
85For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

Calling BAPIs
from the SAP Web
Application Server
Thomas G. Schuessler

Thomas G. Schuessler is

the founder of ARAsoft, a

company offering products,

consulting, custom

development, and training

to customers worldwide,

specializing in integration

between SAP and non-SAP

components and applications.

Thomas is the author of

SAP’s BIT525 and BIT526

classes. Prior to founding

ARAsoft in 1993, he worked

with SAP AG and SAP

America for seven years.

(complete bio appears on page 104)

The SAP Web Application Server is a full-blown development

environment for building state-of-the-art web applications. In release

6.10, you can build your applications in ABAP, and starting with 6.20

you can choose between ABAP and Java. Some of the web applications

that you want to build will be unrelated to the SAP application

components, but in many cases you will need some access to SAP

application functionality. This is usually accomplished by calling

BAPIs in R/3, APO, BW, CRM, and other SAP application components.

This article will show you, step-by-step, how to find the relevant

BAPI information in an SAP target system1 (using a 4.6C R/3 system as

an example), generate the client ABAP code for the BAPI calls in the

SAP Web Application Server, and incorporate the generated code into

a BSP2 application written in ABAP using SAP Web Application Server

release 6.10. A complete (albeit simple) sample application that

displays customer information from R/3 in a BSP page will be discussed.

I presume that you are already somewhat familiar with ABAP,

BSP applications, and BAPIs so that we can concentrate on how to

use BAPIs in BSP applications.3

The BAPI Browser

The SAP Web Application Server contains a BAPI Browser that can

1 That is, the system in which you want to invoke BAPIs from the Web Application Server.

2 BSP stands for Business Server Pages. A BSP page is an HTML page with embedded ABAP

scripting.

3 For introductions to BSP applications and BAPIs, refer to the appropriate articles in this

publication (see page 105 for a listing) or the SAP online documentation.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.86

generate ABAP source code for BAPIs and other

RFC-enabled Function Modules (RFMs). This

BAPI Browser has a limited scope4 (viz., list

BAPIs and generate ABAP code). Hence it is

advisable to first look up the BAPI metadata in

the target system (R/3 in our case) so that is

where we will start.

Exploring the BAPIs

in the Target System

The most convenient way to find out about the

BAPIs of a target system is to use the BAPI Explorer

(transaction code “BAPI”). Figure 1 shows the

Customer.GetDetail1 BAPI with its parameters.

Here are the steps you should execute in order

to be ready for calling a BAPI from the SAP Web

Application Server:

• Check that the object type to which the BAPI

belongs is not obsolete.5 BAPIs from obsolete

object types should normally not be used.

Usually, when SAP declares an object type

obsolete, a new object type is created. If you

cannot find the new object type by browsing the

object type list in the BAPI Explorer, check the

documentation of the BAPIs of the obsolete

object type for hints.

• Check that the object type is not delegated.6 If it

is, find out to which object type, and continue

your investigation with that one.

• Read the documentation of the object type7

New to BAPIs?

If you are not that familiar with the BAPIs yet, here is a brief introduction:

BAPIs (Business Application Programming Interfaces) are the official interfaces to SAP for synchronous

connectivity. BAPIs are defined in the SAP Business Object Repository (BOR) as methods of object

types. The Customer object type, for instance, has methods (BAPIs) like CreateFromData, GetDetail1,

and GetSalesAreas. So there is a certain amount of object-orientation. But the BAPIs are not

implemented as methods of ABAP classes, since the object-oriented features of ABAP were added after

release 3.1 in which we encountered the first few BAPIs. Instead, BAPIs are implemented as simple

RFC-enabled Function Modules (RFMs). When you want to invoke a BAPI, you simply call the function

module (the RFM) that implements it. It is still convenient to think about the BAPIs in an object-oriented

fashion at design time, though. And the best way to find BAPIs, the BAPI Explorer*, represents the

BAPIs that way, too.

* More about the BAPI Explorer below.

