
59For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Write Smarter ABAP
Programs with Less Effort:
Manage Persistent Objects and
Transactions with Object Services

Stefan Bresch, Christian Fecht, and Christian Stork

ABAP developers, does this dilemma sound familiar? You’re building

an application with ABAP Objects. Parts of your application are

modeled by objects and references between them. As with most

business applications, you also need to store and manipulate persistent

data. But since R/3 uses a relational database as its datastore, achieving

object persistence has been difficult at best due to the gap between the

object and relational models. In your application, you think in terms

of objects that are related by references. However, the underlying

relational database forces you to think in terms of tables and rows that

may be related by foreign keys.

In the past, this gap between the object and relational worlds

has seriously hampered the use of ABAP Objects in application

development. Either you couldn’t fully leverage proper object-oriented

design principles, or you provided the infrastructure to close this gap

yourself. In other words, you had to map classes to relational tables and

write SQL code to load objects from and store them in the database.

Instead of focusing on your application, you spent a considerable

amount of time and effort designing and implementing a persistence

framework.

With the emergence of Object Services in Release 6.10, the situation

has changed substantially. The Object Services layer now provides a

persistence framework that closes the object-relational gap. You no

longer need to write SQL code, objects are transparently loaded from

the database when needed, and changes to persistent objects are

automatically tracked. Object Services offers a framework to handle

most persistence functions automatically and transparently, freeing you

to focus on the business logic in your application.

Stefan Bresch, Business

Programming Languages

Group, SAP AG

Christian Fecht, Business

Programming Languages

Group, SAP AG

Christian Stork, Business

Programming Languages

Group, SAP AG

(complete bios appear on page 76)

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.60

What Are Object Services?

Object-oriented programming is now well supported

in ABAP. However, ABAP Objects alone don’t

provide everything you need for object-oriented

application development. For example, ABAP

Objects don’t support a variety of system-level ser-

vices that are common to most applications:

• Storing objects persistently in a database

• Binding an object to a UI representation

• Transaction and lock management, logging,

archiving, and security

Clearly, repeatedly designing and implementing

these services separately in different applications

isn’t an efficient approach. To address this drawback,

the Object Services software layer was added. The

Object Services runtime environment, which is itself

implemented in ABAP Objects, sits between the

application and the ABAP processor to provide these

services. Figure 1 shows how Object Services — of

which there are two, Persistence and Transaction —

fits into the overall SAP system architecture. In this

article, we’ll show you how to use the Persistence

Service for storing objects in the database, and the

Transaction Service for controlling transactions.

Note that the Persistence and Transaction Services

make their debut in Release 6.10.

How the Persistence

Service Works

The role of the Persistence Service is to provide

transparent object persistence. Previously, you had

to do all the persistence work yourself: mapping

objects to rows in the database, writing code to load

and store objects, and keeping track of object

changes. The Persistence Service now automates

most of these tasks:

• You don’t need to write any code for database

manipulation. The Persistence Service knows

how your objects are mapped to the database, and

how to load and store them.

Figure 1 The Role of Object Services in the R/3 System Architecture

����������	

��
����
����
�
��
�����
	�
��	�����	������	�

��
�����	�

��
������

�
�����
	�

��
���

�������
����	���
����
������ �
�����	��
�������

61For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

• The Persistence Manager automatically tracks all

object changes. At commit-time, it synchronizes

your objects with the database. It knows which

entries must be inserted, updated, and deleted.

Note that the Persistence Service can only man-

age instances of persistent classes. Thus you need to

define persistent classes in the Class Builder, which

we’ll describe later in this article. Persistent classes

can have transient and persistent instances. Transient

instances only exist in application server memory and

are not saved to the database. Their lifetime is lim-

ited by the lifetime of the internal session in which

they were created. A persistent instance is associated

with a persistent object in the database. Both tran-

sient and persistent instances are in-memory objects

that exist for the duration of an internal session, while

the actual persistent object is stored in the database.

Think of a persistent instance and its associated per-

sistent object as two representations of the same

logical entity. If the state of the persistent instance is

updated, the persistent object in the database must

also be updated. For efficiency reasons, this update is

deferred to commit-time. Thus the persistent object

and the persistent instance can be inconsistent at

certain times.

!!!!! Exclusive Update Rights

In order to guarantee exclusive update rights,

you must use the R/3 enqueue mechanism to lock

an object.

All persistent instances are cached in memory

during a session. The cache is then synchronized

with the database at commit-time. You always oper-

ate on persistent instances in the cache. Before you

can access an attribute of a persistent object or invoke

one of its methods, the persistent object must be

loaded from the database into the cache. The Persis-

tence Service automatically performs this load.

