
79For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

BAPI Return Messages
Made Easy

Thomas G. Schuessler

Thomas G. Schuessler is

the founder of ARAsoft, a

company offering products,

consulting, custom

development, and training

to customers worldwide,

specializing in integration

between SAP and non-SAP

components and applications.

Thomas is the author of

SAP’s BIT525 and BIT526

classes. Prior to founding

ARAsoft in 1993, he worked

with SAP AG and SAP

America for seven years.

the herrors I could have expected, all, let them all come,

they are my villains

James Joyce: Finnegans Wake, p. 545.12

As a developer, you do not need to be told that proper error handling is

one of the keys to a stable application with low maintenance cost. If

you develop BAPI-enabled components and applications this means that

you need to know how to deal with BAPI Return messages. And as a

developer of BAPIs, you should know the rules regarding BAPI Return

messages that were defined by SAP. Otherwise, you may end up

confusing the client programmers who use your BAPIs and this in turn

may lead to incorrect error handling in their applications.

So the target audience for this article includes anybody who

develops or uses BAPIs.

The article will describe in detail how BAPIs inform us about

success and failure by using a standardized1 Return parameter. We

will discuss the intricacies of interpreting the data in this parameter

correctly in order to avoid pitfalls.

As you will see, handling BAPI messages correctly is a little

more complicated than you might expect2. Hence I decided to build

a Java class that makes dealing with BAPI messages much easier for

developers who use Java, and therefore the SAP Java Connector (JCo).

(complete bio appears on page 92)

1 As you will see later, the term is used here cum grano salis.

2 And, if you ask me, than it should be.

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.80

At the end of this article, I will briefly introduce this

class so that you can build your own solution, in Java

or even other programming languages.

The Return Parameter

How do we find out whether a BAPI call

accomplished what we intended? BAPIs are

supposed3 to have a Return parameter that tells

the client program whether the BAPI call succeeded

or what went wrong.

Most BAPIs obey this rule, but let us quickly talk

about those that don’t. Figure 1 contains a list of

those BAPIs in 4.6C that — according to the Business

Object Repository (BOR) — do not have a Return
parameter. In most cases4, the underlying RFC-

enabled Function Module (RFM) actually has a

Return parameter, but somehow it is missing from

the BOR. When you research a BAPI in the SAP

BAPI Explorer (transaction code BAPI), you should

always look at the underlying RFM in the SAP

Function Builder (transaction code SE37) to double-

check that the information in the BOR is really

correct. In cases where the two tools disagree, the

metadata in the Function Builder takes precedence

over what the BOR says!

The header text for Figure 1 states that the

relevant BAPIs are listed. How is “relevant” defined

here? I have only included BAPIs that — in release

4.6C — fulfill the following conditions5:

• The BAPI is released.

• The BAPI is not obsolete.

• The BAPI does not pop up SAPGUI dialogs.6

If you want to create your own list, for a different

release or with different conditions, take a look at the

code in Listing 1, which I used to produce the data

for Figure 1.

Exceptions Are the Exception

So how do BAPIs that have no Return parameter

inform us about problems? They usually throw

Figure 1 List of Relevant BAPIs in 4.6C Without a Return Parameter in the BOR

Object Name BAPI Name RFM Name RFM Has

RETURN?

Appraisal Change BAPI_APPRAISAL_CHANGE true

Attendee GetTypeList BAPI_ATTENDEE_TYPE_LIST true

Batch GetLevel BAPI_BATCH_GET_LEVEL false

BBPIncomingInvoice BbpInvoiceCreate BBP_INVOICE_CREATE true

Location GetListAll BAPI_BUS_EVENT_LOCATION true

ProdOrdConfirmation ExistenceCheck BAPI_PRODORDCONF_EXIST_CHK true

3 Cf. the SAP BAPI Programming Guide, which is part of the standard

SAP documentation. Be careful with your assumptions, though. Not

all BAPIs (as we will also see in this article) follow all the rules.

4 Cf. the column called “RFM Has RETURN?”.

5 These conditions exclude BAPIs that the majority of all customers

will never use — and for good reasons, too.

6 BAPIs that have SAPGUI dialogs are mainly for use by SAP and

therefore not really relevant for our discussion.

