Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Write Smarter ABAP

Programs with Less Effort:

Manage Persistent Objects and
Transactions with Object Services

Stefan Bresch, Christian Fecht, and Christian Stork

ABAP developers, does this dilemma sound familiar? You’re building
an application with ABAP Objects. Parts of your application are
modeled by objects and references between them. As with most
business applications, you also need to store and manipulate persistent
data. But since R/3 uses a relational database as its datastore, achieving
object persistence has been difficult at best due to the gap between the
object and relational models. In your application, you think in terms

Sz Braalh, B of objects that are related by references. However, the underlying
Programming Languages relational database forces you to think in terms of tables and rows that
Group, SAP AG may be related by foreign keys.

-

In the past, this gap between the object and relational worlds
has seriously hampered the use of ABAP Objects in application
development. Either you couldn’t fully leverage proper object-oriented
design principles, or you provided the infrastructure to close this gap
yourself. In other words, you had to map classes to relational tables and
write SQL code to load objects from and store them in the database.
Christian Fecht, Business Instead of focusing on your application, you spent a considerable

Programming Languages amount of time and effort designing and implementing a persistence
Group, SAP AG framework

With the emergence of Object Services in Release 6.10, the situation
has changed substantially. The Object Services layer now provides a
persistence framework that closes the object-relational gap. You no
longer need to write SQL code, objects are transparently loaded from
the database when needed, and changes to persistent objects are
Christian Strk, Business automatically tracked. Object Services offers a framework to handle
Programming Languages most persistence functions automatically and transparently, freeing you

Group, SAP AG to focus on the business logic in your application.

(complete bios appear on page 76)

For site licenses and volume subscriptions, call 1-781-751-8699. 59

SAP Professional Journal January/February 2002

Figure 1

The Role of Object Services in the R/3 System Architecture

Application

Persistent
Objects

Objects and
Other Data

.

Object Services
(Persistence and Transaction)

.

\4

R3 Systems and Services/ABAP

Relational
Database

What Are Object Services?

Object-oriented programming is now well supported
in ABAP. However, ABAP Objects alone don’t
provide everything you need for object-oriented
application development. For example, ABAP
Objects don’t support a variety of system-level ser-
vices that are common to most applications:

* Storing objects persistently in a database
* Binding an object to a Ul representation

* Transaction and lock management, logging,
archiving, and security

Clearly, repeatedly designing and implementing
these services separately in different applications

isn’t an efficient approach. To address this drawback,

the Object Services software layer was added. The
Object Services runtime environment, which is itself
implemented in ABAP Objects, sits between the
application and the ABAP processor to provide these
services. Figure 1 shows how Object Services — of
which there are two, Persistence and Transaction —

fits into the overall SAP system architecture. In this
article, we’ll show you how to use the Persistence
Service for storing objects in the database, and the
Transaction Service for controlling transactions.
Note that the Persistence and Transaction Services
make their debut in Release 6.10.

How the Persistence
Service Works

The role of the Persistence Service is to provide
transparent object persistence. Previously, you had
to do all the persistence work yourself: mapping
objects to rows in the database, writing code to load
and store objects, and keeping track of object
changes. The Persistence Service now automates
most of these tasks:

* Youdon’t need to write any code for database
manipulation. The Persistence Service knows
how your objects are mapped to the database, and
how to load and store them.

60 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

* The Persistence Manager automatically tracks all
object changes. At commit-time, it synchronizes
your objects with the database. It knows which
entries must be inserted, updated, and deleted.

Note that the Persistence Service can only man-
age instances of persistent classes. Thus you need to
define persistent classes in the Class Builder, which
we’ll describe later in this article. Persistent classes
can have transient and persistent instances. Transient
instances only exist in application server memory and
are not saved to the database. Their lifetime is lim-
ited by the lifetime of the internal session in which
they were created. A persistent instance is associated
with a persistent object in the database. Both tran-
sient and persistent instances are in-memory objects
that exist for the duration of an internal session, while
the actual persistent object is stored in the database.
Think of a persistent instance and its associated per-
sistent object as two representations of the same
logical entity. If the state of the persistent instance is
updated, the persistent object in the database must
also be updated. For efficiency reasons, this update is
deferred to commit-time. Thus the persistent object
and the persistent instance can be inconsistent at
certain times.

v’ Exclusive Update Rights

In order to guarantee exclusive update rights,
you must use the R/3 enqueue mechanism to lock
an object.

All persistent instances are cached in memory
during a session. The cache is then synchronized
with the database at commit-time. You always oper-
ate on persistent instances in the cache. Before you
can access an attribute of a persistent object or invoke
one of its methods, the persistent object must be
loaded from the database into the cache. The Persis-
tence Service automatically performs this load.
Objects are always loaded on demand, one by one.
Suppose persistent Object A contains a reference
to persistent Object B. If you address Object A by
a query, only Object A is loaded into the cache.