Objects are always loaded on demand, one by one.

Suppose persistent Object A contains a reference

to persistent Object B. If you address Object A by

a query, only Object A is loaded into the cache.

Object B is not loaded until it is accessed. The Per-

sistence Service also supports transparent navigation.

For example, if you navigate through an object graph,

following references from one object to another, the

objects are transparently loaded as needed.

Every persistent object has a unique identity that

distinguishes it from all other persistent objects. The

Persistence Service supports two types of object

identifiers:

• Business key, which you assign in your applica-

tion based on a subset of its persistent object

attributes (business keys, key attributes, etc.).

• GUID (global unique identifier), which the Per-

sistence Service automatically generates when the

persistent object is created. A GUID is not part

of the state of the persistent object, nor is it stored

in any persistent attribute. You can’t control

GUID generation in your application.

In addition, a persistent object is uniquely repre-

sented by a persistent instance in the internal session.

Thus if you address a specific persistent object sev-

eral times within the same session, you always get the

reference to the same persistent instance. In order to

implement this uniqueness of representation, the

Persistence Service maintains a mapping from identi-

ties to persistent instances. There is only one map-

ping per internal session.

Using Object Relational Mapping

with Classes and Tables

In the world of object-oriented programming, there is

no meaning to persistence in the relational sense. To

bridge this gap, you need to establish a connection

between classes in your ABAP code and tables in the

R/3 database. Object instances of a class correspond

one-to-one to table entries. Therefore, you map the

persistent attributes of a class to a subset of fields

in the table. This action is referred to as “object

relational mapping.” Classes have two types of

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.62

attributes: persistent and transient. You only need to

define an object relational mapping for persistent

attributes. Follow these additional guidelines to

ensure proper support for object identifiers:

• If you are using business keys to identify objects,

you must map the table key fields to persistent

attributes. The object identity is derived from

these key fields. These attributes, which are

called business keys, are read-only because the

object identity must not change.

• If you are using GUIDs to identify objects,

the table must contain a key field of data type

OS_GUID and you must map it to a special

attribute named OS_GUID. This OS_GUID
attribute is not part of the class. It is only used

internally for object identity in the cache and

the database.

You can perform object relational mapping in

several ways, as shown in Figure 2.

Creating a Persistent Class

Now that you understand how persistent classes work,

let’s examine how to create them. You can create

persistent classes in two ways:

• Start with the object model — Implement the

classes first, then generate the tables needed.

• Start with the tables — Use the tables to create

the object model.

The first method, generating tables from an

object model, is not yet supported by Object Services.

Object Services supports only the second method

with the Persistence Representation tool in the Class

Builder (transaction SE24).

In our experience, real-world examples provide

the best context for learning a new technique, so let’s

walk through an example application that handles

airline seat reservations. The example starts in this

section by showing you how to create two persistent

classes, one to represent the reservation, and another

to represent the flight, with the necessary attributes

and object relational mapping to link the classes to a

table. In the sections that follow, you’ll learn how

to write the code for these classes to check space

availability and reserve the seat. In all cases, we’ll

assume that your database and the required tables

already exist.

To begin our example, we’re going to create a

persistent class named CL_FLIGHT to represent the

airline flight:

Figure 2 Mapping Classes to Tables

Method When to Use It

Map one class to one table Wherever possible. This scenario is the most common, as

well as the most efficient.

Map one class to several tables When data belonging to a class is spread across more than

(multi-table mapping) one table. Key fields must be the same for all affected tables.

Map two or more classes to one For implementing inheritance. See the section “Advanced

table Considerations for Object Relational Mapping” for more

information.

63For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

1. To create a class, open the Class Builder (transac-

tion SE24) and click on “Create.” This launches

the screen shown in Figure 3.

2. Select “Persistent class,” as shown in Figure 3.

(Beware: you can’t change this property later!)

Note also that “Instantiation” switches to

“Protected” after you select “Persistent class.”

Instantiation of a persistent class can only be

“Protected” or “Abstract”; other values are

not allowed.

3. Click “Save,” which returns you to the Class

Builder main screen.

4. In the Class Builder main screen, click ,

which launches the screen shown in Figure 4.

Select the database table to which you want to

map the persistent class — here, we select

“SFLIGHT.”

5. Selecting “SFLIGHT” takes you back to the

Persistence Representation screen shown in

Figure 3 Creating a Persistent Class in the Class Builder

Figure 4 Mapping the Persistent Class to a Table

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.64

Figure 5, where you define persistent attributes

for the class CL_FLIGHT and their table field

mapping.

