSystemID();

 JCO.releaseClient(client);

 client = null;

 if (items.containsKey(name))

 throw new ARAsoftException

 ("A repository for system '" + name + "' already exists.");

 JCO.Repository repository = new JCO.Repository

 (name, pool.getName());

 items.put(name, repository);

 return repository;

 }

 catch (Exception ex) {

 throw new ARAsoftException(ex);

 }

 finally {

 if (client != null) {

 JCO.releaseClient(client);

 }

 }

 }

Method getSingleInstance() accesses the single-
ton instance of the repository manager. The first time
it is called, the instance is created. Subsequent calls
just return the reference to the object.

Method createRepository() creates a new reposi-
tory for the pool passed as an argument. There are
two aspects in the implementation of this method
(Listing 6) that I want to draw to your attention.

In order to avoid the creation of more than
one repository per SAP system we need to assign
a unique name to each repository and keep track of
the names used so far. The names are maintained as
keys in the TreeMap items. We use the system ID
of the SAP system as the key. This system ID can
be obtained by calling the getSystemID() method of
JCO.Attributes (available on a JCO.Client object that
we get from the connection pool).

37For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

Listing 7: Creating a Pool and a Repository If Necessary

JCO.Pool pool;

IRepository repository;

pool = JCO.getClientPoolManager().getPool(POOL_NAME);

if (pool == null) {

 OrderedProperties logonProperties =

 OrderedProperties.load("/logon.properties");

 JCO.addClientPool(POOL_NAME, // pool name

 5, // maximum number of connections

 logonProperties); // connection properties

 pool = JCO.getClientPoolManager().getPool(POOL_NAME);

}

repository = StandardRepositoryManager.getSingleInstance()

 .getRepository(pool, true);

The finally clause makes sure that the client
connection is returned to the pool even if an error
occurs earlier. This is extremely important since we
would otherwise run out of usable client connections
sooner or later.

The two flavors of existsRepository() allow a
client program to check whether a repository already
exists for a given pool or SAP system ID.

We offer three flavors of the getRepository()
method. Normal applications will use the one with
two parameters (see Figure 4). It will return an exist-
ing repository and allows the application to specify
whether a new one will be created if none existed
before. Using this method in all your applications
will ensure that no unnecessary repositories will
be created.

Method removeRepository() allows you to
remove a repository from the repository manager.

We can now extend Listing 5 so that, in addition
to the connection pool, the repository is also created
if necessary (see Listing 7). This code would typi-
cally be used in the init() method of each Servlet that
needs to access SAP.

A Repository Manager for
JCoRepository

If we want to use a subclass of JCO.Repository
that provides additional metadata, we need a
slightly more intelligent repository manager. Class
ExtendedRepositoryManager (see Appendix B on
page 45 for the complete source code) fills this
requirement. Since the texts stored for each field are
language-dependent we need a different repository
for each language/SAP system combination. That is,
if the application is at all interested in the texts.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.38

Access Method

static ExtendedRepositoryManager
getSingleInstance()

JCoRepository createRepository(JCO.Pool
pool)

JCoRepository createRepository
(JCO.Pool pool, boolean ignoreLanguage)

boolean existsRepository(JCO.Pool pool)

boolean existsRepository(JCO.Pool pool,
boolean ignoreLanguage)

boolean existsRepository(String systemId)

boolean existsRepository(String systemId,
String language)

Description

Returns the singleton instance of this class.

Creates a JCoRepository object for the SAP system to
which the pool is connected. An exception is thrown if
a repository for this system exists — regardless of the
language used.

Checks whether a JCO.Repository object for the SAP
system to which the pool is connected already exists.
If ignoreLanguage is true, an exception is thrown if any
repository for this system exists. If ignoreLanguage is
false, an exception is thrown if a repository for this
system and the language used in the pool exists.

Checks whether a JCoRepository object for the SAP
system to which the pool is connected already exists —
regardless of language.

Checks whether a JCoRepository object for the SAP
system to which the pool is connected — and with the
language used by the pool (unless ignoreLanguage is
true) — already exists.

Checks whether a JCoRepository object for the specified
SAP system exists — regardless of language.