81For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

Listing 1: Source Code to Generate Figure 1

private void getBapisWithoutReturn() {

 try {

 BOTypes bos = mRepository.getObjectFactory().getBOTypes();

 for (int i = 0; i < bos.getSize(); i++) {

 BOType bo = bos.getBOType(i);

 BOMethods bapis = bo.getBOMethods();

 for (int j = 0; j < bapis.getSize(); j++) {

 BOMethod bapi = bapis.getBOMethod(j);

 if (bapi.isReleased() &&

 ! bapi.getBOParameters().exists("Return") &&

 ! bapi.isObsolete() &&

 ! bapi.isUsingDialog()) {

 boolean rfmReturn =

 bapi.getRfm().getRfmParameters().exists("RETURN");

 System.out.println(bo.getObjectName() + '\t' +

 bapi.getName() + '\t' +

 bapi.getRfmName() + '\t' +

 rfmReturn

);

 }

 }

 }

 }

 catch (Exception ex) { ex.printStackTrace(); }

}

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.82

Figure 2 List of Relevant BAPIs in 4.6C with Exceptions

Object Name BAPI Name RFM Name RFM Has

RETURN?

Attendee ChangePassword BAPI_ATTENDEE_CHANGEPASSWORD true

Attendee CheckExistence BAPI_ATTENDEE_CHECKEXISTENCE true

Attendee CheckPassword BAPI_ATTENDEE_CHECKPASSWORD true

Attendee GetBookList BAPI_ATTENDEE_BOOK_LIST true

Attendee GetCompanyBookList BAPI_COMPANY_BOOK_LIST true

Attendee GetCompanyPrebookList BAPI_COMPANY_PREBOOK_LIST true

Attendee GetPrebookList BAPI_ATTENDEE_PREBOOK_LIST true

Attendee GetTypeList BAPI_ATTENDEE_TYPE_LIST true

BusinessEvent GetInfo BAPI_BUS_EVENT_INFO true

BusinessEvent GetLanguage BAPI_BUS_EVENT_LANGUAGE true

BusinessEvent GetSchedule BAPI_BUS_EVENT_SCHEDULE true

BusinessEvent Init BAPI_BUS_EVENT_INIT true

BusinessEventGroup GetEventtypeList BAPI_BUS_EVENTTYPE_LIST true

BusinessEventGroup GetList BAPI_BUS_EVENTGROUP_LIST true

BusinessEventtype GetEventList BAPI_BUS_EVENT_LIST true

BusinessEventtype GetInfo BAPI_BUS_EVENTTYPE_INFO true

FinancialTransaction CreateFromData BAPI_FTR_CREATEFROMDATA true

Location GetListAll BAPI_BUS_EVENT_LOCATION true

PurchaseOrder Release BAPI_PO_RELEASE true

PurchaseOrder ResetRelease BAPI_PO_RESET_RELEASE true

PurchaseReqItem Release BAPI_REQUISITION_RELEASE true

PurchaseReqItem ResetRelease BAPI_REQUISITION_RESET_RELEASE true

ABAP exceptions. This is also against the rules, but

rules are just rules, not guarantees. You need to

know which BAPIs throw ABAP exceptions, since

your error handling has to be coded differently.7

Figure 2 lists the relevant8 BAPIs with ABAP

exceptions in 4.6C and Listing 2 shows the source

code that generated the data for Figure 2.

We would have expected that Batch.GetLevel

from Figure 1 (the one with absolutely no Return
parameter) would show up in Figure 2, but it does

not. This BAPI actually has neither a Return

parameter nor ABAP exceptions, which probably

implies that it cannot fail under any condition. Please

join me in congratulating the developer of this BAPI

for his boundless optimism!

How do we deal with BAPIs that have ABAP

exceptions and a Return parameter? Some of them

had just ABAP exceptions in previous releases and a

Return parameter was added later. Unless the

documentation of the BAPI clearly states that the

ABAP exceptions are not used anymore, your code

should assume that an ABAP exception could still

be thrown, which means that you need to evaluate

the Return parameter and also check for ABAP

exceptions.

7 The details depend on the middleware you use.

8 Using the same criteria as for Figure 1.

83For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

Listing 2: Source Code to Generate Figure 2

private void getBapisWithExceptions() {

 try {

 BOTypes bos = mRepository.getObjectFactory().getBOTypes();

 for (int i = 0; i < bos.getSize(); i++) {

 BOType bo = bos.getBOType(i);

 BOMethods bapis = bo.getBOMethods();

 for (int j = 0; j < bapis.getSize(); j++) {

 BOMethod bapi = bapis.getBOMethod(j);

 if (bapi.isReleased() &&

 ! bapi.isObsolete() &&

 ! bapi.isUsingDialog() &&

 bapi.getRfm().getRfmExceptions().getSize() > 0) {

 boolean rfmReturn =

 bapi.getRfm().getRfmParameters().exists("RETURN");

 System.out.println(bo.getObjectName() + '\t' +

 bapi.getName() + '\t' +

 bapi.getRfmName() + '\t' +

 rfmReturn

);

 }

 }

 }

 }

 catch (Exception ex) { ex.printStackTrace(); }

}

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.84

Since not all customers are on 4.6C yet, let me

give you a breakdown of the different situations you

might encounter in the real world:

• BAPIs with a Return parameter and no ABAP

exceptions. These are the rule-abiding majority

of all BAPIs.