6. Double-click on a table field to fill the attribute

editing area with values derived from the table

field. We will create persistent attributes for

the table fields CARRID, CONNID, FLDATE,

SEATSMAX, and SEATSOCC with the same

name. By default, the attribute’s name is identi-

cal to the field name, but you can change the

defaults as you wish.

Depending on the field properties, for each

attribute you can choose visibility (Public, Pro-

tected, Private), access (Read only, Changeable),

and mapping type (Value attribute, Business key,

Object reference, Class identifier, Type identifier,

Figure 5 Using the Persistence Representation Tool

65For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Figure 6 Setting Attribute Properties

Accessor Methods

When you create a persistent or transient

attribute, the Class Builder also generates

accessor methods automatically. You use

these methods to access the attributes of

persistent classes. For the attribute

SEATSOCC of CL_FLIGHT, the methods

SET_SEATSOCC and GET_SEATSOCC are

generated. Note that the visibility value you

see in the Persistence Representation screen

(see step 6) applies to the accessor method.

The attribute itself is protected or private.

Figure 7 Creating the CL_FLIGHT Persistent Class

GUID). In our example, we used a mapping type

of “Business key” for key table fields and “Value

attribute” for non-key table fields. Figure 6

shows what the screen looks like when you’re

setting attributes.

7. Press the “Return” key or click on to accept

the values in the editing area. The upper half

of the Persistence Representation screen now

shows the new attribute with its mapping and

properties.

Figure 7 shows how the upper half of the

Persistence Representation screen looks after

this step.

8. Click on to save your changes and on to

return to the Class Builder.

9. Activate the persistent class in the Class Builder

with . Also activate the class agent when

prompted.

Repeat these steps to create the second persistent

class, CL_BOOKING, to represent the reservation.

Map the class to the table SBOOK, with the attributes

BOOKID, CARRID, CONNID, FLDATE, and

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.66

CUSTOMID. Figure 8 shows how the upper half of

the Persistence Representation screen looks after

completing these steps for the second class.

!!!!! Mapping Multiple Tables to a Class

To map more than one table to one class (or if

there is no pop-up for selecting a table), use the

context menu on the table container header.

!!!!! Creating Transient Attributes

To create a transient attribute, use the attribute

tabstrip in the Class Builder.

Before we begin discussing how to write the code

to use these persistent classes, let’s examine some

special scenarios you might encounter with class-to-

table mapping.

Advanced Considerations for

Object Relational Mapping

As you have seen, object relational mapping is a

seemingly simple concept and the Class Builder

makes it easy to implement. However, be aware of

the following complexities that could cause problems

as you begin working with persistent classes:

• Managing object references

• Handling class inheritance

If you are not an experienced object-oriented

programmer, you may want to learn more about

the related design principles before working with

these scenarios.

Managing Object References

Objects normally hold references to other objects.

With persistent classes, persistent attributes in persis-

tent instances can hold references to other persistent

instances. But storing these references in the data-

base presents a problem. These in-memory refer-

ences point to objects in an internal session and are

only valid for the duration of that session. In order

to store references in the database, you need to do

two things:

• Use a GUID (rather than a business key) as the

identifier for the referenced object.

• The table corresponding to the reference holder’s

persistent class must contain two fields of type

OS_GUID for storing the persistence reference:

one for the instance GUID and one for the class

GUID. The Object Services runtime system

transparently handles the transformation between

runtime and persistent references.

Figure 8 Creating the CL_BOOKING Persistent Class

67For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Figure 9 Mapping Inherited Classes to Tables

Guidelines

Map the new attributes of a subclass, together with

the attributes for the object identity, to its own table.

Note that the object identity attributes are mapped

to more than one table.

Since you can define some persistent attributes for

an abstract class, define the subclass mapping to its

own table for each subclass.

Each table entry represents a persistent instance of

a class, which means you also need to know the

persistent class to which the table entry belongs.

To accomplish this, the table must contain a field

with the data element OS_GUID, which contains the

class GUID of the table entry, the “discriminator.”

Map this table field to a special attribute with the

mapping type “Type identifier.”

Inheritance Type

Classes that inherit from

a non-abstract class

A class that inherits from

an abstract class

Subclasses to be

mapped to the same

table as their superclass

Mapping Method

Vertical mapping

Horizontal mapping

Mapping to one table

with a type field

To define a mapping for an attribute that is an

object reference, you must map two table fields to

the attribute. Choose a name for this attribute and

map the two table fields to the same name, one with

mapping type “Object reference” and the other with

mapping type “Class identifier.”