7 Not every object type comes with documentation.4 Compared to the BAPI Explorer (transaction code “BAPI”).

5 The current version of the BAPI Explorer does not show whether

an object type is obsolete, but you can use an external metadata

server to access this information. In most cases, though, all BAPIs

of an obsolete object type will be flagged as obsolete as well

(see below). But there are exceptions to this rule. For your

convenience, these are the obsolete object types in 4.6C: Creditor,

Debtor, InvestmentProgram, Qualification, RepManConfirmation.

(Qualification is obsolete, but its one BAPI is not. This is clearly

an oversight by SAP.)

6 If you do not know the concept of delegation in the BOR, you should

read my BOR article in the January/February 2001 issue of this

publication.

87For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

(in this case Customer). This should give you

some background as to the functional scope of the

object type.

• Check that the BAPI is released. Unreleased

BAPIs should only be used if you absolutely need

the new functionality and are willing to change

your application when SAP makes inconsistent

changes to the BAPI.

• Check that the BAPI is not a dialog BAPI.

Dialog BAPIs are usually only used in

applications run in SAPGUI.

• Check that the BAPI is not obsolete. If it is,

look for a BAPI with a name that is almost

the same, but ends with a (higher) number.

Customer.GetDetail, for example, is obsolete and

has been superceded by Customer.GetDetail1. In

some cases, you may decide to use an obsolete

BAPI because it is easier to deal with. I still

prefer SalesOrder.CreateFromDat1 over

Figure 1 The BAPI Explorer in R/3

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.88

SalesOrder.CreateFromDat2, for instance.

Obsolete BAPIs are guaranteed to continue to

exist (and work) for at least two functional

releases, and in many cases are still around long

after that.

• Read the documentation for the BAPI itself and

all of its parameters. In some cases, all the

required documentation is attached to the BAPI,

in others, the individual parameters have their

own documentation.

• Check the important attributes of all parameters.

A parameter can be mandatory or optional. It

can be a simple field, a structure, or a table. A

parameter can be passed to a BAPI (“import”),

sent back from the BAPI (“export”), or both. For

a table parameter, the information about import/

export exists only on the BOR level, but not on

the level of the implementing RFM.

• Decide which parameters will be important for

your specific application scenario.

Figure 2 A BAPI Parameter

89For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

• Look up the RFM parameter names for all the

BAPI’s parameters that you are interested in. See

below for details.

• Find out which fields within each structure

or table parameter you are interested in.

Figure 2 shows the “CompanyData” parameter

of Customer.GetDetail1. After double-clicking

on the “Dictionary reference” field, you see

the data dictionary information depicted in

Figure 3.

• For each field you are interested in, check

whether input help is available (cf. the column

“Origin of the input help” in Figure 3). We will

discuss the relevance of this later.

• For each field you are interested in, check

whether a conversion routine is used. You have

to drill down to the domain8 underlying the field

Figure 3 Dictionary Information

8 Remember: Fields are (usually) based on data elements, which in turn

are based on domains. If you are not familiar with these terms in

SAP, read the online documentation of the SAP data dictionary.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.90

to see this. Figure 4 shows the domain on which

field “LANGU” is based. Note that there is a

conversion routine defined, viz. “ISOLA”. More

details on this also later.

Parameter Information in the

Dictionary

For each field that you want to use in your

application, you obviously want to know the data

type and length information. But I mentioned earlier

that you should also check whether a field has input

help and/or a conversion routine defined. Let me

explain why.

Many fields in SAP are codes (country codes,

currency codes, and many more). When a BAPI

returns a code to the client program it usually does

not supply the associated description as well.

Customer.GetDetail1, for instance, returns the

country code for the customer, but not the name of

the country. When displaying information in your

web page you usually want to show the country name

in addition to or even instead of the code since users

cannot be expected to have memorized all codes in

the SAP system. If input help is available for a field

you can call the Helpvalues.GetList BAPI to get the

description text for a code.

Similarly, when a user has to enter a code, it

makes sense to supply a list of all available choices.

Helpvalues.GetList can be used to provide the

required information.

For some fields, there are two representations, an

internal one used by the SAP applications and stored

Figure 4 Domain Information

91For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

in the database, and an external one utilized in

SAPGUI. Conversion routines defined on the

domain level of the data dictionary convert between

the two formats. Most BAPIs only use the internal

representation. When passing an all-numeric

customer code to a BAPI, for example, the code has

to have leading zeroes, which the user normally does

not want to have to type. If a conversion routine is

defined for a field, you can use the conversion BAPIs

of the BapiService object type to convert between the

internal and external formats.