Checks whether a JCoRepository object for the specified
SAP system and language exists.

Therefore, we give the application control over
whether it needs a language-specific repository
or not.

Figure 5 shows the methods offered by the
ExtendedRepositoryManager class.

The source code in Appendix B should be quite
easy to understand, but I would like to point out why
we need the private getLanguage() method shown in
Listing 8. When connecting to SAP you do not need
to specify a language key. In that case, the default
system language defined by the administrator will be
used. JCo does not know which language that is, so a

call to the getLanguage() method of JCO.Attributes
returns a string with one blank. There are several
ways to determine the actual language, but the one
I prefer is a call to DDIF_FIELDINFO_GET since
this RFM exists in all ABAP-based SAP systems;
in other words it works not only in R/3, but also in
CRM, etc.

Conclusion

Proper use of repositories guarantees high-performance,

Figure 5 Class ExtendedRepositoryManager

39For site licenses and volume subscriptions, call 1-781-751-8699.

Repositories in the SAP Java Connector (JCo)

Listing 8: The getLanguage() Utility Method

static private String getLanguage(JCO.Client client,
 IRepository repository)
 throws Exception {
 String lang = client.getAttributes().getLanguage();
 if (lang == null || lang.equals("") || lang.equals(" ")) {
 JCO.Function function =
 repository.getFunctionTemplate("DDIF_FIELDINFO_GET")
 .getFunction();
 function.getImportParameterList().setValue("DFIES", "TABNAME");
 function.getImportParameterList().setValue("LANGU", "FIELDNAME");
 client.execute(function);
 lang = function.getTableParameterList().getTable("DFIES_TAB")
 .getString("LANGU");
 }
 return lang;
}

Description

Returns the JCoRepository object for the SAP system
to which the pool is connected. Throws an exception if
no repository at all exists for this system. Throws an
exception if ignoreLanguage is false and no repository
for the language used in the pool exists.

Returns the JCoRepository object for the SAP system
to which the pool is connected. If no repository exists
and createIfItDoesNotExist is true, a new repository
is created; otherwise an exception is thrown. If
ignoreLanguage is true, the language used in the pool
is ignored.

Returns the JCoRepository object for the SAP
system to which the pool is connected. Ignores the
language.

Returns the JCoRepository object for the SAP system
to which the pool is connected. If no repository exists
and createIfItDoesNotExist is true, a new repository is
created; otherwise an exception is thrown. Ignores the
language.

Returns the JCoRepository object for the specified SAP
system. Ignores the language and throws an exception
if no repository for this system exists.

Removes the specified JCoRepository object.

Access Method

JCoRepository getRepository (boolean
ignoreLanguage, JCO.Pool pool)

JCoRepository getRepository (boolean
ignoreLanguage, JCO.Pool pool, boolean
createIfItDoesNotExist)

JCoRepository getRepository(JCO.Pool pool)

JCoRepository getRepository (JCO.Pool pool,
boolean createIfItDoesNotExist)

JCoRepository getRepository(String systemId)

void removeRepository(JCoRepository
repository)

Figure 5 (continued)

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.40

stable applications. For all multi-user applications, a
repository manager relieves the applications from
having to deal with the issue of creating unnecessary
repositories.

Thomas G. Schuessler is the founder of ARAsoft
(www.arasoft.de), a company offering products,
consulting, custom development, and training to
a worldwide base of customers. The company
specializes in integration between SAP and non-
SAP components and applications. ARAsoft offers
various products for BAPI-enabled programs on
the Windows and Java platforms. These products
facilitate the development of desktop and Internet
applications that communicate with R/3. Thomas
is the author of SAP’s BIT525 “Developing BAPI-
enabled Web Applications with Visual Basic”
and BIT526 “Developing BAPI-enabled Web
Applications with Java” classes, which he teaches
in Germany and in English-speaking countries.
Thomas is a regularly featured speaker at SAP
TechEd and SAPPHIRE conferences. Prior to
founding ARAsoft in 1993, he worked with SAP
AG and SAP America for seven years. Thomas
can be contacted at thomas.schuessler@sap.com
or at tgs@arasoft.de.