!!!!! Storing GUIDs in Tables

Use the data element OS_GUID for all table

fields that contain a GUID. Otherwise, you

can’t choose mapping type “GUID,” “Object

reference,” “Class identifier,” or “Type

identifier” in the Mapping Assistant’s mapping

type selector.

Handling Class Inheritance

Mapping classes to tables becomes considerably more

complex in the context of persistent class inheritance.

Suppose you have a persistent Class A, and you want

to define a persistent Class B that inherits from it.

How do you handle the mapping? First, understand

that using Object Services with mapping and inherit-

ance is based on three principles:

• Mapping is inherited.

• Mapping cannot be redefined.

• A superclass of a persistent class must be persis-

tent, except for the class OBJECT.

Consequently, the object identity of the root

persistent class must be the same in all inherited

classes. You can define a class-to-table mapping for

inheritance in three ways, as shown in Figure 9.

Working with Persistent Classes

When working with persistent classes, you need to

remember that class agents manage instances of

persistent classes. These class agents provide

lifecycle methods (create-, get-, and delete-)

for managing the instance lifecycle in your program,

but the agents perform the actual work. Only the

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.68

Figure 10 Persistent Class States

State Description

NEW Instances that are newly created as persistent with a create-persistent method.

LOADED Instances that are loaded from the database with a get-persistent method. Note:

If a persistent attribute of a loaded persistent instance is actually a reference to

another persistent instance, an empty instance is created as NOT LOADED.

When an attribute of the referenced instance is accessed, the instance is loaded

from the database and its state becomes LOADED.

CHANGED When an attribute of a loaded persistent instance is changed.

DELETED If a delete-persistent method is called for this instance.

NOT LOADED Instances after transaction completion, which means they can be removed by

garbage collection.

class agent can create objects. Further, the class

agent must be notified when an attribute of the

persistent class is accessed. To accommodate these

requirements, you can only access persistent and

transient attributes with the provided accessor meth-

ods. The accessor method signals to the class agent

that an attribute has been accessed.

Accessing Class Agents

For each persistent class, the Class Builder automati-

cally generates two classes:

• Base Class Agent

• Class Agent

In our example application, the Class Agent class

for the persistent class CL_FLIGHT is named

CA_FLIGHT; the Base Class Agent class is named

CB_FLIGHT. The Class Agent class, which is the

only subclass of the abstract class Base Class Agent,

follows the Singleton pattern. Although the instance

is created implicitly, you can access it through the

public static attribute CA_FLIGHT=>AGENT.

A superclass of all class agents provides methods

that are common to all class agents and do not need to

be generated. Method generation applies only to the

Base Class Agent class. Therefore, you can redefine

both the generated and common methods in the Class

Agent class if you want to change the class agent’s

behavior (for example, if want to implement your

own database table buffer).

Instance Lifecycle

An instance of a persistent class can be either persis-

tent or transient. It also has an associated state at

each point in its lifecycle, from creation to removal

by garbage collection. Figure 10 describes the pos-

sible lifecycle states of persistent classes.

If a persistent instance is created or loaded

from the database, the callback method

IF_OS_STATE~INIT of the persistent class

is called. If a persistent instance is deleted or

changes to NOT LOADED, the callback method

IF_OS_STATE~INVALIDATE is called. Within

these methods, your application can handle resources

needed or initialize transient attributes.

Note that transient instances always have the state

69For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Figure 11 Lifecycle Management Methods for
Persistent Instances with Business Key Identity

Methods Provided

CREATE_PERSISTENT(<BKEY1..BKEYN>)

GET_PERSISTENT(<BKEY1..BKEYN>)

DELETE_PERSISTENT(<BKEY1..BKEYN>)

IF_OS_FACTORY~CREATE_PERSISTENT_BY_KEY(<BKEY>)

IF_OS_CA_PERSISTENCY~GET_PERSISTENT_BY_KEY(<BKEY>)

IF_OS_FACTORY~DELETE_PERSISTENT(<OREF>)

IF_OS_FACTORY~REFRESH_PERSISTENT(<OREF>)

IF_OS_FACTORY~RELEASE(<OREF>)

Category

Class-specific methods that

pass the business key as a

single parameter

Generic methods that pass a

business key

Generic methods that pass an

object reference

TRANSIENT. You can’t change an instance from

transient to persistent, or vice versa. You must

create an instance as transient with a create-
transient method. If a transient instance is cre-

ated, the callback method IF_OS_STATE~INIT of

the persistent class is called.

Lifecycle Management

Lifecycle management methods for persistent

instances are either class-specific or generic, and

differ in how they pass the object identity as a param-

eter. Figure 11 summarizes these methods for the

business key object identity. For class-specific meth-

ods, the signature depends on the object identity type.