The sample program discussed later will

exemplify both the input help and conversion

routine issues.

Different Parameter Names

The parameter names of a BAPI in the BOR (cf.

Figure 2) use mixed case. The parameter names of

an RFM (see Figure 5, which shows the RFM for

Figure 5 The RFM for BAPI Customer.GetDetail1

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.92

the Customer.GetDetail1 BAPI from Figure 2) use

upper case. And if you compare the two figures more

closely, you will notice that there are differences

beyond that. Figure 2 shows that there is a parameter

called “DistributionChannel”. Where is this

parameter in Figure 5? It seems to be called

“PI_DISTR_CHAN” here. This is due to the fact that

in order to make upper case names more readable,

most developers use underscores to separate different

parts of the name. SAP allows the developer of a

BAPI to redefine the parameter names of an RFM

when it is added to the BOR as a BAPI.

Since the client code calling the BAPI in the

Web Application Server actually calls the RFM that

implements the BAPI, you need to know the RFM

parameter names.

Generating ABAP Code

for a BAPI

After you have identified and examined the BAPIs

for your application you will now turn to the SAP

Figure 6 Invoking the BAPI Browser

93For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

Web Application Server to build your application and

invoke said BAPIs. To facilitate the latter, the SAP

Web Application Server offers a BAPI Browser that

can generate code for BAPIs and other RFMs9. This

is very convenient because otherwise you would have

to type all the type and data definitions yourself.

Figure 6 is a screenshot of invoking the BAPI

Browser in the 6.10 Web Application Builder.

A new window is opened, which is shown in

Figure 7. In the left pane of this window, you will

initially see a list of all SAP systems defined as RFC

destinations in transaction code “SM59”. In Figure 7,

we have already scrolled down to our chosen target

system (“T71”) and opened the list of BAPIs. This

list is very different from what we have seen earlier

in the SAP BAPI Explorer. Instead of an object-

oriented view, the BAPI Browser displays a simple,

alphabetical list of the RFMs implementing the

BAPIs. Since you have explored all relevant

metadata earlier (see above), this does not present a

Figure 7 The List of BAPIs in the BAPI Browser

9 In this article, we will only deal with BAPIs.

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.94

problem. All you have to do is remember (or look up

again) the names of the RFMs underneath the BAPIs

you want to use and locate them in the list.

In Figure 8, I have scrolled down to the first

BAPI we will need for our sample application,

Customer.GetDetail1, implemented by RFM

“BAPI_CUSTOMER_GETDETAIL1”. Then I

double-clicked on the RFM name in order to generate

the ABAP source code in the two panels on the right

side of the window. The upper panel contains type

definitions for all structure and table parameters of

the BAPI, the lower panel data definitions and sample

code to execute the BAPI. You could copy all type

definitions to the appropriate area of your BSP page,

but it is probably better to copy only the ones you

need.10 Since you have examined each required BAPI

and figured out which parameters you want to use this

will be easy. The same applies to the data definitions

in the lower panel. Copying only the required ones

will make it easier to understand the completed

application later on.

Since the BAPI Browser window is modal (i.e.,

you cannot work in the Web Application Builder

before you close the BAPI Browser) it is best to

Figure 8 Generating Source Code for a BAPI

10 This should make future maintenance of your application easier.

95For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

copy the contents of the upper and lower panes into a

local editor (Notepad, for example) so that you do

not have to return to the BAPI Browser again for the

same BAPI.

Building the Sample Application

Our sample application has a humble goal: let the

user enter a customer code and display some

information for that customer. Since we just finished

generating ABAP source code for our main BAPI

call, let us utilize the generated code before

discussing other details of the application.

Each BSP page has an area for type definitions.

Select the type definitions you require and paste them

into that area (see Figure 9).

The BAPI invocation itself needs to happen

when the user has entered the customer code and

pressed the submit button of the page. In terms of

a BSP application this means that we will call the

BAPI from within the InputProcessing event of

the BSP page.

