
101No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

Learn How to Avoid Lackluster
System Performance When Using
the “FOR ALL ENTRIES IN” Clause:
An ABAP Developer’s Guide
David F. Jenkins

David Jenkins joined RCG

Information Technology

in 1995 after 29 years

as a Consulting Systems

Representative at IBM.

Currently he is a Director

Consultant at RCG, where

he develops and teaches

classes in beginning

and advanced ABAP

programming, ABAP

performance and tuning,

and Java, and consults

with clients on all aspects

of ABAP development.

All ABAP programmers are familiar with the Open SQL SELECT …

FOR ALL ENTRIES IN construct1 frequently used to access data from

a database conditioned on other data that has been previously loaded

into an internal ABAP table. For instance, the ABAP statement:

select * from mseg
 for all entries in int_driver
 where mblnr = int_driver-mblnr.

instructs the system to access all rows from the database table MSEG
where the MBLNR field contents in the database match any one of the

MBLNR fields in the internal table INT_DRIVER. One recent study

that came across my desk concluded that 10 percent of all SELECT
statements issued in custom programs employ FAEI.

The use of the FAEI construct is not without significant

implications, especially as it pertains to program performance — I have

seen an actual case where a SELECT ran for 16+ hours using a poorly

planned FAEI. (This time dropped to 4 minutes after rewriting the

SELECT statement to remove the FOR ALL ENTRIES IN clause.)

In this article, I will present information that goes far beyond

standard SAP documentation — I will explain a little about how FAEI
really works, and some of the more significant ramifications of its use.

You will learn techniques to minimize the performance impact of FAEI,

and techniques commonly used to evaluate the impact of various

approaches for using FAEI.

1 For simplicity’s sake, I will contract that to FAEI for the remainder of this article.

(complete bio appears on page 114)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.102

For ABAP programmers, this article may supply

additional detailed information regarding a common

programming construct; for DBAs, this article may

provide insight into the need for adjustments to

database table settings; and for you development

managers struggling with lackluster system perfor-

mance, this article is intended to provide information

at a high enough level that you can effectively guide

your development staff in its use of this common

Open SQL construct. I will also discuss alternative

SELECT strategies that you may be able to employ

to bolster program performance. And finally, as an

added bonus, I will reveal an Oracle rule-based

optimizer peculiarity that may be costing your

installation hundreds of lost hours per month.

Before beginning this discussion, let me state that

the thoughts to follow throughout this article result

from experiences with SAP Releases 3.1H and 4.6B

using Oracle. All SQL traces shown were run on a

3.1H system, which was not configured with separate

application and database servers, and hence the

impact of network delays is minimized — on systems

with separate database servers you may observe

markedly different results. If you are using a data-

base other than Oracle, or earlier or later releases of

SAP, the tips to follow may not be directly applicable

but should nevertheless be of interest. With those

caveats out of the way, let’s begin.

What Does “FOR ALL

ENTRIES IN” Do?

So what does the FOR ALL ENTRIES IN clause do

in Open SQL SELECT constructs? I’ll start by quot-

ing directly from the 4.6B Help Library regarding

FOR ALL ENTRIES IN (bracketed text is my own):

The WHERE clause of [an Open SQL] SELECT

statement has a special variant that allows you

to derive conditions from the lines and columns

of an internal table:

SELECT ... FOR ALL ENTRIES IN <itab>

WHERE <cond> ...

<cond> [is a normal selection condition and]

may be formulated as described above [in

previous Help text]. If you specify a field of the

internal table <itab> as an operand in a

condition, you address all lines of the internal

table. The comparison is then performed for each

line of the internal table. For each line, the

system selects the lines from the database table

that satisfy the condition. The result set of the

SELECT statement is the union of the individual

selections for each line of the internal table.

Duplicate lines are automatically eliminated from

the result set. [More on this later.] If <itab> is

empty, the addition FOR ALL ENTRIES [IN]

is disregarded, and all entries are read.
.

.

.

You can use the option FOR ALL ENTRIES [IN]

to replace nested select loops by operations on

internal tables. This can significantly improve

the performance for large sets of selected data.

[Maybe — the operative word here is “can.”

More on this later, also.]

So, the FOR ALL ENTRIES [IN] clause is used

primarily to reduce the number of ABAP statements

in a program. In particular, it is useful for reducing

the number of nested LOOP or nested SELECT state-

ments in a program, and accomplishes an inner join

between data in an internal table and a database table.

Making Performance a Priority

From a programming viewpoint, FAEI is one of

several techniques that can be used to reduce the

amount of ABAP code to be written when joining

multiple tables. As always, however, when accessing

database data, performance must be a primary consid-

eration. Among the concerns that must be addressed

103No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

when using FAEI are the efficient utilization of

transport buffers between the database and the appli-

cation, and the elimination of retrieval and transport

of redundant information.