If the object identity type is business key, you pass

a parameter for each business key. For generic meth-

ods that pass a business key, the signature provides

an untyped parameter. The class agent expects to

receive a structure that contains all business keys in

the defined order. In addition, some generic methods

pass the instance as an object reference.

You can use lifecycle management events that are

raised by the class agent to learn about changes to the

lifecycle state of the instances of persistent classes.

These events are raised when instances are created

(CREATED_PERSISTENT and

CREATED_TRANSIENT), loaded

(LOADED_WITH_STATE and

LOADED_WITHOUT_STATE), about to be deleted

(TO_BE_DELETED), or have been deleted

(DELETED). All lifecycle management events belong

to the interface IF_OS_FACTORY. You can use

these events to keep track of all objects that are cre-

ated or deleted while your application is running.

Creating a Persistent Object

To create a persistent object, you use the class-

specific method CREATE_PERSISTENT. The

required parameters depend on the object identity

type:

• For objects identified by business key, you must

pass the business keys and (optionally) the value

attributes and references. The persistent instance

is first created only in the internal session. At

commit-time, the persistent object is created in

the database. For performance reasons, its exist-

ence is checked only in the cache, not in the

database. To check the existence of an object,

you must use the GET_PERSISTENT method

manually. If an instance with the same identity

already exists in the cache, the exception

CX_OS_OBJECT_EXISTING is raised.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.70

• For objects identified by GUID, you don’t need

to pass any identity information. Value attributes

and references are optional parameters. The

GUID is created internally and assigned to

the instance.

To continue our example, in the last section you

learned how to create the persistent classes you would

need for an airline seat reservation application. Now

let’s examine how to use those classes as you begin

writing the code to reserve a seat. The first step is to

create a persistent instance of the persistent class

CL_BOOKING, which represents the reservation (see

the sample code in Listing 1).

Here’s how this sample code works. In line 5,

the reference to the class agent

(CA_BOOKING=>AGENT) is stored in the local

variable BOOKING_AGENT. In lines 7-12, a persis-

tent instance with the identity “LH 2104 20010801

00000042” is created in the internal session. Note

that this example illustrates the use of the business

key object identity type. The object is stored to

the database when the COMMIT WORK statement is

executed (line 15). If an object with this identity

already exists in the database, there will be an update

task failure. If an object with this identity already

exists in the internal session, an exception is raised.

(For simplicity, this example doesn’t show the code

for error handling.)

""""" Warning!

If the class agent is not activated, your program

will produce nasty syntax errors.

Loading a Persistent Object

You use different methods to load a persistent object,

depending on the object identity type:

• To load a persistent object with a business key

object identity, you use the class-specific method

GET_PERSISTENT. It expects the business

keys as parameters. If the object is already

loaded, the method returns a reference to the

loaded object. If the object can’t be found,

the exception CX_OS_OBJECT_NOT_FOUND
is raised.

Listing 1: Creating a Persistent Instance of a Persistent Class

1 REPORT OS_EXAMPLE.
2 DATA: BOOKING TYPE REF TO CL_BOOKING,
3 BOOKING_AGENT TYPE REF TO CA_BOOKING.
4 START-OF-SELECTION.
5 BOOKING_AGENT = CA_BOOKING=>AGENT.
6 TRY.
7 BOOKING = BOOKING_AGENT->CREATE_PERSISTENT(
8 I_CARRID = 'LH'
9 I_CONNID = '2104'
10 I_FLDATE = '20010801'
11 I_BOOKID = '00000042'
12 I_CUSTOMID = '00000013').
13 CATCH CX_OS_OBJECT_EXISTING.
14 ENDTRY.
15 COMMIT WORK.

71For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Listing 2: Loading and Updating a Persistent Object

1 REPORT OS_EXAMPLE.
2 DATA: FLIGHT TYPE REF TO CL_FLIGHT,
3 FLIGHT_AGENT TYPE REF TO CA_FLIGHT,
4 SEATSFREE TYPE I,
5 SEATSOCC TYPE I.
6 DATA: BOOKING TYPE REF TO CL_BOOKING,
7 BOOKING_AGENT TYPE REF TO CA_BOOKING.
8 START-OF-SELECTION.
9 FLIGHT_AGENT = CA_FLIGHT=>AGENT.
10 BOOKING_AGENT = CA_BOOKING=>AGENT.
11 TRY.
12 FLIGHT = FLIGHT_AGENT->GET_PERSISTENT(
13 I_CARRID = 'LH'
14 I_CONNID = '2104'
15 I_FLDATE = '20010801').
16 SEATSFREE = FLIGHT->GET_SEATSMAX() –
17 FLIGHT->GET_SEATSOCC().
18 IF SEATSFREE > 0.
19 BOOKING = BOOKING_AGENT->CREATE_PERSISTENT(
20 I_CARRID = 'LH'
21 I_CONNID = '2104'
22 I_FLDATE = '20010801'
23 I_BOOKID = '00000043'
24 I_CUSTOMID = '00000013').
25 SEATSOCC = FLIGHT->GET_SEATSOCC() + 1.
26 FLIGHT->SET_SEATSOCC(SEATSOCC).
27 ENDIF.
28 CATCH CX_OS_ERROR.
29 ENDTRY.
30 COMMIT WORK.