Object B is not loaded until it is accessed. The Per-
sistence Service also supports transparent navigation.
For example, if you navigate through an object graph,
following references from one object to another, the
objects are transparently loaded as needed.

Every persistent object has a unique identity that
distinguishes it from all other persistent objects. The
Persistence Service supports two types of object
identifiers:

* Business key, which you assign in your applica-
tion based on a subset of its persistent object
attributes (business keys, key attributes, etc.).

¢ GUID (global unique identifier), which the Per-
sistence Service automatically generates when the
persistent object is created. A GUID is not part
of the state of the persistent object, nor is it stored
in any persistent attribute. You can’t control
GUID generation in your application.

In addition, a persistent object is uniquely repre-
sented by a persistent instance in the internal session.
Thus if you address a specific persistent object sev-
eral times within the same session, you always get the
reference to the same persistent instance. In order to
implement this uniqueness of representation, the
Persistence Service maintains a mapping from identi-
ties to persistent instances. There is only one map-
ping per internal session.

Using Object Relational Mapping
with Classes and Tables

In the world of object-oriented programming, there is
no meaning to persistence in the relational sense. To
bridge this gap, you need to establish a connection
between classes in your ABAP code and tables in the
R/3 database. Object instances of a class correspond
one-to-one to table entries. Therefore, you map the
persistent attributes of a class to a subset of fields

in the table. This action is referred to as “object
relational mapping.” Classes have two types of

For site licenses and volume subscriptions, call 1-781-751-8699.

61

SAP Professional Journal January/February 2002

Figure 2

Mapping Classes to Tables

Map one class to one table

Wherever possible. This scenario is the most common, as
well as the most efficient.

Map one class to several tables
(multi-table mapping)

When data belonging to a class is spread across more than
one table. Key fields must be the same for all affected tables.

Map two or more classes to one

For implementing inheritance. See the section “Advanced
table Considerations for Object Relational Mapping” for more
information.

attributes: persistent and transient. You only need to
define an object relational mapping for persistent
attributes. Follow these additional guidelines to
ensure proper support for object identifiers:

» Ifyou are using business keys to identify objects,
you must map the table key fields to persistent
attributes. The object identity is derived from
these key fields. These attributes, which are
called business keys, are read-only because the
object identity must not change.

» Ifyou are using GUIDs to identify objects,
the table must contain a key field of data type
OS_GUI D and you must map it to a special
attribute named OS_GUI D. This OS_GUI D
attribute is not part of the class. It is only used
internally for object identity in the cache and
the database.

You can perform object relational mapping in
several ways, as shown in Figure 2.

Creating a Persistent Class

Now that you understand how persistent classes work,
let’s examine how to create them. You can create
persistent classes in two ways:

» Start with the object model — Implement the
classes first, then generate the tables needed.

e Start with the tables — Use the tables to create
the object model.

The first method, generating tables from an
object model, is not yet supported by Object Services.
Object Services supports only the second method
with the Persistence Representation tool in the Class
Builder (transaction SE24).

In our experience, real-world examples provide
the best context for learning a new technique, so let’s
walk through an example application that handles
airline seat reservations. The example starts in this
section by showing you how to create two persistent
classes, one to represent the reservation, and another
to represent the flight, with the necessary attributes
and object relational mapping to link the classes to a
table. In the sections that follow, you’ll learn how
to write the code for these classes to check space
availability and reserve the seat. In all cases, we’ll
assume that your database and the required tables
already exist.

To begin our example, we’re going to create a
persistent class named CL__FLI GHT to represent the
airline flight:

62 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Servic

es

Figure 3 Creating a Persistent Class in the Class Builder

CL_FLIGHT

Flight
Protected F

Class Type

1 Usual ABAP Class

() Exception Class
@ Persistentclass

Figure 4 Mapping the Persistent Class to a Table

1. To create a class, open the Class Builder (transac- 3. Click “Save,” which returns you to the Class
tion SE24) and click on “Create.” This launches Builder main screen.
the screen shown in Figure 3.

4. In the Class Builder main screen, click [rersistence |

2. Select “Persistent class,” as shown in Figure 3. which launches the screen shown in Figure 4.
(Beware: you can’t change this property later!) Select the database table to which you want to
Note also that “Instantiation” switches to map the persistent class — here, we select
“Protected” after you select “Persistent class.” “SFLIGHT.”

Instantiation of a persistent class can only be
“Protected” or “Abstract”; other values are 5. Selecting “SFLIGHT” takes you back to the
not allowed. Persistence Representation screen shown in

For site licenses and volume subscriptions, call 1-781-751-8699.