• BAPIs with no Return parameter, but ABAP

exceptions.

• BAPIs with a Return parameter and ABAP

exceptions. Some of them may no longer throw

the exceptions. (Again, check the documentation9

for a statement to that effect, otherwise assume

that an ABAP exception might still be thrown.)

• BAPIs with no Return parameter and no ABAP

exceptions. They are (hopefully) infallible.

Checking whether an ABAP exception occurred

is easy for a client application. Correctly interpreting

the Return parameter proves to be somewhat more

intricate. Time to study this parameter in more detail.

Return Structures

The messages that a BAPI returns in its Return
parameter are similar to the ones used in the online

transactions (SAPGUI), they are even stored in the

same table (T100). Figure 3 is a screenshot that

shows you some messages from this table.

Let us look at the four columns:

• SPRSL: Messages are maintained in multiple

languages. This column contains the language

code.

Figure 3 Some Entries from Table T100

9 Or study the ABAP source code if you are into masochism.

85For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

• ARBGB: Each message is assigned to an

application area (nowadays usually called a

message class).

• MSGNR: The message number.

• TEXT: The message text. It may include up to

four ampersands, which will be replaced with

relevant information when the actual message is

created in the application. Newer messages use

numbered ampersands (“&1” and so on) so that

the translators can change their relative positions,

which is a good idea in languages with a different

word order.

The Return parameter of a BAPI will contain

the message class, the message number, and the

message text, with the variable portions (the

ampersands) filled in. But SAP uses four different

Data Dictionary structures to implement the Return
parameter. BAPIRET2 is the standard one since 4.6,

but the others are used as well, especially in older

BAPIs. Figures 4-6 show the fields used in the

various structures. BAPIRETURN1 and BAPIRET1

actually contain the same field list, so I included only

one screenshot.10

Message Types

Let us discuss the TYPE field first. This field tells

you about the severity of the message. Here is a list

of the possible contents:

• “S” or space (“ ”) indicate success. The BAPI

call worked fine.

• “A” says that there was a severe problem in SAP.

This usually means that the problem is not caused

Figure 4 The BAPIRETURN Structure

10 And no, I will not tell you why there are two structures with exactly

the same fields. Some secrets must remain secrets. (Hence the word.)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.86

by your parameters but by a misconfiguration11 of

SAP, a full table space in the database, or similar

reasons. Someone will have to look at the SAP

System Log and rectify the situation.

• “E” is a normal error. Probably something

is wrong with the parameters you passed to

the BAPI.

• “W” indicates that the BAPI worked at least

partially, but something was not perfect. An

example of a warning message coming back

from a BAPI is FN021, issued by

CompanyCode.GetDetail when the address data

for a company code has not been maintained.

• “I” denotes an information message. Our

assumption would be that the BAPI worked fine,

Figure 5 The BAPIRETURN1 and BAPIRET1 Structures

but has some interesting extra information it

would like us to know. See below about the

validity of this assumption.

How should your application react to the different

error types? “S”, “ ” (space), “A”, and “E” do not

present much of a challenge. The call succeeded or

failed, so the application should have no difficulty

reacting accordingly. “W” and “I” are trickier. A

warning can sometimes be ignored. In the

aforementioned case of FN021 when calling

CompanyCode.GetDetail, for example, we may not

need the address and therefore can safely ignore the

warning. But that presupposes that we know the

specific warning and its implications when

developing our application. Therefore, the SAP BAPI

Programming Guide has a rule stating that all Return

messages that can potentially be issued by a BAPI

must be listed in the BAPI’s documentation. If the

BAPI follows this rule (and of course not all BAPIs

11 This word does not exist according to Bartleby and my spell checker.

Since www.google.com finds about 55,000 occurrences, I think it is

about time they update their dictionaries.

87For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

do!), the developer of a client application can check

all warnings while developing the application and

decide what to do in each case.

What about the BAPIs not obeying the rule?12

Extensive testing of your application will uncover

some of the warnings, but most likely not all of them.

If an application encounters an unforeseen warning

message, it can react in different ways, but if you

were to ask me, I would suggest the following

response:

• If you have a user whom you trust to be able to

react intelligently to a warning message, then you

should present that user with the warning returned

by SAP and ask the user to decide whether this

warning should be ignored or treated as an error.