41For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix A: Class StandardRepositoryManager

Appendix A: Class
StandardRepositoryManager

package de.arasoft.sap.jco;

import java.util.TreeMap;
import com.sap.mw.jco.*;
import de.arasoft.java.ARAsoftException;

/*
 * Copyright (c) 2002 ARAsoft GmbH
 * All Rights Reserved.
 */

/**
 * A singleton object that manages JCO.Repository objects.
 *
 * @author ARAsoft GmbH
 * @version 2.5
 * @since 2.5
 */

public class StandardRepositoryManager {

 static private StandardRepositoryManager repositoryManager = null;
 static private TreeMap items = null;

 protected StandardRepositoryManager() {
 items = new TreeMap();
 }

/**
 * Returns the singleton instance of this class.
 * @return The singleton instance.
 */
 static public synchronized StandardRepositoryManager getSingleInstance() {
 if (repositoryManager == null)
 repositoryManager = new StandardRepositoryManager();
 return repositoryManager;
 }

/**

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.42

 * Creates a JCO.Repository object for the SAP system to which the pool is
 * connected.
 * Throws an exception if a repository for this system already exists.
 * @return The created repository object.
 * @param pool The JCO.Pool object.
 */
 public synchronized JCO.Repository createRepository(JCO.Pool pool)
 throws ARAsoftException {
 JCO.Client client = null;
 try {
 client = JCO.getClient(pool.getName());
 String name = client.getAttributes().getSystemID();
 JCO.releaseClient(client);
 client = null;
 if (items.containsKey(name))
 throw new ARAsoftException
 ("A repository for system '" + name + "' already exists.");
 JCO.Repository repository = new JCO.Repository(name, pool.getName());
 items.put(name, repository);
 return repository;
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

/**
 * Checks whether a JCO.Repository object for the specified SAP system already
 * exists.
 * @return Does a repository for the specified SAP system exist?
 * @param systemId The system ID of the SAP system.
 */
 public boolean existsRepository(String systemId) {
 JCO.Repository repository = (JCO.Repository) items.get(systemId);
 return (repository != null);
 }

/**
 * Checks whether a JCO.Repository object for the SAP system to which the pool
 * is connected already exists.
 * @return Does a repository for this system exist?
 * @param pool The JCO.Pool object.
 */
 public boolean existsRepository(JCO.Pool pool) throws ARAsoftException {

43For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix A: Class StandardRepositoryManager

 JCO.Client client = null;
 try {
 client = JCO.getClient(pool.getName());
 String name = client.getAttributes().getSystemID();
 JCO.releaseClient(client);
 client = null;
 return this.existsRepository(name);
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

/**
 * Returns the JCO.Repository object for the SAP system to which the pool
 * is connected.
 * Throws an exception if no repository exists.
 * @return The repository object.
 * @param pool The JCO.Pool object.
 */
 public synchronized JCO.Repository getRepository(JCO.Pool pool)
 throws ARAsoftException {
 return this.getRepository(pool, false);
 }

/**
 * Returns the JCO.Repository object for the SAP system to which the pool is
 * connected. If no repository exists and <code>createIfItDoesNotExist</code>
 * is <code>true</code>, a new repository is created, otherwise an exception
 * is thrown.
 * @return The repository object.
 * @param pool The JCO.Pool object.
 * @param createIfItDoesNotExist Should a new repository be created if none
 * exists?
 */
 public synchronized JCO.Repository getRepository
 (JCO.Pool pool, boolean createIfItDoesNotExist)
 throws ARAsoftException {
 JCO.Client client = null;
 try {
 client = JCO.getClient(pool.getName());
 String name = client.getAttributes().getSystemID();
 JCO.releaseClient(client);
 client = null;

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.44

 try {
 return this.getRepository(name);
 }
 catch (ARAsoftException ax) {
 if (createIfItDoesNotExist) {
 return this.createRepository(pool);
 } else {
 throw ax;
 }
 }
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