63

SAP Professional Journal January/February 2002

Figure 5 Using the Persistence Representation Tool

Persistence representation Edit Goto WHilities Environment Systemn = w

BldH CE@ SHRE BN
Change Persistence Representation: CL_FLIGHT
&P %ol

Classrattribute AWV Type L.. Assigned field Class ID Field Tahle
6 CL_FLIGHT

[l I[«][»]

a0

Priva g |Chang. 2 Yalue attrib. &

TahlesiFields A Type Diescription

< [sFLiGHT]
g CARRID ,ﬁ' 8 CARR_ID Airline Code
o COMMKID ,{? S_COMM_ID Flight connection number
O FLODATE I S_DATE Flight date 1
o PRICE 5 _PRICE Airfare
o CURREMCY S CURRCOLDE Local currency of airline
g PLAMETYPE S_PLANETYE Flane type E'
O SEATSMAK S_SEATSMAK Maxitnum capacity in economy class E‘

[aIle]l [I[][»]

[IEIEM (2 00y PWDFOS1S | INS

Figure 5, where you define persistent attributes name. By default, the attribute’s name is identi-
for the class CL__FLI GHT and their table field cal to the field name, but you can change the
mapping. defaults as you wish.

6. Double-click on a table field to fill the attribute Depending on the field properties, for each
editing area with values derived from the table attribute you can choose visibility (Public, Pro-
field. We will create persistent attributes for tected, Private), access (Read only, Changeable),
the table fields CARRI D, CONNI D, FLDATE, and mapping type (Value attribute, Business key,
SEATSMAX, and SEATSOCC with the same Object reference, Class identifier, Type identifier,

64 www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Figure 6 Setting Attribute Properties
|a| CARRID Airline Code
Public® Read ..{&E|Business key E | S5_CARR_ID
Figure 7 Creating the CL_FLIGHT Persistent Class
Classiattribute AL MY Twpe L.. Assigned field Zlass D Field Tahle
7 @) CL_FLIGHT
& CARRID < @ 5_CARR_ID CARRID SFLIGHT
&1 COMMID e @ s_conn_ID CONNID SFLIGHT
&7 FLDATE s @ S_DATE FLDATE SFLIGHT
5k SEATSMAY @ S_SEATSMAX SEATSMAX SFLIGHT
5k SEATSOCC @ S_SEATSOCC SEATSOCC SFLIGHT
L[]l [4]lv]

GUID). In our example, we used a mapping type
of “Business key” for key table fields and “Value
attribute” for non-key table fields. Figure 6
shows what the screen looks like when you’re
setting attributes.

Accessor Methods

When you create a persistent or transient
attribute, the Class Builder also generates
accessor methods automatically. You use
these methods to access the attributes of
persistent classes. For the attribute
SEATSOCC of CL_FLIGHT, the methods
SET_SEATSOCC and GET_SEATSOCC are
generated. Note that the visibility value you
see in the Persistence Representation screen
(see step 6) applies to the accessor method.
The attribute itself is protected or private.

7. Press the “Return” key or click on [4] to accept
the values in the editing area. The upper half
of the Persistence Representation screen now
shows the new attribute with its mapping and
properties.

Figure 7 shows how the upper half of the
Persistence Representation screen looks after
this step.

8. Click on H to save your changes and on & to
return to the Class Builder.

9. Activate the persistent class in the Class Builder
with [1. Also activate the class agent when
prompted.

Repeat these steps to create the second persistent
class, CL_BOOKI NG to represent the reservation.
Map the class to the table SBOOK, with the attributes
BOCKI D, CARRI D, CONNI D, FLDATE, and

For site licenses and volume subscriptions, call 1-781-751-8699.

65

SAP Professional Journal January/February 2002

Figure 8 Creating the CL_BOOKING Persistent Class

Classritiribute AL MY Type L.. Assigned field Class ID Field Tahle

2 @ CL_BOOKING
&1 BOOKID e @ s_BooK_ID BOOKID SROOK
&' CARRID & @ S_CARR_ID CARRID SBOOK
&7 COMMID e @ S_CONN_ID COMMNID SRO0K
&7 FLDATE &5 @ 5_DATE FLOATE SBOOK
& CUSTOMID @ 5_CUSTOMER CUSTOMID SRO0K

[l (<[]

CUSTOM D. Figure 8 shows how the upper half of
the Persistence Representation screen looks after
completing these steps for the second class.

v' Mapping Multiple Tables to a Class

To map more than one table to one class (or if
there is no pop-up for selecting a table), use the
context menu on the table container header.

v’ Creating Transient Attributes

To create a transient attribute, use the attribute
tabstrip in the Class Builder.

Before we begin discussing how to write the code
to use these persistent classes, let’s examine some
special scenarios you might encounter with class-to-
table mapping.

Advanced Considerations for
Object Relational Mapping

As you have seen, object relational mapping is a
seemingly simple concept and the Class Builder
makes it easy to implement. However, be aware of
the following complexities that could cause problems
as you begin working with persistent classes:

* Managing object references
* Handling class inheritance

If you are not an experienced object-oriented
programmer, you may want to learn more about
the related design principles before working with
these scenarios.

Managing Object References

Objects normally hold references to other objects.
With persistent classes, persistent attributes in persis-
tent instances can hold references to other persistent
instances. But storing these references in the data-
base presents a problem. These in-memory refer-
ences point to objects in an internal session and are
only valid for the duration of that session. In order
to store references in the database, you need to do
two things:

» Use a GUID (rather than a business key) as the
identifier for the referenced object.