In addition to the message text (field MESSAGE)

you could also display the documentation for the

message (see below).

• Otherwise, it is safest to assume that the BAPI

call was not successful.

Information messages seem to be just a special

case of success messages, but unfortunately that is not

always true. I have seen at least one BAPI, the name

of which unfortunately eludes me, that issued an

information message in a situation that I would have

called an error. So my personal opinion is that

information messages should be treated just like

warnings.

Figure 6 The BAPIRET2 Structure

12 It would not be totally wrong for customers to report those to SAP so

that corrective action will be taken!

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.88

A final warning: Some BAPIs, e.g., the conversion

BAPIs of the BapiService object type, sometimes

return a type of “2” for an error.13 So an application

should test explicitly for the types it wants to accept

as successes, not for the negation of types it sees

as errors.

The Other Fields

The TYPE field exists in all the structures for the

Return parameter. But why are there different

structures at all? There are two reasons:

• Before 4.0, the length of the message class was

two bytes, and the message class and message

number were combined into field CODE. In 4.0,

the maximum length of the message class was

increased to 20 bytes. Instead of extending the

CODE field of BAPIRETURN accordingly

(which would have been an incompatible change

and therefore against the rules), a new structure

(or actually two, as mentioned above) was

introduced, where the message class and the

message number are represented by two distinct

fields, ID and NUMBER. This is unfortunate

since an application now has to be aware which

Return structure a BAPI employs, and use the

appropriate field names.14

• The second reason is that sometimes the Return
parameter is a table, and not a structure. This will

be discussed below.

The MESSAGE field contains the text from table

T100 in the logon language, with the ampersands

replaced by the appropriate variable information.

Fields MESSAGE_V1 to MESSAGE_V4

contain the variable text elements used to fill in

the ampersands. This information can be used to

construct your own message texts, utilizing the

variable parts if you want to.

Fields LOG_NO and LOG_MSG_NO return

the key to an Application Log entry, if the BAPI

has indeed written one. Not many BAPIs take

advantage of the Application Log, yet. But if you

are using a BAPI that does, you can retrieve the

contents of an Application Log entry using the

BapiService.ApplicationLogGetDetail BAPI available

since 4.5A.

Return Tables

Usually, the Return parameter is a structure, but

sometimes it is a table instead. This is the case if

the BAPI

• can perform multiple unrelated activities in one

call, or

• wants to be able to report multiple errors for one

activity (very rare).

I do not know an example for the latter case,

so let us discuss the former. The BapiService

conversion BAPIs are capable of multiple

conversions in one call. This is good because it saves

roundtrips and therefore improves performance. Each

of the conversions can fail or succeed. Normally,

such a BAPI (and the conversion BAPIs are normal

in that respect) will return an empty table in case

everything succeeded. For each failed conversion,

one row would be added to the Return table

parameter. The application must now be able to find

out which specific activity the error message relates

to. Therefore, for all Return tables, structure

BAPIRET2 is used, which has a ROW field

containing the row number in the input data, for

which the activity (in our example, the conversion)

failed.

Again, you need to be careful. While most

BAPIs using a table for the Return parameter

13 See previous footnote.

14 This is one of several reasons why I recommend to use a class that

encapsulates dealing with Return messages. My own solution is

discussed later in this article.

89For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

will return the table empty if everything worked fine,

some others will actually send you back one row

with a success message for every distinct activity

they performed. Your error handling code should

not assume that only an empty table denotes

success.

The remaining new fields in BAPIRET2 —

viz., PARAMETER, FIELD, and SYSTEM — are

only used in very rare cases. See the SAP BAPI

Programming Guide for additional information.

Message Documentation

In SAPGUI, a user seeking more enlightenment about

a message simply double-clicks on the message, and a

window with the complete documentation for the

message will be shown. Since 4.5A, developers of

BAPI-enabled applications can offer the same service

to their users. BapiService.MessageGetDetail can

retrieve the message documentation for any message

in SAP (see Figure 7 for a screenshot of the BAPI

with its parameters and documentation).

Figure 7 BapiService.MessageGetDetail

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.90

This concludes our discussion about how

to handle BAPI Return messages in a client

application. Now a few words for developers

of BAPIs…

Guidelines for Developers

of BAPIs

These can be summed up easily: Follow the rules

defined in the SAP BAPI Programming Guide. In my

interpretation, these are:

• Use structure BAPIRET2.

• Document all messages that could ever be

returned in the BAPI’s documentation.