/**
 * Returns the JCO.Repository object for the specified SAP system.
 * If no repository exists an exception is thrown.
 * @return The repository object.
 * @param systemId The system ID of the SAP system.
 */
 public synchronized JCO.Repository getRepository(String systemId)
 throws ARAsoftException {
 JCO.Repository repository = (JCO.Repository) items.get(systemId);
 if (repository == null)
 throw new ARAsoftException
 ("No repository exists for system '" + systemId + "'.");
 return repository;
 }

/**
 * Removes the specified JCO.Repository object.
 * @param repository The repository to be removed.
 */
 public synchronized void removeRepository(JCO.Repository repository) {
 String name = repository.getName();
 if (items.containsValue(repository)) {
 items.remove(name);
 }
 }
}

45For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix B: Class ExtendedRepositoryManager

Appendix B: Class
ExtendedRepositoryManager

package de.arasoft.sap.jco;

import java.util.Hashtable;
import java.util.TreeMap;
import java.util.Vector;
import com.sap.mw.jco.*;
import de.arasoft.java.ARAsoftException;
import de.arasoft.sap.jco.JCoRepository;

/*
 * Copyright (c) 2002 ARAsoft GmbH
 * All Rights Reserved.
 */

/**
 * A singleton object that manages JCoRepository objects.
 *
 * @author ARAsoft GmbH
 * @version 2.5
 * @since 2.5
 */

public class ExtendedRepositoryManager {

 static private ExtendedRepositoryManager repositoryManager = null;
 static private TreeMap items = null;
 static private Hashtable systems = null;

 static private final String EXCEPTION_1A =
 "No repository exists for system '";
 static private final String EXCEPTION_1B =
 "'.";

 protected ExtendedRepositoryManager() {
 items = new TreeMap();
 systems = new Hashtable();
 }

/**

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.46

 * Returns the singleton instance of this class.
 * @return The singleton instance.
 */
 static public synchronized ExtendedRepositoryManager getSingleInstance() {
 if (repositoryManager == null)
 repositoryManager = new ExtendedRepositoryManager();
 return repositoryManager;
 }

/**
 * Creates a JCoRepository object for the SAP system to which the pool is
 * connected. An exception is thrown if a repository for this system exists -
 * regardless of the language used.
 * @return The created repository object.
 * @param pool The JCO.Pool object.
 */
 public synchronized JCoRepository createRepository(JCO.Pool pool)
 throws ARAsoftException {
 return this.createRepository(pool, true);
 }

/**
 * Creates a JCoRepository object for the SAP system to which the pool is
 * connected. If <code>ignoreLanguage</code> is <code>true</code>, an
 * exception is thrown if any repository for this system exists.
 * If <code>ignoreLanguage</code> is <code>false</code>, an
 * exception is thrown if a repository for this system and the language used
 * in the pool exists.
 * @return The created repository object.
 * @param pool The JCO.Pool object.
 * @param ignoreLanguage Should the language be ignored?
 */
 public synchronized JCoRepository createRepository
 (JCO.Pool pool, boolean ignoreLanguage) throws ARAsoftException {
 JCO.Client client = null;
 JCoRepository repository = null;
 try {
 client = JCO.getClient(pool.getName());
 String name = client.getAttributes().getSystemID();
 if (ignoreLanguage) {
 if (systems.containsKey(name)) {
 throw new ARAsoftException
 ("A repository for system '" + name + "' already exists.");
 }
 repository = new JCoRepository(pool);
 String lang = getLanguage(client, repository);
 JCO.releaseClient(client);
 client = null;
 Vector languages = new Vector(1);

47For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix B: Class ExtendedRepositoryManager

 languages.add(lang);
 systems.put(name, languages);
 items.put(createKey(name, lang), repository);
 return repository;
 } else { // language not ignored
 if (systems.containsKey(name)) {
 Vector languages = (Vector) systems.get(name);
 repository = (JCoRepository) items.get
 (createKey(name, (String)languages.get(0)));
 String lang = getLanguage(client, repository);
 JCO.releaseClient(client);
 client = null;
 if (containsLanguage(languages, lang))
 throw new ARAsoftException
 ("A repository for system '" + name + "' and language '"
 + lang + "' already exists.");
 else {
 languages.add(lang);
 repository = new JCoRepository(pool);
 items.put(createKey(name, lang), repository);
 return repository;
 }
 } else { // no repository for this system at all
 repository = new JCoRepository(pool);
 String lang = this.getLanguage(client, repository);
 JCO.releaseClient(client);
 client = null;
 Vector languages = new Vector(1);
 languages.add(lang);
 systems.put(name, languages);
 items.put(createKey(name, lang), repository);
 return repository;
 }
 }
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

/**
 * Checks whether a JCoRepository object for the specified SAP system exists -
 * regardless of language.
 * @return Does a repository for this system exist?