* The table corresponding to the reference holder’s
persistent class must contain two fields of type
OS_QGUI D for storing the persistence reference:
one for the instance GUID and one for the class
GUID. The Object Services runtime system
transparently handles the transformation between
runtime and persistent references.

66 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Figure 9

Mapping Inherited Classes to Tables

Classes that inherit from
a non-abstract class

Vertical mapping

Map the new attributes of a subclass, together with
the attributes for the object identity, to its own table.
Note that the object identity attributes are mapped
to more than one table.

A class that inherits from
an abstract class

Horizontal mapping

Since you can define some persistent attributes for
an abstract class, define the subclass mapping to its
own table for each subclass.

Subclasses to be
mapped to the same
table as their superclass

Mapping to one table
with a type field

Each table entry represents a persistent instance of
a class, which means you also need to know the
persistent class to which the table entry belongs.

To accomplish this, the table must contain a field
with the data element OS_GUID, which contains the
class GUID of the table entry, the “discriminator.”
Map this table field to a special attribute with the
mapping type “Type identifier.”

To define a mapping for an attribute that is an
object reference, you must map two table fields to
the attribute. Choose a name for this attribute and
map the two table fields to the same name, one with
mapping type “Object reference” and the other with
mapping type “Class identifier.”

v’ Storing GUIDs in Tables

Use the data element OS_GUID for all table
fields that contain a GUID. Otherwise, you
can’t choose mapping type “GUID,” “Object
reference,” “Class identifier,” or “Type
identifier” in the Mapping Assistant’s mapping
type selector.

Handling Class Inheritance

Mapping classes to tables becomes considerably more
complex in the context of persistent class inheritance.
Suppose you have a persistent Class A, and you want
to define a persistent Class B that inherits from it.
How do you handle the mapping? First, understand

that using Object Services with mapping and inherit-
ance is based on three principles:

* Mapping is inherited.
* Mapping cannot be redefined.

* A superclass of a persistent class must be persis-
tent, except for the class OBJECT.

Consequently, the object identity of the root
persistent class must be the same in all inherited
classes. You can define a class-to-table mapping for
inheritance in three ways, as shown in Figure 9.

Working with Persistent Classes

When working with persistent classes, you need to
remember that class agents manage instances of
persistent classes. These class agents provide
lifecycle methods (cr eat e-, get -, and del et e-)
for managing the instance lifecycle in your program,
but the agents perform the actual work. Only the

For site licenses and volume subscriptions, call 1-781-751-8699.

67

SAP Professional Journal January/February 2002

Figure 10 Persistent Class States

NEW Instances that are newly created as persistent with a create-persistent method.

LOADED Instances that are loaded from the database with a get-persistent method. Note:
If a persistent attribute of a loaded persistent instance is actually a reference to
another persistent instance, an empty instance is created as NOT LOADED.
When an attribute of the referenced instance is accessed, the instance is loaded
from the database and its state becomes LOADED.

CHANGED When an attribute of a loaded persistent instance is changed.

DELETED If a delete-persistent method is called for this instance.

NOT LOADED Instances after transaction completion, which means they can be removed by
garbage collection.

class agent can create objects. Further, the class
agent must be notified when an attribute of the
persistent class is accessed. To accommodate these
requirements, you can only access persistent and
transient attributes with the provided accessor meth-
ods. The accessor method signals to the class agent
that an attribute has been accessed.

Accessing Class Agents

For each persistent class, the Class Builder automati-
cally generates two classes:

* Base Class Agent
+ Class Agent

In our example application, the Class Agent class
for the persistent class CL__FLI GHT is named
CA_FLI GHT; the Base Class Agent class is named
CB_FLI GHT. The Class Agent class, which is the
only subclass of the abstract class Base Class Agent,
follows the Singleton pattern. Although the instance
is created implicitly, you can access it through the
public static attribute CA_FLI GHT=>AGENT.

A superclass of all class agents provides methods

that are common to all class agents and do not need to
be generated. Method generation applies only to the
Base Class Agent class. Therefore, you can redefine
both the generated and common methods in the Class
Agent class if you want to change the class agent’s
behavior (for example, if want to implement your
own database table buffer).

Instance Lifecycle

An instance of a persistent class can be either persis-
tent or transient. It also has an associated state at
each point in its lifecycle, from creation to removal
by garbage collection. Figure 10 describes the pos-
sible lifecycle states of persistent classes.

If a persistent instance is created or loaded
from the database, the callback method
| F_OS_STATE~I NI T of the persistent class
is called. If a persistent instance is deleted or
changes to NOT LOADED, the callback method
| F_OS_STATE~I NVALI DATE is called. Within
these methods, your application can handle resources
needed or initialize transient attributes.