✓✓✓✓✓ Tip

Database data is passed back and forth to the

application in buffered blocks, and the size,

number, and buffering scheme of these transport

buffers is highly dependent on hardware, software,

and database configuration. You will find a wealth

of notes in OSS that deal with configuration issues

pertaining to database buffering — our concern

here will be to point out areas where we can

take best advantage of whatever has already

been installed.

Consider the following ABAP statement from

the sample program2 used in generating most of the

results described in this article:

select mblnr
 mjahr
 zeile
from mseg3 up to 2 rows
into table int_mseg
for all entries in int_driver
where mblnr = int_driver-mblnr
and mjahr = int_driver-mjahr.

The INT_DRIVER table referenced in the FOR
ALL ENTRIES IN clause is known as a driver or

reference table. When the FOR ALL ENTRIES IN
clause is used, the SAP database interface creates a

WHERE clause that translates the entries in the driver

table into separate conditions, which are then com-

bined through the use of ORs with WHERE conditions

specified in the SELECT itself.

Understanding How Open

SQL SELECT Statements

Are Translated

A first step in understanding Open SQL SELECT
statements is to understand how they are translated

into SELECT statements that are usable by the data-

base. The easiest way to see the actual database

SELECT derived from an ABAP SELECT is to SQL

trace your program, and then request an Execution

Plan for the SELECT of interest.

In a test program using the previous code

example, the ABAP database interface created the

SQL statement shown in Figure 1.

2 The complete listing of this program is in Appendix A. If

you would like the program in soft form, contact the author

at djenkins@pointecom.net, or you can download it from

www.SAPpro.com.

3 The MSEG table used to illustrate this article was unbuffered,

and contained about 17 million rows.

In this particular selection, the driver table con-

tained 15,000 entries, each of which furnished a

MBLNR/MJAHR pair. Note, however, that although

there are 15,000 distinct rows in the driver table, this

✓✓✓✓✓ Tip

Evaluation of SELECT performance starts with a

thorough understanding of SAP SQL Trace (ST05)

and SQL Statement Explain (SDBE) — these two

capabilities constitute the core of almost all ABAP

SELECT performance and tuning activity.

Figure 1 The SQL Statement Created By
the ABAP Database Interface

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.104

particular SELECT encodes the selection conditions

represented in only 25 of those rows, and these condi-

tions are “OR’d” together. The database rows satisfy-

ing this particular request will be fetched, and then

another request will be sent to the database represent-

ing the next 25 values in the driver table. In this

manner, repetitive requests will be issued to the data-

base until all 15,000 driver table conditions have

been requested.

You can see then that depending on the number

of rows in the driver table, a large number of OR
conditions can be generated. To calculate the number

of OR statements generated for each SQL SELECT,

the R/3 work process takes the smaller of the

following:

• The number of entries in the driver table

INT_DRIVER

• The rsdb/max_blocking_factor R/3 profile

parameter

If the number of entries in the driver table is

larger than rsdb/max_blocking_factor, the work

process executes several similar SQL statements on

the database to limit the length of the generated SQL

WHERE. Each SQL statement is executed until all

driver table entries have been used, and then the R/3

work process joins the partial results into a final result

set that excludes duplications.

Figure 2 displays part of the SQL trace for the

previous SELECT. There’s a whole bunch of reveal-

ing information here: the first few fetches (from

MKPF, starting at time 16:13:03.539) were used

to load the driver table, and you can see that 15,000

(6 * 2413 + 435 + 87) rows from MKPF were returned

by the database. (As we’ll see shortly, for illustrative

purposes, the sample program was written such that

2,500 of the 15,000 rows were duplicates.)

Figure 2 Partial SQL Trace for the SELECT Statement

✓✓✓✓✓ Tip

The SAP-supplied program RSPARAM can be used

to display current R/3 profile parameter settings.

The optimum setting for rsdb/max_blocking_factor

is highly dependent on platform, database (and

database version), and database optimizer. This

number may be quite low — recommendations

found in OSS notes range from 5 to 50. In our

example, this parameter has been set to 25. Since

there are 15,000 entries in the driver table, an

rsdb/max_blocking_factor setting of 25 will result

in processing 600 separate database requests, each

with its attendant processing overhead, to satisfy

the original SELECT.