• Persistent objects with a GUID identity are trans-

parently loaded as you navigate from one object

to another. Additionally, if you know the GUID,

you can load the object manually with the generic

method IF_OS_CA_PERSISTENCY~GET_
PERSISTENT_BY_OID. It expects the GUID as

a parameter.

You can load an already-loaded persistent

object from the database with the method

IF_OS_FACTORY~REFRESH_PERSISTENT. It

expects the instance reference as a parameter.

Our example is not yet complete. In order to

reserve a seat for a particular flight, you first need to

determine whether a seat is still available. This infor-

mation is stored in the persistent object that repre-

sents the flight (CL_FLIGHT). So, you need to load

this object from the database. You also need to

increase the number of occupied seats for the flight.

And both changes must belong to the same transac-

tion in order to guarantee data consistency. Listing 2

shows the sample code to accomplish this task.

Let’s review how this code works. In lines

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.72

12-15, the flight with identity “LH 2104 20010801”

is loaded from the database. In lines 16-17, the

accessor methods are used to obtain the flight’s

attributes and compute the number of seats available.

In lines 19-24, a booking is created if a seat is still

available for this flight. In lines 25-26, the flight’s

attribute SEATSOCC is increased by 1. Here

you can see the use of both accessor methods,

GET_SEATSOCC and SET_SEATSOCC. For sim-

plicity, we generically catch a superclass of all Object

Services user exceptions. As in the previous code

sample, we excluded the error-handling code. If the

flight is not found, an exception is raised and caught

in line 28, and no booking is created. We previously

handled the case where a booking with this identity

already exists (see Listing 1, which shows the code

for creating a persistent instance). In both cases,

transactional integrity is preserved. Note that you

need to change the booking ID in line 23 to avoid

duplicate key errors. Furthermore, make sure that the

data for the flight exists in the database. You could

also add code that retrieves the next booking ID from

the corresponding number range.

!!!!! Handling Error Conditions

Object Services offers a powerful, class-based

exception framework. It provides built-in

exceptions for almost any error situation, such

as get-exception, create-exception, and delete-

exception. This feature makes it easy for you to

handle error conditions properly.

Deleting a Persistent Object

Last but not least, let’s not forget that you need

to delete persistent objects. To delete a persistent

object with a business key object identity from

the database, use the class-specific method

DELETE_PERSISTENT. It expects the business

keys as parameters. First, the instance is marked

as deleted in the cache. Its existence is checked

first in the cache and then in the database. If

the object does not exist, the exception

CX_OS_OBJECT_NOT_EXISTING is raised.

Then, at commit-time, the persistent object is

deleted from the database. If you access a deleted

instance with an accessor method, the exception

CX_OS_OBJECT_NOT_FOUND is raised. You

can delete an already-loaded persistent object

from the database with the method

IF_OS_FACTORY~DELETE_PERSISTENT. It

expects the instance reference as a parameter.

In summary, you have now learned how to use

the Persistence Service to transparently create, load,

manage, and delete persistent objects. However,

Object Services also provides a valuable Transaction

Service. Let’s examine how this component makes

it similarly easy to manage transactions in your

applications.

How the Transaction

Service Works

The Transaction Service enables you to program-

matically define transaction boundaries and sub-

transactions. Transactions are represented by

transaction objects. Transaction objects are managed

by the Transaction Manager, which follows the

Singleton pattern and provides a factory method

for creating transaction objects. The Transaction

Manager implements the interface

IF_OS_TRANSACTION_MANAGER, and the

transaction class implements the interface

IF_OS_TRANSACTION. You only have to deal

with the interface IF_OS_TRANSACTION.

You can only use a transaction object for one

transaction. Follow these guidelines for using the

Transaction Service to manage a transaction:

• Use the method START to begin a transaction.

• Use the method END to successfully end a

transaction.