Note that transient instances always have the state

68 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Figure 11

Lifecycle Management Methods for

Persistent Instances with Business Key Identity

Class-specific methods that

CREATE_PERSISTENT(<BKEY1..BKEYN>)

pass the business key as a
single parameter

GET_PERSISTENT(<BKEY1..BKEYN>)

DELETE_PERSISTENT(<BKEY1..BKEYN>)

Generic methods that pass a

IF_OS_FACTORY~CREATE_PERSISTENT_BY_ KEY(<BKEY>)

business key

IF_OS_CA_PERSISTENCY~GET_PERSISTENT_BY_KEY(<BKEY>)

Generic methods that pass an

IF_OS_FACTORY~DELETE_PERSISTENT(<OREF>)

object reference

IF_OS_FACTORY~REFRESH_PERSISTENT(<OREF>)

IF_OS_FACTORY~RELEASE(<OREF>)

TRANSI ENT. You can’t change an instance from
transient to persistent, or vice versa. You must
create an instance as transient with a cr eat e-
transi ent method. If a transient instance is cre-
ated, the callback method | F_OS_STATE~I NI T of
the persistent class is called.

Lifecycle Management

Lifecycle management methods for persistent
instances are either class-specific or generic, and
differ in how they pass the object identity as a param-
eter. Figure 11 summarizes these methods for the
business key object identity. For class-specific meth-
ods, the signature depends on the object identity type.
If the object identity type is business key, you pass

a parameter for each business key. For generic meth-
ods that pass a business key, the signature provides
an untyped parameter. The class agent expects to
receive a structure that contains all business keys in
the defined order. In addition, some generic methods
pass the instance as an object reference.

You can use lifecycle management events that are
raised by the class agent to learn about changes to the
lifecycle state of the instances of persistent classes.
These events are raised when instances are created
(CREATED_PERSI STENT and

CREATED_TRANSI ENT), loaded

(LOADED_W TH_STATE and

LOADED W THOUT _STATE), about to be deleted
(TO_BE_DELETED), or have been deleted
(DELETED). All lifecycle management events belong
to the interface | F_OS_FACTORY. You can use
these events to keep track of all objects that are cre-
ated or deleted while your application is running.

Creating a Persistent Object

To create a persistent object, you use the class-
specific method CREATE_PERSI STENT. The
required parameters depend on the object identity

type:

* For objects identified by business key, you must
pass the business keys and (optionally) the value
attributes and references. The persistent instance
is first created only in the internal session. At
commit-time, the persistent object is created in
the database. For performance reasons, its exist-
ence is checked only in the cache, not in the
database. To check the existence of an object,
you must use the GET__PERSI STENT method
manually. If an instance with the same identity
already exists in the cache, the exception
CX_OS_OBJECT_EXI STI NGis raised.

For site licenses and volume subscriptions, call 1-781-751-8699.

69

SAP Professional Journal January/February 2002

Listing 1: Creating a Persistent Instance of a Persistent Class

REPORT OS_EXAMPLE.
DATA: BOCKI NG

START- OF- SELECTI ON.
BOOKI NG_AGENT = CA_BOOKI NG=>ACGENT.
TRY.

| _CARRI D
| _CONNI D

10 | _FLDATE
|

'LH
' 2104

' 20010801"
_BOOKI D ' 00000042'

12 | _CUSTOM D = ' 00000013).
13 CATCH CX_OS_OBJECT_EXI STI NG
14 ENDTRY.

15 COW T WORK.

©Woo~NOULE, WN B

* For objects identified by GUID, you don’t need
to pass any identity information. Value attributes
and references are optional parameters. The
GUID is created internally and assigned to
the instance.

To continue our example, in the last section you
learned how to create the persistent classes you would
need for an airline seat reservation application. Now
let’s examine how to use those classes as you begin
writing the code to reserve a seat. The first step is to
create a persistent instance of the persistent class
CL_BOCKI NG, which represents the reservation (see
the sample code in Listing 1).

Here’s how this sample code works. In line 5,
the reference to the class agent
(CA_BOCKI NG=>ACENT) is stored in the local
variable BOOKI NG_AGENT. In lines 7-12, a persis-
tent instance with the identity “LH 2104 20010801
00000042 is created in the internal session. Note
that this example illustrates the use of the business
key object identity type. The object is stored to
the database when the COMM T WORK statement is
executed (line 15). If an object with this identity

TYPE REF TO CL_BOOKI NG,
BOOKI NG_AGENT TYPE REF TO CA_BOCKI NG

BOOKI NG = BOOKI NG_AGENT- >CREATE_PERSI STENT(

already exists in the database, there will be an update
task failure. If an object with this identity already
exists in the internal session, an exception is raised.
(For simplicity, this example doesn’t show the code
for error handling.)

&* Warning!

If the class agent is not activated, your program
will produce nasty syntax errors.

Loading a Persistent Object

You use different methods to load a persistent object,
depending on the object identity type:

* To load a persistent object with a business key
object identity, you use the class-specific method
CGET_PERSI STENT. It expects the business
keys as parameters. If the object is already
loaded, the method returns a reference to the
loaded object. If the object can’t be found,
the exception CX_0OS_OBJECT_NOT_FOUND
is raised.