First
two
fetches

Second
two
fetches

105No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

The entire trace of MSEG accesses is too lengthy

to reproduce here (recall that there were 600 separate

cursor REOPENs and FETCHes) — only the first and

last two trace entries are shown in Figure 2. The

complete trace showed, however, that 34,228 records

were transmitted to the application, even though we

only asked for a maximum of but two. Returning to

the generated SQL (Figure 1), we see that the UP TO
2 ROWS specified in the ABAP SELECT has been

ignored, inasmuch as it pertains to the actual

generated SQL.

Why? A partial answer can be found in the

ABAP Help text for FAEI, which states, in part:

“SELECT ... FOR ALL ENTRIES IN itab WHERE

cond returns the union of the solution sets of all

SELECT statements that would result if you

wrote a separate statement for each line of

the internal table replacing the symbol itab-f

with the corresponding value of component f

in the WHERE condition. Duplicates are

discarded from the result set...”

This tells us that all records satisfying the

SELECT are returned, then duplicates are removed,

and presumably then, and only then, is the two-record

limitation imposed.

We’ll leave further vagaries of the database inter-

face to another discussion, but suffice to say here that

although we asked for but two records, 34,228 were

transmitted to the application server from the data-

base server. Only two, however, were actually stored

in the internal result set table (INT_MSEG).

If we were to look at the entire SQL trace for this

operation, we would see that each of the 600 fetches

returned an average of 57.0 records — far fewer than

the 1,877 per fetch the system was capable of. This

represents a very low mean transport buffer utiliza-

tion — about 3 percent.

✓✓✓✓✓ Tip

In SAP Release 3.1x, the Database Request column

of a FETCH SQL trace line contains the word

“Array,” followed by a number — that number

represents the maximum number of records that can

be transported per fetch request. In Release 4.6,

this maximum number appears in a column of its

own, labeled “Array.”

Comparing the Cost

of Various FAEI Strategies

The total elapsed time for the baseline SELECT
scenario we just discussed was 9.173 seconds. In

order to compare the results of various FAEI strate-

gies, I’ll build a table of execution times as we go

(see Figure 3).

Figure 3 Execution Time Table for the “Baseline” SELECT Scenario

SELECT Total Total Time Record Time Records per

Strategy Fetches Time per Count per Database Fetch

(seconds) Fetch Record

(ms) (µµµµµs) mean s.d. min max

Baseline 600 9.173 15.3 34,228 268 57.0 7.1 29 110

Sorted

Dupes removed

Key Value range (1)

Key Value range (2)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.106

The columns in Figure 3 have the following

meanings:

• Total Fetches: Total number of data transfers

from database to application

• Total Time: Elapsed time from cursor open to

completion of last fetch (seconds)

• Time per Fetch: Total Time / Total Fetch Count

(milliseconds)

• Record Count: Number of database rows passed

to application

• Time per Record: Total Time / Record Count

(microseconds)

• Records per Database Fetch: Statistics pertain-

ing to the number of rows of data passed in

each fetch

The number of records (and hence bytes) returned

per fetch (mean = 57.0, in this case) can have a pro-

found impact on performance. The Oracle system

used for this exercise will return data to the applica-

tion server in packets of about 34K bytes. Since we

were requesting only 18 bytes per record (fields

MBLNR, MJAHR, and ZEILE), in the case of the first

fetch (Figure 2, at time 16:13:05.782) the 34K buffer

contained only 1,512 (84 * 18) bytes of usable infor-

mation. The other fetches were similarly inefficient,

with the least efficient using only 522 bytes of the

34K transmitted for useful information, and the aver-

age only 1,026. In those cases where data is being

transmitted across a network, this wasted bandwidth

can result in significant performance degradation.

A “Sorted” SELECT

One approach to minimizing total fetch time might be

to find some mechanism for inducing the database to

find data more quickly. For a given fetch request,

would it be faster for the database to retrieve records

if the values requested were “closer”? If you read the

code in the sample program in Appendix A, you’ll

see that the MBLNRs in the driver table were loaded in

pseudo-random order. In the second SELECT, the

driver table MBLNRs have been sorted — the results

of that run are reflected in Figure 4.

In this case, even though the mean time per

record increased slightly (from 268 to 279 µs), the

total number of records transported dropped dramati-

cally — from 34,228 to 28,572 — about 17 percent.

Because the values used to do the selection had been

sorted, the probability of duplicate values occurring

in a single fetch request increased, and hence the

need for Oracle to pass back redundant data was

largely removed. The resulting total SELECT time

was somewhat better than our baseline case, and

numerous other tests show that there are marginally

better results when using this technique: sort the

driver table on the values that will be used to select

the data.