73For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

Listing 3: Replacing a COMMIT Statement with the Transaction Service

1 REPORT OS_EXAMPLE.
...
7 BOOKING_AGENT TYPE REF TO CA_BOOKING.
T1 DATA: M TYPE REF TO IF_OS_TRANSACTION_MANAGER,
T2 T TYPE REF TO IF_OS_TRANSACTION.
T3 LOAD-OF-PROGRAM.
T4 CL_OS_SYSTEM=>INIT_AND_SET_MODES(
T5 I_EXTERNAL_COMMIT = OSCON_FALSE).
8 START-OF-SELECTION.
T6 M = CL_OS_SYSTEM=>GET_TRANSACTION_MANAGER().
T7 T = T->CREATE_TRANSACTION().
9 FLIGHT_AGENT = CA_FLIGHT=>AGENT.
10 BOOKING_AGENT = CA_BOOKING=>AGENT.
11 TRY.
T8 T->START().
...
T9 T->END().
29 CATCH CX_OS_ERROR.
30 ENDTRY.

• Use the method UNDO to roll back any changes

since START.

Object Services also supports nested transactions.

Within a transaction, you can start a sub-transaction.

If a sub-transaction is rolled back, the state of all

objects changed in this sub-transaction will be as it

was when this sub-transaction started. Nested trans-

actions are useful for isolating the transactional

behavior of a called procedure from its caller. Using

its own sub-transaction, the called procedure can

perform a local rollback without invalidating the

transaction logic of its caller. A transaction that is

started in another transaction is automatically a sub-

transaction, which means that parallel transactions are

not supported. The first started, and now running,

transaction is called the “top-level” transaction.

If you call the method END on the top-level trans-

action, an ABAP COMMIT WORK is executed. If you

call the method UNDO on the top-level transaction, an

ABAP ROLLBACK WORK is executed and the state of

all changed objects will be as it was before the trans-

action started. The Object Services runtime copies

the before image of the instance to the undo buffer

only when the instance is changed. If a transaction is

successfully ended, the undo buffer with the before

images of the instances changed in this transaction

is discarded. The undo buffer uses the methods

IF_OS_STATE~GET and IF_OS_STATE~SET of

the persistent class to get the before image of the state

of an instance and to set the state of an instance from

the before image. At the start of a subsequent trans-

action, loaded persistent instances will be invalidated

and reloaded if accessed in the subsequent transac-

tion. To avoid this, you can create chained transac-

tions with the methods END_AND_CHAIN and

UNDO_AND_CHAIN.

To wrap up our example, let’s see how you might

leverage the Transaction Service. One option is to

use the Transaction Service instead of the COMMIT
WORK statement. Listing 3 shows the sample code to

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.74

accomplish this task. Lines T1-T9 , which are shown

in bold, represent the code for working with the

Transaction Service.

Here’s how this code works. In lines T3-T5,

Object Services is explicitly initialized. Note that

you must do this in the event block LOAD-OF-
PROGRAM. In lines T6-T7, a transaction object is

created. The actual transaction is started in line T8

and completed in line T9. This line replaces the

COMMIT WORK statement in our example (see

Listing 2, line 30).

Transaction Interoperability Considerations

To ensure interoperability with standard ABAP trans-

actions, Object Services transactions are tightly

coupled with the logical unit of work (LUW) concept

in SAP.

Suppose a legacy application (i.e., a standard

ABAP application) calls an Object Services compo-

nent (i.e., a component that uses the Object Services

Persistence Service). The Object Services runtime

environment automatically creates and starts a top-

level transaction. When the legacy application

executes the ABAP COMMIT WORK statement, the

top-level transaction is implicitly ended and the SAP

LUW is finished. This scenario is called compatibil-

ity mode.

Suppose an Object Services application (i.e.,

an application that uses both the Persistence and

Transaction Services) calls a legacy application

Tips for Working with Object Services

The Object Services framework is a powerful tool for managing object persistence and transactions.

Like any new technique, we encourage you to practice what you have learned and integrate it into

your own ABAP expertise. Try to create the airline seat reservation example in your development

environment.

Along the way, we hope you find the following guidelines helpful as you design and use persistent

classes:

! If you want to wrap legacy table data with a persistent class, use the business key object identity.

You can then access the data with the table key (i.e., a semantic key).

! If you want to make large object graphs persistent, use the GUID object identity and persistent

references.

! If you want to access an object graph with a semantic key, use a class with a business key object

identity and a persistent reference to the root class of the object graph.

! You can mix business key and GUID object identities. You then can access a persistent object with

both the semantic key and through a persistent reference.