70 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

* Persistent objects with a GUID identity are trans- Our example is not yet complete. In order to
parently loaded as you navigate from one object reserve a seat for a particular flight, you first need to
to another. Additionally, if you know the GUID, determine whether a seat is still available. This infor-
you can load the object manually with the generic mation is stored in the persistent object that repre-
method | F_OS_CA_PERSI| STENCY~CET_ sents the flight (CL_FLI| GHT). So, you need to load
PERSI STENT_BY_Q D. It expects the GUID as this object from the database. You also need to
a parameter. increase the number of occupied seats for the flight.

And both changes must belong to the same transac-
You can load an already-loaded persistent tion in order to guarantee data consistency. Listing 2
object from the database with the method shows the sample code to accomplish this task.

| F_OS_FACTORY~REFRESH_PERSI STENT. It

expects the instance reference as a parameter. Let’s review how this code works. In lines

Listing 2: Loading and Updating a Persistent Object

1 REPORT OS_EXAMPLE.

2 DATA FLIGHT TYPE REF TO CL_FLI GHT,
3 FLI GHT_AGENT TYPE REF TO CA FLI GHT,
4 SEATSFREE TYPE I,

5 SEATSOCC TYPE |.

6 DATA: BOOKI NG TYPE REF TO CL_BOOKI NG,
7 BOOKI NG_AGENT TYPE REF TO CA BOOKI NG.
8 START- OF- SELECTI ON.

9 FLI GHT_AGENT = CA FLI GHT=>AGENT.

10 BOOKI NG AGENT = CA_BOOKI NG=>AGENT.

11 TRY.

12 FLIGHT = FLI GHT_AGENT- >GET_PERSI STENT(
13 | CARRID = 'LH

14 | CONNNID = '2104'

15 | _FLDATE = '20010801').

16 SEATSFREE = FLI GHT- >GET_SEATSMAX() —

17 FLI GHT- >GET_SEATSOCC().

18 | F SEATSFREE > 0.
19 BOOKI NG = BOOKI NG_AGENT- >CREATE_PERSI STENT(

20 | CARRID = 'LH
21 | _CONNID = ' 2104'

22 | _FLDATE = '20010801'

23 | _BOOKID = '00000043'

24 | _CUSTOM D = ' 00000013").

25 SEATSOCC = FLI GHT- >GET_SEATSOCC() + 1.
26 FLI GHT- >SET_SEATSOCC(SEATSOCC) .

27 ENDIF.
28 CATCH CX_OS_ERROR.
29 ENDTRY.

30 COWM T WORK.

For site licenses and volume subscriptions, call 1-781-751-8699. 71

SAP Professional Journal January/February 2002

12-15, the flight with identity “LH 2104 20010801~
is loaded from the database. In lines 16-17, the
accessor methods are used to obtain the flight’s
attributes and compute the number of seats available.
In lines 19-24, a booking is created if a seat is still
available for this flight. In lines 25-26, the flight’s
attribute SEATSOCC is increased by 1. Here

you can see the use of both accessor methods,
GET_SEATSOCC and SET_SEATSOCC. For sim-
plicity, we generically catch a superclass of all Object
Services user exceptions. As in the previous code
sample, we excluded the error-handling code. If the
flight is not found, an exception is raised and caught
in line 28, and no booking is created. We previously
handled the case where a booking with this identity
already exists (see Listing 1, which shows the code
for creating a persistent instance). In both cases,
transactional integrity is preserved. Note that you
need to change the booking ID in line 23 to avoid
duplicate key errors. Furthermore, make sure that the
data for the flight exists in the database. You could
also add code that retrieves the next booking ID from
the corresponding number range.

v’ Handling Error Conditions

Object Services offers a powerful, class-based
exception framework. It provides built-in
exceptions for almost any error situation, such
as get-exception, create-exception, and delete-
exception. This feature makes it easy for you to
handle error conditions properly.

Deleting a Persistent Object

Last but not least, let’s not forget that you need
to delete persistent objects. To delete a persistent
object with a business key object identity from
the database, use the class-specific method
DELETE_PERSI STENT. It expects the business
keys as parameters. First, the instance is marked
as deleted in the cache. Its existence is checked

first in the cache and then in the database. If

the object does not exist, the exception
CX_OS_OBJECT_NOT_EXI STI NGis raised.
Then, at commit-time, the persistent object is
deleted from the database. If you access a deleted
instance with an accessor method, the exception
CX_OS_OBJECT_NOT_FOUND s raised. You
can delete an already-loaded persistent object
from the database with the method

| F_OS_FACTORY~DELETE_PERSI STENT. It
expects the instance reference as a parameter.

In summary, you have now learned how to use
the Persistence Service to transparently create, load,
manage, and delete persistent objects. However,
Object Services also provides a valuable Transaction
Service. Let’s examine how this component makes
it similarly easy to manage transactions in your
applications.