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.48

 * @param systemId The system ID of the SAP system.
 */
 public boolean existsRepository(String systemId) {
 return systems.containsKey(systemId);
 }

/**
 * Checks whether a JCoRepository object for the specified SAP system and
 * language exists.
 * @return Does a repository for this system and language exist?
 * @param systemId The system ID of the SAP system.
 * @param language The 2-byte language identifier.
 */
 public boolean existsRepository(String systemId, String language) {
 boolean found = systems.containsKey(systemId);
 if (! found) return false;
 return containsLanguage((Vector)systems.get(systemId), language);
 }

/**
 * Checks whether a JCoRepository object for the SAP system to which the pool
 * is connected already exists - regardless of language.
 * @return Does a repository for this system exist?
 * @param pool The JCO.Pool object.
 */
 public boolean existsRepository(JCO.Pool pool) throws ARAsoftException {
 return this.existsRepository(pool, true);
 }

/**
 * Checks whether a JCoRepository object for the SAP system to which the pool
 * is connected - and with the language used by the pool
 * (unless <code>ignoreLanguage</code> is <code>true</code>) - already exists.
 * @return Does a repository for this system exist?
 * @param pool The JCO.Pool object.
 * @param ignoreLanguage Should the language be ignored?
 */
 public boolean existsRepository(JCO.Pool pool, boolean ignoreLanguage)
 throws ARAsoftException {
 JCO.Client client = null;
 try {
 client = JCO.getClient(pool.getName());
 String name = client.getAttributes().getSystemID();
 boolean found = existsRepository(name);
 if (! found) return false;
 if (ignoreLanguage) {
 return true;
 } else {
 JCoRepository repository = getRepository(true, pool, false);

49For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix B: Class ExtendedRepositoryManager

 String lang = getLanguage(client, repository);
 return existsRepository(name, lang);
 }
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

/**
 * Returns the JCoRepository object for the SAP system to which the pool
 * is connected. Ignores the language.
 * Throws an exception if no repository exists.
 * @return The repository object.
 * @param pool The JCO.Pool object.
 */
 public synchronized JCoRepository getRepository(JCO.Pool pool)
 throws ARAsoftException {
 return this.getRepository(true, pool, false);
 }

/**
 * Returns the JCoRepository object for the SAP system to which the pool is
 * connected. If no repository exists and <code>createIfItDoesNotExist</code>
 * is <code>true</code>, a new repository is created, otherwise an exception
 * is thrown. Ignores the language.
 * @return The repository object.
 * @param pool The JCO.Pool object.
 * @param createIfItDoesNotExist Should a new repository be created if none
 * exists?
 */
 public synchronized JCoRepository getRepository
 (JCO.Pool pool, boolean createIfItDoesNotExist)
 throws ARAsoftException {
 return this.getRepository(true, pool, createIfItDoesNotExist);
 }

/**
 * Returns the JCoRepository object for the SAP system to which the pool is
 * connected. Throws an exception if no repository at all exists for this
 * system. Throws an exception if <code>ignoreLanguage</code> is
 * <code>false</code> and no repository for the language used in the pool
 * exists.
 * @return The repository object.