• Try to avoid “W” and “I” messages, because

many applications do not handle them very

well.

Of course, all the normal rules about error

messages apply to BAPIs as well: Use language the

addressee will understand. Avoid vagueness (“The

document could not be added because the customer

does not exist or the database is full”). Avoid

messages like “This should never have happened”

and “Internal error”.

The BapiMessageInfo Class

After I had — little by little — discovered all

the information presented so far in this article,

I decided to build a Java class (which I called

BapiMessageInfo) that encapsulates the processing

of BAPI Return messages. Before introducing my

implementation, I first want to discuss the main

design guidelines for this class so that you can build

your own solution in Java. Developers not using Java

should also be able to create a similar component in

other programming languages.

• The different field names in the different Return

structures used by SAP should be hidden from a

client developer. (My class has accessor methods

that are independent of the specific structure

used. See getMessageClass(),

getMessageNumber(), and getMessageKey().)

• There should be a simple way to find out

whether a BAPI call succeeded. (Method

isBapiReturnCodeOkay() accomplishes this.)

• There should be a way for the client programmers

to accept all or selected warning and/or

information messages. (Overloaded versions of

method isBapiReturnCodeOkay() allow you to

do this.)

• There should be a simple method to produce a

printable message string with all relevant

information. (See getFormattedMessage().)

• There should be an easy way to access a

message’s documentation. (Method

getDocumentation() takes care of this.)

Listings 3-4 show sample application code that

utilize class BapiMessageInfo.

This is about as much as I believe a normal

application should have to know about BAPI Return

messages. Building the class to make this possible is

actually not very hard once you know what you want

to accomplish. The source code in the appendix to

this article should speak pretty much for itself. Note

that the class deals with individual Return messages

(from a structure or one row in a table). Support for

dealing with the complete table in a meaningful way

is left as an exercise for the reader.

91For site licenses and volume subscriptions, call 1-781-751-8699.

BAPI Return Messages Made Easy

Listing 3: A Simple Check of a BAPI Return Message

JCO.Structure returnStruct =

 function.getExportParameterList().getStructure("RETURN");

BapiMessageInfo bapiMessage = new BapiMessageInfo(returnStruct);

if (! bapiMessage.isBapiReturnCodeOkay()) {

 System.out.println(bapiMessage.getFormattedMessage());

}

Listing 4: Allowing One Warning Message and Retrieving Documentation

JCO.Structure returnStructure =

 function.getExportParameterList().getStructure("RETURN");

BapiMessageInfo bapiMessage = new BapiMessageInfo(returnStructure);

// Warning FN021 can be ignored in our case

if (! bapiMessage.isBapiReturnCodeOkay(false, false, null, "FN021")){

 System.out.println(bapiMessage.getFormattedMessage());

 String[] documentation =

 bapiMessage.getDocumentation(mRepository);

 for (int j = 0; j < documentation.length; j++) {

 System.out.println(documentation[j]);

 }

}

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.92

Conclusion

As is often the case for BAPI programming, the

proverbial devil lurks in the details15. Developers of

BAPI-enabled components and applications should

use a general purpose class (like BapiMessageInfo)

to deal with the idiosyncrasies of BAPI Return

messages. Create your own class using the ideas

presented in this article or send me an email if you

want to try my solution.

Thomas G. Schuessler is the founder of ARAsoft

(www.arasoft.de), a company offering products,

consulting, custom development, and training to

a worldwide base of customers. The company

specializes in integration between SAP and non-

SAP components and applications. ARAsoft offers

various products for BAPI-enabled programs on

the Windows and Java platforms. These products

facilitate the development of desktop and Internet

applications that communicate with R/3. Thomas

is the author of SAP’s BIT525 “Developing BAPI-

enabled Web Applications with Visual Basic”

and BIT526 “Developing BAPI-enabled Web

Applications with Java” classes, which he teaches

in Germany and in English-speaking countries.

Thomas is a regularly featured speaker at SAP

TechEd and SAPPHIRE conferences. Prior to

founding ARAsoft in 1993, he worked with SAP

AG and SAP America for seven years. Thomas

can be contacted at thomas.schuessler@sap.com

or at tgs@arasoft.de.

15 And, as you saw, it has ample space to lurk.

93For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

Appendix: Source Code for
Class BapiMessageInfo

package de.arasoft.sap.jco;

import com.sap.mw.jco.*;

import de.arasoft.java.*;

/*

 * Copyright (c) 2001 ARAsoft GmbH

 * All Rights Reserved.

 */

/**

 * Information for a BAPI return message.

 * Helps to interpret the message and

 * can retrieve the message's additional documentation.