How the Transaction
Service Works

The Transaction Service enables you to program-
matically define transaction boundaries and sub-
transactions. Transactions are represented by
transaction objects. Transaction objects are managed
by the Transaction Manager, which follows the
Singleton pattern and provides a factory method
for creating transaction objects. The Transaction
Manager implements the interface

| F_OS_TRANSACTI ON_MANAGER, and the
transaction class implements the interface

I F_OS_TRANSACTI ON. You only have to deal
with the interface | F_OS_TRANSACTI ON.

You can only use a transaction object for one
transaction. Follow these guidelines for using the
Transaction Service to manage a transaction:

* Use the method START to begin a transaction.

* Use the method END to successfully end a
transaction.

72 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

* Use the method UNDOto roll back any changes
since START.

Object Services also supports nested transactions.
Within a transaction, you can start a sub-transaction.
If a sub-transaction is rolled back, the state of all
objects changed in this sub-transaction will be as it
was when this sub-transaction started. Nested trans-
actions are useful for isolating the transactional
behavior of a called procedure from its caller. Using
its own sub-transaction, the called procedure can
perform a local rollback without invalidating the
transaction logic of its caller. A transaction that is
started in another transaction is automatically a sub-
transaction, which means that parallel transactions are
not supported. The first started, and now running,
transaction is called the “top-level” transaction.

If you call the method END on the top-level trans-
action, an ABAP COVM T WORK is executed. If you
call the method UNDO on the top-level transaction, an

ABAP ROLLBACK WORK is executed and the state of
all changed objects will be as it was before the trans-
action started. The Object Services runtime copies
the before image of the instance to the undo buffer
only when the instance is changed. If a transaction is
successfully ended, the undo buffer with the before
images of the instances changed in this transaction

is discarded. The undo buffer uses the methods

| F_OS_STATE~GET and | F_OS_STATE~SET of
the persistent class to get the before image of the state
of an instance and to set the state of an instance from
the before image. At the start of a subsequent trans-
action, loaded persistent instances will be invalidated
and reloaded if accessed in the subsequent transac-
tion. To avoid this, you can create chained transac-
tions with the methods END_AND_CHAI Nand
UNDO_AND_CHAI N.

To wrap up our example, let’s see how you might
leverage the Transaction Service. One option is to
use the Transaction Service instead of the COMM T
WORK statement. Listing 3 shows the sample code to

Listing 3: Replacing a COMMIT Statement with the Transaction Service

1 REPORT OS_EXAMPLE.

7 BOOKI NG_AGENT TYPE REF TO CA_BOCKI NG
T1 DATA: M TYPE REF TO | F_OS_TRANSACTI ON_MANAGER,

T2 T TYPE REF TO | F_OS_TRANSACTI ON.

T3 LOAD- OF- PROGRAM
T4 CL_OS_SYSTEM=>I NI T_AND SET_MODES(

T5 | _EXTERNAL_COW T = OSCON_FALSE).

8 START- OF- SELECTI ON.

T6 M = CL_OS_SYSTEM=>GET_TRANSACTI ON_MANAGER().

T7 T = T- >CREATE_TRANSACTI ON().

9 FLI GHT_AGENT = CA FLI GHT=>AGENT.
10 BOOKI NG AGENT = CA BOOKI NG=>AGENT.
11 TRY.

T8 T->START().

T9 T->END().
29 CATCH CX_OS_ERROR.
30 ENDTRY.

For site licenses and volume subscriptions, call 1-781-751-8699.

73

SAP Professional Journal January/February 2002

Tips for Working with Object Services

environment.

classes:

references.

Application Options to Consider

The Object Services framework is a powerful tool for managing object persistence and transactions.
Like any new technique, we encourage you to practice what you have learned and integrate it into
your own ABAP expertise. Try to create the airline seat reservation example in your development

Along the way, we hope you find the following guidelines helpful as you design and use persistent

v If you want to wrap legacy table data with a persistent class, use the business key object identity.
You can then access the data with the table key (i.e., a semantic key).

v" If you want to make large object graphs persistent, use the GUID object identity and persistent

v If you want to access an object graph with a semantic key, use a class with a business key object
identity and a persistent reference to the root class of the object graph.

v" You can mix business key and GUID object identities. You then can access a persistent object with
both the semantic key and through a persistent reference.

The Post-Processing Framework (PPF) is a generic service in the SAP Web Application Server that was
created using Object Services. It enables applications to trigger actions such as sending e-mails or
creating purchase order confirmations. From the PPF perspective, both the application and the actions

accomplish this task. Lines T1-T9 , which are shown
in bold, represent the code for working with the
Transaction Service.

Here’s how this code works. In lines T3-T5,
Object Services is explicitly initialized. Note that
you must do this in the event block LOAD- OF-
PROGRAM In lines T6-T7, a transaction object is
created. The actual transaction is started in line T8
and completed in line T9. This line replaces the
COWM T WORK statement in our example (see
Listing 2, line 30).