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.50

 * @param ignoreLanguage Should the language be ignored?
 * @param pool The JCO.Pool object.
 */
 public synchronized JCoRepository getRepository
 (boolean ignoreLanguage, JCO.Pool pool) throws ARAsoftException {
 return this.getRepository(ignoreLanguage, pool, false);
 }

/**
 * Returns the JCoRepository object for the SAP system to which the pool is
 * connected. If no repository exists and <code>createIfItDoesNotExist</code>
 * is <code>true</code>, a new repository is created, otherwise an exception
 * is thrown. If <code>ignoreLanguage</code> is <code>true</code>, the
 * language used in the pool is ignored.
 * @return The repository object.
 * @param ignoreLanguage Should the language be ignored?
 * @param pool The JCO.Pool object.
 * @param createIfItDoesNotExist Should a new repository be created if none
 * exists?
 */
 public synchronized JCoRepository getRepository
 (boolean ignoreLanguage, JCO.Pool pool, boolean createIfItDoesNotExist)
 throws ARAsoftException {
 JCO.Client client = null;
 try {
 client = JCO.getClient(pool.getName());
 String name = client.getAttributes().getSystemID();
 boolean found = systems.containsKey(name);
 if (found && ignoreLanguage) {
 return this.getRepository(name);
 }
 if (! found) {
 if (createIfItDoesNotExist) {
 return this.createRepository(pool, false);
 } else {
 throw new ARAsoftException(EXCEPTION_1A + name + EXCEPTION_1B);
 }
 }
 JCoRepository repository = this.getRepository(name);
 String lang = getLanguage(client, repository);
 Vector languages = (Vector) systems.get(name);
 found = containsLanguage(languages, lang);
 if (found) {
 return (JCoRepository) items.get(createKey(name, lang));
 } else if (createIfItDoesNotExist) {
 return this.createRepository(pool, false);
 } else {
 throw new ARAsoftException(EXCEPTION_1A + name + EXCEPTION_1B);
 }

51For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix B: Class ExtendedRepositoryManager

 }
 catch (ARAsoftException ax) {
 throw ax;
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

/**
 * Returns the JCoRepository object for the specified SAP system. Ignores the
 * language and throws an exception if no repository for this system exists.
 * @return The repository object.
 * @param systemId The system ID of the SAP system.
 */
 public synchronized JCoRepository getRepository(String systemId)
 throws ARAsoftException {
 boolean found = systems.containsKey(systemId);
 if (! found)
 throw new ARAsoftException(EXCEPTION_1A + systemId + EXCEPTION_1B);
 Vector languages = (Vector)systems.get(systemId);
 return (JCoRepository) items.get
 (createKey(systemId, (String)languages.get(0)));
 }

/**
 * Removes the specified JCoRepository object.
 * @param repository The repository to be removed.
 */
 public synchronized void removeRepository(JCoRepository repository)
 throws ARAsoftException {
 JCO.Client client = null;
 String poolName = repository.getPoolNames()[0];
 try {
 client = JCO.getClient(poolName);
 String name = client.getAttributes().getSystemID();
 String lang = getLanguage(client, repository);
 if (items.containsValue(repository)) {
 items.remove(createKey(name, lang));
 Vector languages = (Vector)systems.get(name);
 if (languages.size() == 1) {
 systems.remove(name);
 } else {
 languages.remove(lang);

SAP Professional Journal March/April 2003

www.SAPpro.com ©2003 SAP Professional Journal. Reproduction prohibited. All rights reserved.52

 }
 }
 }
 catch (Exception ex) {
 throw new ARAsoftException(ex);
 }
 finally {
 if (client != null) {
 JCO.releaseClient(client);
 }
 }
 }

 static private boolean containsLanguage(Vector languages, String lang) {
 String s = null;
 int size = languages.size();
 for (int i = 0; i < size; i++) {
 s = (String) languages.get(i);
 if (s.equals(lang)) return true;
 }
 return false;
 }

 static private String createKey(String systemId, String lang) {
 return systemId + ":" + lang;
 }

 static private String getLanguage(JCO.Client client, IRepository repository)
 throws Exception {
 String lang = client.getAttributes().getLanguage();
 if (lang == null || lang.equals("") || lang.equals(" ")) {
 JCO.Function function =
 repository.getFunctionTemplate("DDIF_FIELDINFO_GET").getFunction();
 function.getImportParameterList().setValue("DFIES", "TABNAME");
 function.getImportParameterList().setValue("LANGU", "FIELDNAME");
 client.execute(function);
 lang = function.getTableParameterList().getTable("DFIES_TAB")
 .getString("LANGU");
 }
 return lang;
 }
}