 *

 * @author ARAsoft GmbH

 * @version 2.0

 * @since 1.0

 */

public class BapiMessageInfo {

 private String[] mDocumentation = new String[0];

 private String mMessageType = "";

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.94

 private String mMessageText = "";

 private String mMessageNumber = null;

 private String mMessageClass = null;

 private String mMessageVariable1 = "";

 private String mMessageVariable2 = "";

 private String mMessageVariable3 = "";

 private String mMessageVariable4 = "";

 private String mAppLogNo = null;

 private String mAppLogMsgNo = null;

 private boolean initialized = false;

/**

 * Constructor to be used if all information about a message

 * is already known.

 * @param messageClass Message class (application area).

 * @param messageNumber Message number.

 * @param messageVariable1 The first message variable.

 * @param messageVariable1 The second message variable.

 * @param messageVariable1 The third message variable.

 * @param messageVariable1 The fourth message variable.

 * @param messageText The message text.

 * @param documentation The documentation.

 */

 public BapiMessageInfo(String messageClass, String messageNumber,

 String messageVariable1,

 String messageVariable2,

 String messageVariable3,

 String messageVariable4,

(continued from previous page)

95For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

 String messageText, String[] documentation

) {

 mMessageClass = messageClass;

 mMessageNumber = messageNumber;

 mMessageVariable1 = messageVariable1;

 mMessageVariable2 = messageVariable2;

 mMessageVariable3 = messageVariable3;

 mMessageVariable4 = messageVariable4;

 mMessageText = messageText;

 mDocumentation = documentation;

 initialized = true;

 }

/**

 * Constructor to be used if you know the message class and number

 * and have four message variables.

 * Use <code>getMessageText(JCoComponentConnector connector)</code>

 * and <code>getDocumentation(JCoComponentConnector connector)</code>

 * to find out additional information.

 * @param messageClass Message class (application area).

 * @param messageNumber Message number.

 * @param messageVariable1 The first message variable.

 * @param messageVariable2 The second message variable.

 * @param messageVariable3 The third message variable.

 * @param messageVariable4 The fourth message variable.

 * @see #getMessageText(JCoComponentConnector)

 * @see #getDocumentation(JCoComponentConnector)

 */

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.96

 public BapiMessageInfo(String messageClass, String messageNumber,

 String messageVariable1,

 String messageVariable2,

 String messageVariable3,

 String messageVariable4

) {

 mMessageClass = messageClass;

 mMessageNumber = messageNumber;

 mMessageVariable1 = messageVariable1;

 mMessageVariable2 = messageVariable2;

 mMessageVariable3 = messageVariable3;

 mMessageVariable4 = messageVariable4;

 }

// ... Similar constructors for one through three message variables

// omitted to save space ...

/**

 * Constructor to be used if you know the message class and number.

 * Use <code>getMessageText(JCoComponentConnector connector)</code>

 * and <code>getDocumentation(JCoComponentConnector connector)</code>

 * to find out additional information.

 * @param messageClass Message class (application area).

 * @param messageNumber Message number.

 * @see #getMessageText(JCoComponentConnector)

 * @see #getDocumentation(JCoComponentConnector)

 */

 public BapiMessageInfo(String messageClass, String messageNumber) {

(continued from previous page)

97For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

 mMessageClass = messageClass;

 mMessageNumber = messageNumber;

 }

/**

 * Constructor to be used if you have an actual return message from

 * a BAPI call. If you pass a JCo table, the current row will be

 * interpreted.

 * @param record The JCo structure or JCo table.

 */

 public BapiMessageInfo(JCO.Record record) throws ARAsoftException {

 try {

 mMessageType = record.getString("TYPE");

 mMessageText = record.getString("MESSAGE");

 mMessageVariable1 = record.getString("MESSAGE_V1");

 mMessageVariable2 = record.getString("MESSAGE_V2");

 mMessageVariable3 = record.getString("MESSAGE_V3");

 mMessageVariable4 = record.getString("MESSAGE_V4");

 mAppLogNo = record.getString("LOG_NO");

 mAppLogMsgNo = record.getString("LOG_MSG_NO");

 if (record.hasField("CODE")) {

 String s = record.getString("CODE");

 if (s.length() < 3) {

 mMessageClass = s;

 mMessageNumber = "";

 }

 else {

 mMessageClass = s.substring(0, 2);

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.98

 mMessageNumber = s.substring(2);

 }

 }

 else {

 mMessageClass = record.getString("ID");

 mMessageNumber = record.getString("NUMBER");

 }

 }

 catch (Exception ex) {

 throw new ARAsoftException("Not a valid Return record.");

 }

 }

/**

 * Returns the application log number.