Transaction Interoperability Considerations

To ensure interoperability with standard ABAP trans-
actions, Object Services transactions are tightly

coupled with the logical unit of work (LUW) concept
in SAP.

Suppose a legacy application (i.e., a standard
ABAP application) calls an Object Services compo-
nent (i.e., a component that uses the Object Services
Persistence Service). The Object Services runtime
environment automatically creates and starts a top-
level transaction. When the legacy application
executes the ABAP COVM T WORK statement, the
top-level transaction is implicitly ended and the SAP
LUW is finished. This scenario is called compatibil-
ity mode.

Suppose an Object Services application (i.e.,
an application that uses both the Persistence and
Transaction Services) calls a legacy application

74 www.SAPpro.com

©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

are represented as persistent objects, which enables uniform access to different application objects.

This is a common pattern for designing generic tools.

This example is only one possibility for leveraging Object Services functionality in an application.
Obviously you can take advantage of its features in many other ways. Once you feel confident using
Object Services in simple ways in your applications, here are some suggestions for building more

complex functionality:

v' Try writing your own database access layer. Suppose your data is not stored in database tables, or
you can only retrieve and save the data by means of function modules. You can map the attributes
to the fields of a dictionary structure that works as a proxy. Note that you must also redefine the

database access methods in the class agent.

v' Try changing the behavior of the class agent. For example, you can add buffers to the class agent
to retrieve multiple data per database access for performance reasons.

When to Avoid Using Object Services

Keep in mind that persistent object frameworks such as Object Services are generally not well suited for
applications where performance is critical, such as those that handle millions of objects. This limitation
arises from the bookkeeping overhead caused by automatic persistence management. In that case, a
better option is to make your objects persistent manually by using ABAP Open SQL.*

* For more information on programming with Open SQL, see Adrian Gérler and Ulrich Koch’s article “Enhanced ABAP
Programming with Dynamic Open SQL” in the September/October 2001 issue of SAP Professional Journal.

component (i.e., a standard ABAP component).
When the Object Services application explicitly ends
the top-level transaction, the Object Services runtime
executes an ABAP COMM T WORK statement and the
SAP LUW is finished. The legacy component must
not execute the ABAP COMM T WORK statement.
Otherwise, since the transaction boundaries are man-
aged by the Object Services application, a runtime
error will be raised.

Object Services top-level transactions have three
update modes (“update task,” “synchronous update
task,” and “local update task™), which correspond to
the SAP LUW update modes. You must use the class
method | NI T_AND_SET_MODES of the class
CL_OS_SYSTEMto set the update mode before the
Object Services runtime environment is started. The

default update mode is “update task.” Alternatively,
specify the transaction code for an object-oriented
transaction with the “OO transaction model” field
selected. Then the update mode is set when execut-
ing the transaction code.

Ready to Write Smarter
ABAP Code?

In this article, we have showed you how the new
Object Services layer in Release 6.10 expands the
object-oriented design promise of ABAP Objects:

v The Persistence Service provides you with trans-
parent object persistence, which means that most

For site licenses and volume subscriptions, call 1-781-751-8699.

75

SAP Professional Journal January/February 2002

aspects are handled automatically. (No more SQL
code to make objects in a database persistent!)

v The Transaction Service gives you control over
your transactions and provides you with nested
in-memory transactions.

v" You can now focus on building the business
logic into your ABAP programs, instead of writing
code to handle common application and system-level
services.

While this article is only a starting point, we hope
it gives you the confidence to try these techniques for
yourself. And if you want to learn more about the
Object Services layer, we recommend the online R/3
manual as an excellent reference source.

Stefan Bresch received his diploma in computer
science from the University of Karlsruhe,
Germany. Stefan joined SAP in 2000 and since
then has been working on Object Persistence. He
belongs to the Business Programming Languages
Group in Walldorf and is currently working on
serialization of ABAP data structures to XML
representation. He can be reached at
Stefan.bresch@sap.com.

Christian Fecht studied computer science at the
University of Saarland in Saarbruecken, where he
received his Ph.D. in 1997. He joined SAP in
1998, and since then has been working in the
Business Programming Languages Group. He is
responsible for the ABAP runtime environment,
especially for the ABAP Objects garbage
collector. Christian was also involved in the
design of the Object Services, and recently his
focus has been on transparent persistence for
Java. He can be reached at
christian.fecht@sap.com.

Christian Stork studied mathematics and computer
science at the Westfilische Wilhelms-University of
Miinster, Germany. He joined SAP in 1995 and
worked for two years as a trainer, then returned to
the Westfdlische Wilhelms-University of Miinster
for his doctorate, specializing in algebraic
geometry. In 2000, Christian rejoined SAP and
became a member of the Business Programming
Languages Group, where he works as a kernel
developer. He is responsible for the
implementation and maintenance of the Object
Services, and is currently working on calling
ABAP methods from XSLT. He can be reached

at christian.stork@sap.com.

76 www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.