Figure 9 Type Definitions for the BSP Page

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.96

Figure 10 lists the ABAP source code for the first

version of our sample program. The data definitions

were copied (selectively) from the code generated by

the BAPI Browser. The function call was copied and

subsequently modified. Unused parameters were

discarded and the “CUSTOMERNO” parameter set to

the customer code entered by the user (more about

that in a minute). Finally, after calling the BAPI, we

copy some of the data into fields used in the actual

HTML page.

This page is defined in the layout area of the BSP

page. Listing 1 contains the complete page definition

Figure 10 Code for the InputProcessing Event

with its HTML tags and ABAP scripting parts. The

latter are identified by the “<% %>” tags. As you

can see there is precious little actual scripting in this

page. All we do is copy some variable data into the

resulting HTML stream.11

Listing 1: Layout Coding

<%@page language="abap"%>
<html>
 <head>

11 It is highly recommended that you have as little ABAP code in

the layout as possible since in a normal, i.e., more sophisticated,

application the page is designed by a web designer who normally does

not know ABAP and does not like to have to work around tons of

code. Obviously, most applications will require more scripting in the

layout than our sample application, but it should be the minimum

possible under the circumstances, nevertheless. All application logic

belongs in the other events of the page or even — for more complex

applications — in ABAP classes.

97For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

 <link rel="stylesheet" href="../../sap/public/bc/bsp/styles/sapbsp.css">
 <title> Display Customer Data </title>
 </head>
 <body class="bspBody1">

 <%=ErrorMessage%>
 <form>
 <table width="100%" cellspacing="0" cellpadding="0" border="0">

 <tr>
 <td> Customer No.: </td> <td>
 <input type="text"
 name="CustNum"
 size="10"
 value="<%=CustNum%>">
 </td> <td>
 <input type="submit"
 name="OnInputProcessing"
 value="Retrieve Data">
 </td>
 </tr>

 <tr>
 <td> Company Name: </td>
 <td> <%=CompanyName%> </td>
 </tr>

 <tr>
 <td> City: </td>
 <td> <%=City%> </td>
 </tr>

 <tr>
 <td> Country: </td>
 <td> <%=Country%> </td>
 </tr>

 </table>
 </form>

 </body>
</html>

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.98

Figure 11 The Page Attributes

One more thing before we are ready to test:

we need to define the page attributes, as shown in

Figure 11.

“CustNum” is the customer code entered by the

user. It is marked as an Auto attribute so that it is

automatically copied from the HTML form field to

our variable.

“City”, “CompanyName”, and “Country” are

used to copy the pertinent information from the BAPI

parameter to the HTML code. See Figure 10 for the

ABAP code that fills these fields after the BAPI call.

“ErrorMessage” is used to display the text of the

error message that the BAPI has returned. This field

will be empty after a successful BAPI call.

We are ready to go. After activating our BSP

application, we invoke the test function of the Web

Application Server and see Figure 12 in the browser

of our choice.

Figure 12 The Sample Application Ready to Go

Figure 13 The Sample Application Works

After entering customer code “0000001400” and

pressing the “Retrieve Data” button, we see the result

shown in Figure 13. So far, so good. Most users —

especially those “spoiled” by SAPGUI — would not

dream of entering leading zeroes for a customer code.

Figure 14 contains the sorry result of omitting the

leading zeroes. An error message is all we get.

99For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

Figure 14 The Sample Application
Does Not Work

Figure 15 Conversion Added to the InputProcessing Code

Earlier, I introduced the subject of conversion

routines. Now would be a good time to utilize this

knowledge and call a conversion BAPI before calling

Customer.GetDetail1.

Figure 15 contains the second iteration of the

code for the InputProcessing event. I called the

BAPI Browser again to generate code for

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.100

Listing 2: Complete InputProcessing Coding

data PE_COMPANYDATA type
 BAPIKNA106 .
data RETURN type
 BAPIRETURN1 .
data SELECTION_FOR_HELPVALUES type
 SELECTION_FOR_HELPVALUES .
data HELPVALUES type
 HELPVALUES .

data: wa_HELPVALUES LIKE LINE OF HELPVALUES.
data: wa_SELECTION_FOR_HELPVALUES LIKE LINE OF SELECTION_FOR_HELPVALUES.
data: t_data TYPE TABLE OF bapiconvrs.
data: wa_data LIKE LINE OF t_data.

wa_data-objname = 'Customer'.
wa_data-method = 'Create'.
wa_data-parameter = 'Customer'.
wa_data-ext_format = CustNum.
APPEND wa_data TO t_data.