Application Options to Consider

The Post-Processing Framework (PPF) is a generic service in the SAP Web Application Server that was

created using Object Services. It enables applications to trigger actions such as sending e-mails or

creating purchase order confirmations. From the PPF perspective, both the application and the actions

75For site licenses and volume subscriptions, call 1-781-751-8699.

Write Smarter ABAP Programs with Less Effort: Manage Persistent Objects and Transactions with Object Services

component (i.e., a standard ABAP component).

When the Object Services application explicitly ends

the top-level transaction, the Object Services runtime

executes an ABAP COMMIT WORK statement and the

SAP LUW is finished. The legacy component must

not execute the ABAP COMMIT WORK statement.

Otherwise, since the transaction boundaries are man-

aged by the Object Services application, a runtime

error will be raised.

Object Services top-level transactions have three

update modes (“update task,” “synchronous update

task,” and “local update task”), which correspond to

the SAP LUW update modes. You must use the class

method INIT_AND_SET_MODES of the class

CL_OS_SYSTEM to set the update mode before the

Object Services runtime environment is started. The

default update mode is “update task.” Alternatively,

specify the transaction code for an object-oriented

transaction with the “OO transaction model” field

selected. Then the update mode is set when execut-

ing the transaction code.

Ready to Write Smarter

ABAP Code?

In this article, we have showed you how the new

Object Services layer in Release 6.10 expands the

object-oriented design promise of ABAP Objects:

! The Persistence Service provides you with trans-

parent object persistence, which means that most

are represented as persistent objects, which enables uniform access to different application objects.

This is a common pattern for designing generic tools.

This example is only one possibility for leveraging Object Services functionality in an application.

Obviously you can take advantage of its features in many other ways. Once you feel confident using

Object Services in simple ways in your applications, here are some suggestions for building more

complex functionality:

! Try writing your own database access layer. Suppose your data is not stored in database tables, or

you can only retrieve and save the data by means of function modules. You can map the attributes

to the fields of a dictionary structure that works as a proxy. Note that you must also redefine the

database access methods in the class agent.

! Try changing the behavior of the class agent. For example, you can add buffers to the class agent

to retrieve multiple data per database access for performance reasons.

When to Avoid Using Object Services

Keep in mind that persistent object frameworks such as Object Services are generally not well suited for

applications where performance is critical, such as those that handle millions of objects. This limitation

arises from the bookkeeping overhead caused by automatic persistence management. In that case, a

better option is to make your objects persistent manually by using ABAP Open SQL.*

* For more information on programming with Open SQL, see Adrian Görler and Ulrich Koch’s article “Enhanced ABAP

Programming with Dynamic Open SQL” in the September/October 2001 issue of SAP Professional Journal.

SAP Professional Journal January/February 2002

www.SAPpro.com ©2002 SAP Professional Journal. Reproduction prohibited. All rights reserved.76

aspects are handled automatically. (No more SQL

code to make objects in a database persistent!)

! The Transaction Service gives you control over

your transactions and provides you with nested

in-memory transactions.

! You can now focus on building the business

logic into your ABAP programs, instead of writing

code to handle common application and system-level

services.

While this article is only a starting point, we hope

it gives you the confidence to try these techniques for

yourself. And if you want to learn more about the

Object Services layer, we recommend the online R/3

manual as an excellent reference source.

Stefan Bresch received his diploma in computer

science from the University of Karlsruhe,

Germany. Stefan joined SAP in 2000 and since

then has been working on Object Persistence. He

belongs to the Business Programming Languages

Group in Walldorf and is currently working on

serialization of ABAP data structures to XML

representation. He can be reached at

stefan.bresch@sap.com.

Christian Fecht studied computer science at the

University of Saarland in Saarbruecken, where he

received his Ph.D. in 1997. He joined SAP in

1998, and since then has been working in the

Business Programming Languages Group. He is

responsible for the ABAP runtime environment,

especially for the ABAP Objects garbage

collector. Christian was also involved in the

design of the Object Services, and recently his

focus has been on transparent persistence for

Java. He can be reached at

christian.fecht@sap.com.

Christian Stork studied mathematics and computer

science at the Westfälische Wilhelms-University of

Münster, Germany. He joined SAP in 1995 and

worked for two years as a trainer, then returned to

the Westfälische Wilhelms-University of Münster

for his doctorate, specializing in algebraic

geometry. In 2000, Christian rejoined SAP and

became a member of the Business Programming

Languages Group, where he works as a kernel

developer. He is responsible for the

implementation and maintenance of the Object

Services, and is currently working on calling

ABAP methods from XSLT. He can be reached

at christian.stork@sap.com.