 * @return The application log number

 */

 public String getApplicationLogNumber() {

 return mAppLogNo;

 }

/**

 * Returns the application log message number.

 * @return The application log message number

 */

 public String getApplicationLogMessageNumber() {

 return mAppLogMsgNo;

 }

(continued from previous page)

99For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

/**

 * Returns the message type.

 * @return The message type

 */

 public String getMessageType() {

 return mMessageType;

 }

/**

 * Returns the message class and message number concatenated.

 * @return The message class and message number concatenated.

 */

 public String getMessageKey() {

 return mMessageClass + mMessageNumber;

 }

/**

 * Returns the message class (application area).

 * @return The message class

 */

 public String getMessageClass() {

 return mMessageClass;

 }

/**

 * Returns the message number.

 * @return The message number

 */

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.100

 public String getMessageNumber() {

 return mMessageNumber;

 }

/**

 * Returns message variable 1.

 * @return The message variable 1

 */

 public String getMessageVariable1() {

 return mMessageVariable1;

 }

/**

 * Returns message variable 2.

 * @return The message variable 2

 */

 public String getMessageVariable2() {

 return mMessageVariable2;

 }

/**

 * Returns message variable 3.

 * @return The message variable 3

 */

 public String getMessageVariable3() {

 return mMessageVariable3;

 }

(continued from previous page)

101For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

/**

 * Returns message variable 4.

 * @return The message variable 4

 */

 public String getMessageVariable4() {

 return mMessageVariable4;

 }

/**

 * Returns the message text.

 * @return The message text

 */

 public String getMessageText() {

 return mMessageText;

 }

/**

 * Returns the message text. Useful if you have used one

 * of the constructors without the message text.

 * @return The message text.

 * @param connector The connector to SAP

 */

 public String getMessageText(JCoComponentConnector connector)

 throws ARAsoftException {

 if (! initialized)

 init(connector);

 return mMessageText;

 }

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.102

/**

 * Returns the message documentation. This will only work properly if

 * you have either used the constructor

 * that includes the documentation or have used

 * <code>getDocumentation(JCoComponentConnector connector)

 * </code> before.

 * @return The message documentation

 */

 public String[] getDocumentation() {

 return mDocumentation;

 }

/**

 * Returns the message documentation.

 * @return The message documentation

 * @param connector The connector to SAP

 */

 public synchronized String[] getDocumentation

 (JCoComponentConnector connector)

 throws ARAsoftException {

 if (! initialized)

 init(connector);

 return mDocumentation;

 }

/**

 * Returns the message documentation.

 * @return The message documentation

(continued from previous page)

103For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

 * @param repository The repository

 */

 public synchronized String[] getDocumentation

 (JCoRepository repository)

 throws ARAsoftException {

 return

 this.getDocumentation(repository.getJCoComponentConnector());

 }

/**

 * Returns a formatted version of the message, e.g.,

 * "E XX-007: Some error has occurred".

 * @return The formatted message

 */

 public String getFormattedMessage() {

 return getMessageType() + " " + getMessageClass() +

 "-" + getMessageNumber() + ": " + getMessageText();

 }

/**

 * Check whether the BAPI executed correctly. "S" or an empty string

 * in field TYPE are interpreted as indicating success.

 * @return Is the return code okay?

 */

 public boolean isBapiReturnCodeOkay() {

 return getMessageType().equals("") || getMessageType().equals("S");

 }

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.104

/**

 * Check whether the BAPI executed correctly. "S" or an empty string

 * in field TYPE are always interpreted as indicating success, you can

 * control whether Information messages ("I") and/or

 * Warning messages ("W") are accepted as well.

 * @return Is the return code okay?

 * @param allowInformationMessages Should "I" messages be acceptable?

 * @param allowWarningMessages Should "W" messages be acceptable?

 */

 public boolean isBapiReturnCodeOkay(boolean allowInformationMessages,

 boolean allowWarningMessages) {

 return getMessageType().equals("") ||

 getMessageType().equals("S") ||

 (getMessageType().equals("I") &&

 allowInformationMessages) ||

 (getMessageType().equals("W") &&

 allowWarningMessages) ;

 }

/**

 * Check whether the BAPI executed correctly. "S" or an empty string

 * in field TYPE are always interpreted as indicating success, you can

 * control whether Information messages ("I") and/or

 * Warning messages ("W") are accepted as well.

 * In addition, you can specify which specific information

 * and/or warning messages should be interpreted as success.

 * @return Is the return code okay?

 * @param allowInformationMessages Should "I" messages be acceptable?