CALL FUNCTION 'BAPI_CONVERSION_EXT2INT1'
 DESTINATION 'T71'

“BAPI_CONVERSION_EXT2INT1” (the BAPI

that converts from the external to the internal

representation used by Customer.GetDetail1 and

most other BAPIs). Explaining the strange values

I pass to the fields in work area “wa_data” is

unfortunately beyond the scope of this article.

The customer code entered by the user is

converted by the conversion routine called by the

conversion BAPI. The result has the required leading

zeroes and after passing the converted value to

Customer.GetDetail1 our application also works

where Figure 12 failed.

We could be happy now, but are we? Look at

Figure 13 again. The country value displayed is the

code and nothing but the code. Do you expect your

users to remember all 238 country codes defined in a

vanilla R/3 system? Helpvalues.GetList will allow us

Figure 16 The Country Name Added to the Page

12 For details on using the Helpvalues object type, see my article on this

subject in the March/April 2002 issue of this publication.

to do better and display the code and the name of the

country.

Figure 16 shows the completed application in

action and Listing 2 contains the complete source

code for the InputProcessing event.12 In Listing 3,

you will find all type definitions used by the sample

application.

101For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

 TABLES
 data = t_data.

READ TABLE t_data INDEX 1 INTO wa_data.
CustNum = wa_data-int_format.

CALL FUNCTION 'BAPI_CUSTOMER_GETDETAIL1'
 DESTINATION 'T71'
 EXPORTING
 CUSTOMERNO = CustNum
 IMPORTING
 PE_COMPANYDATA = PE_COMPANYDATA
 RETURN = RETURN.

ErrorMessage = RETURN-MESSAGE.
CompanyName = PE_COMPANYDATA-NAME.
City = PE_COMPANYDATA-CITY.

wa_SELECTION_FOR_HELPVALUES-SELECT_FLD = 'LAND1'.
wa_SELECTION_FOR_HELPVALUES-SIGN = 'I'.
wa_SELECTION_FOR_HELPVALUES-OPTION = 'EQ'.
wa_SELECTION_FOR_HELPVALUES-LOW = PE_COMPANYDATA-COUNTRY.
APPEND wa_SELECTION_FOR_HELPVALUES TO SELECTION_FOR_HELPVALUES.

CALL FUNCTION 'BAPI_HELPVALUES_GET'
 DESTINATION 'T71'
 EXPORTING
 OBJNAME = 'Customer'
 METHOD = 'GetDetail1'
 PARAMETER = 'CompanyData'
 FIELD = 'COUNTRY'
 TABLES
 SELECTION_FOR_HELPVALUES = SELECTION_FOR_HELPVALUES
 HELPVALUES = HELPVALUES.

READ TABLE HELPVALUES INDEX 1 INTO wa_HELPVALUES.

Country = wa_HELPVALUES-HELPVALUES.

Listing 3: Type Definitions

types: begin of BAPIKNA106 ,
 TITLE(000030) type C ,
 TITLE_KEY(000004) type C ,
 NAME(000040) type C ,

(continued on next page)

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.102

 NAME_2(000040) type C ,
 NAME_3(000040) type C ,
 NAME_4(000040) type C ,
 C_O_NAME(000040) type C ,
 CITY(000040) type C ,
 DISTRICT(000040) type C ,
 CITY_NO(000012) type C ,
 POSTL_COD1(000010) type C ,
 POSTL_COD2(000010) type C ,
 POSTL_COD3(000010) type C ,
 PO_BOX(000010) type C ,
 PO_BOX_CIT(000040) type C ,
 DELIV_DIS(000015) type C ,
 STREET(000040) type C ,
 HOUSE_NO(000010) type C ,
 BUILDING(000010) type C ,
 FLOOR(000010) type C ,
 ROOM_NO(000010) type C ,
 COUNTRY(000003) type C ,
 LANGU(000001) type C ,
 REGION(000003) type C ,
 TEL1_NUMBR(000030) type C ,
 TEL1_EXT(000010) type C ,
 FAX_NUMBER(000030) type C ,
 FAX_EXTENS(000010) type C ,
 E_MAIL(000241) type C ,
 COUNTRYISO(000002) type C ,
 LANGU_ISO(000002) type C ,
 CURRENCY(000005) type C ,
 CURRENCY_ISO(000003) type C ,
 end of BAPIKNA106 .

types: begin of BAPIRETURN1 ,
 TYPE(000001) type C ,
 ID(000020) type C ,
 NUMBER(000003) type N ,
 MESSAGE(000220) type C ,
 LOG_NO(000020) type C ,
 LOG_MSG_NO(000006) type N ,
 MESSAGE_V1(000050) type C ,
 MESSAGE_V2(000050) type C ,
 MESSAGE_V3(000050) type C ,
 MESSAGE_V4(000050) type C ,
 end of BAPIRETURN1 .

types: begin of BAPICONVRS,

(continued from previous page)

103For site licenses and volume subscriptions, call 1-781-751-8699.

Calling BAPIs from the SAP Web Application Server

 OBJTYPE(000010) type C,
 OBJNAME(000032) type C,
 METHOD(000032) type C,
 PARAMETER(000032) type C,
 FIELD(000030) type C,
 ROWNUMBER type I,
 INT_FORMAT(000255) type C,
 EXT_FORMAT(000255) type C,
 CONV_LEN(000003) type N,
 end of BAPICONVRS .

types: begin of BAPIRET2,
 TYPE(000001) type C,
 ID(000020) type C,
 NUMBER(000003) type N,
 MESSAGE(000220) type C,
 LOG_NO(000020) type C,
 LOG_MSG_NO(000006) type N,
 MESSAGE_V1(000050) type C,
 MESSAGE_V2(000050) type C,
 MESSAGE_V3(000050) type C,
 MESSAGE_V4(000050) type C,
 PARAMETER(000032) type C,
 ROW type I,
 FIELD(000030) type C,
 SYSTEM(000010) type C,
 end of BAPIRET2 .

types: begin of BAPIF4B ,
 SELECT_FLD(000030) type C ,
 SIGN(000001) type C ,
 OPTION(000002) type C ,
 LOW(000030) type C ,
 HIGH(000030) type C ,
 end of BAPIF4B .

types: begin of BAPIF4C ,
 HELPVALUES(000255) type C ,
 end of BAPIF4C .

types: SELECTION_FOR_HELPVALUES type table of
 BAPIF4B .

types: HELPVALUES type table of
 BAPIF4C .

SAP Professional Journal September/October 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.104

Personal Conclusion

Developing web applications with the SAP Web

Application Server (in ABAP) is easier than in any

other environment I have tried. If you add the

support that SAP provides to facilitate the calling of

BAPIs in the SAP application components like R/3

you have a sure winner. Provided that you can live

with some of the idiosyncrasies of ABAP (and you

probably would not have finished this article if you

could not) the decision between ABAP and Java at

least for business web applications should be an

easy one.13

Thomas G. Schuessler is the founder of ARAsoft

(www.arasoft.de), a company offering products,

consulting, custom development, and training to

a worldwide base of customers. The company

specializes in integration between SAP and non-

SAP components and applications. ARAsoft offers

various products for BAPI-enabled programs on

the Windows and Java platforms. These products

facilitate the development of desktop and Internet

applications that communicate with R/3. Thomas

is the author of SAP’s BIT525 “Developing BAPI-

enabled Web Applications with Visual Basic”

and BIT526 “Developing BAPI-enabled Web

Applications with Java” classes, which he teaches

in Germany and in English-speaking countries.

Thomas is a regularly featured speaker at SAP

TechEd and SAPPHIRE conferences. Prior to

founding ARAsoft in 1993, he worked with SAP

AG and SAP America for seven years. Thomas

can be contacted at thomas.schuessler@sap.com

or at tgs@arasoft.de.

13 I am well aware that some readers will disagree with this statement,

but I will not go into more details for now. A thorough justification

would require a complete article on its own…