(continued from previous page)

105For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

 * @param allowWarningMessages Should "W" messages be acceptable?

 * @param informationMessageKeys Array of acceptable "I" message keys?

 * @param warningMessageKeys Array of acceptable "W" message keys?

 * @see #getMessageKey

 */

 public boolean isBapiReturnCodeOkay(boolean allowInformationMessages,

 boolean allowWarningMessages,

 String[] informationMessageKeys,

 String[] warningMessageKeys) {

 boolean b = getMessageType().equals("") ||

 getMessageType().equals("S") ||

 (getMessageType().equals("I") &&

 allowInformationMessages) ||

 (getMessageType().equals("W") &&

 allowWarningMessages) ;

 if (b) return true;

 String s;

 if (informationMessageKeys != null &&

 getMessageType().equals("I")) {

 for (int i = 0; i < informationMessageKeys.length; i++) {

 s = informationMessageKeys[i];

 if (s != null && s.equals(getMessageKey()))

 return true;

 }

 }

 if (warningMessageKeys != null && getMessageType().equals("W")) {

 for (int i = 0; i < warningMessageKeys.length; i++) {

 s = warningMessageKeys[i];

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.106

 if (s != null && s.equals(getMessageKey()))

 return true;

 }

 }

 return false;

 }

/**

 * Check whether the BAPI executed correctly. "S" or an empty string

 * in field TYPE are always interpreted as indicating success, you can

 * control whether Information messages ("I") and/or

 * Warning messages ("W") are accepted as well.

 * In addition, you can specify which specific information

 * and/or warning messages should be interpreted as success.

 * @return Is the return code okay?

 * @param allowInformationMessages Should "I" messages be acceptable?

 * @param allowWarningMessages Should "W" messages be acceptable?

 * @param informationMessageKey Key of one acceptable "I" message?

 * @param warningMessageKey Key of one acceptable "W" message?

 * @see #getMessageKey

 */

 public boolean isBapiReturnCodeOkay(boolean allowInformationMessages,

 boolean allowWarningMessages,

 String informationMessageKey,

 String warningMessageKey) {

 return isBapiReturnCodeOkay(allowInformationMessages,

 allowWarningMessages,

 new String[] { informationMessageKey },

(continued from previous page)

107For site licenses and volume subscriptions, call 1-781-751-8699.

Appendix: Source Code for Class BapiMessageInfo

 new String[] { warningMessageKey }

);

 }

 private void init (JCoComponentConnector connector)

 throws ARAsoftException {

 JCO.Function function = null;

 try {

 function = connector.createFunction("BAPI_MESSAGE_GETDETAIL");

 if (function == null)

 throw new ARAsoftException

 ("BAPI_MESSAGE_GETDETAIL not found in SAP.");

 function.getImportParameterList().

 setValue(getMessageClass(), "ID");

 function.getImportParameterList().

 setValue(getMessageNumber(), "NUMBER");

 function.getImportParameterList().

 setValue(connector.getUserLanguage(), "LANGUAGE");

 function.getImportParameterList().

 setValue("ASC" , "TEXTFORMAT");

 function.getImportParameterList().

 setValue(getMessageVariable1() , "MESSAGE_V1");

 function.getImportParameterList().

 setValue(getMessageVariable2() , "MESSAGE_V2");

 function.getImportParameterList().

 setValue(getMessageVariable3() , "MESSAGE_V3");

 function.getImportParameterList().

 setValue(getMessageVariable4() , "MESSAGE_V4");

(continued on next page)

SAP Professional Journal May/June 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.108

 connector.executeStateless(function);

 JCO.Structure retStruct =

 function.getExportParameterList().getStructure("RETURN");

 BapiMessageInfo bmi = new BapiMessageInfo(retStruct);

 if (! bmi.isBapiReturnCodeOkay())

 if (! bmi.getMessageNumber().equals("104"))

 throw new ARAsoftException(bmi.getFormattedMessage());

 mMessageText =

 function.getExportParameterList().getString("MESSAGE");

 JCO.Table table =

 function.getTableParameterList().getTable("TEXT");

 String[] strings = new String[table.getNumRows()];

 for (int i = 0; i < table.getNumRows(); i++, table.nextRow()) {

 strings[i] = table.getString(0);

 }

 mDocumentation = strings;

 initialized = true;

 }

 catch (JCO.Exception ex) {

 throw new ARAsoftException(ex);

 }

 catch (ARAsoftException ex) { throw ex; }

 catch (Exception ex) {

 throw new ARAsoftException(ex);

 }

 }

}

(continued from previous page)