Figure 4 Execution Time Table for the “Sorted” SELECT Scenario

SELECT Total Total Time Record Time Records per

Strategy Fetches Time per Count per Database Fetch

(seconds) Fetch Record

(ms) (µµµµµs) mean s.d. min max

Baseline 600 9.173 15.3 34,228 268 57.0 7.1 29 110

Sorted 600 7.982* 13.3 28,572 279 47.6 17.3 13 92

Dupes removed

Key Value range (1)

Key Value range (2)

* This time does not include the time required to sort the data prior to selection. However, our experience has shown that ABAP is a very

efficient sorter, and that this time can be safely ignored for comparison purposes here.

107No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

Removing Duplicates

Perhaps it’s not the time per fetch that should be

attacked, but the number of fetches required to

retrieve all the desired data — how can this be

reduced? Since each fetch request only retrieves data

satisfying that particular request, we run the risk of

retrieving duplicate records (which must then be

discarded by the SAP system).

One simple way to eliminate the transmission

of duplicate data is to reduce the duplicates in the

driver table. The third SELECT in the sample pro-

gram is executed after having removed duplicate

MBLNR/MJAHR entries. Even though the number of

records returned by Oracle has remained roughly the

same, making this simple change has allowed us to

reduce the time/record by about 12 percent (Figure 5).

Using Index Range Scans

Once we have optimized the contents of the driver

table, it’s time to look to the database itself to find

further possibilities for enhancing FAEI processing.

The number of entries in the driver table, the fields

used in the WHERE clause, and the database

optimizer, among other factors, all drive the

execution plan for a given SELECT.

Part of the execution plan generated for the

sample SELECT looks like Figure 6.

Figure 5 Execution Time Table for the “Dupes Removed” SELECT Scenario

SELECT Total Total Time Record Time Records per

Strategy Fetches Time per Count per Database Fetch

(seconds) Fetch Record

(ms) (µµµµµs) mean s.d. min max

Baseline 600 9.173 15.3 34,228 268 57.0 7.1 29 110

Sorted 600 7.982* 13.3 28,572 279 47.6 17.3 13 92

Dupes removed 500 6.955 13.9 28,342 245 56.7 13.9 25 92

Key Value range (1)

Key Value range (2)

Figure 6 Partial Execution Plan Generated for the Sample SELECT

* This time does not include the time required to sort the data prior to selection. However, our experience has shown that ABAP is a very

efficient sorter, and that this time can be safely ignored for comparison purposes here.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.108

Note the multiple index range scans — each scan

is caused by a line in the driver table (and hence an

associated OR clause in the generated SQL state-

ment). So, depending on the contents of the driver

table, we may end up with many SQL SELECTs

being generated, and each of those may result in

multiple index scans.

The index scans are generated in this sample

because the SELECT included a WHERE on MANDT
(supplied by the database interface, unless we use

CLIENT SPECIFIED in the SELECT) and on

MBLNR and MJAHR, which are also high-order pri-

mary key fields for MSEG. Furthermore, note that the

Execution Plan shows no access of table information

per se4 — all information requested by the SELECT is

contained solely within Index 0 itself.

In this sample, I have also included in the WHERE
clause the additional high-order index key field

MJAHR to illustrate that even though we may be

furnishing most of the high-order index information,

index scans can still take significant time. On the

system on which this sample was run, each set of

index scans and data fetches took an average of about

.014 seconds, and in one case almost as much as

.089 seconds.5

If the generated SQL WHERE had not included

any high-order key fields from some index for the

table, we might have ended up executing multiple

full-table scans (depending again on the number of

rows in the driver table and the complexity of the

WHERE clause), with possibly disastrous results from

the point of view of performance. It is therefore

extremely important to know which index(es) your

database optimizer has chosen to use when fulfilling

your SELECT request.

✓✓✓✓✓ Tip

Supporting material for all program reviews

should include Execution Plans for each client-

generated SELECT in custom programs. These

should be reviewed by senior ABAP programmers

and DBAs to ensure that data is being accessed

using the most efficient techniques possible.

Although the time to scan the index may be

small relative to the time required to access actual

table entries, as I have already shown it is neverthe-

less measurable and can be considerable, even in the

case of relatively small tables. As a guiding prin-

ciple, we should take steps to minimize the number

of scans (index and/or table) wherever possible.

One way to minimize this time is to make sure

that we are not requesting duplicate records, as

discussed previously.

Let’s stop right here and talk about how result set

duplicates are excluded. This process takes place in

two places: in the database itself, and in SAP once the

data has been transferred to the application server

from the database.

Remember that each set of OR’d selection criteria

is presented to the database as a separate fetch

request. While the database can prevent duplicate

information from being returned for a single OR
request (as we saw when we sorted the driver table),

each request is handled separately and independently.

Duplicates can therefore be retrieved for one or both

of two reasons:

1. If the driver table includes duplicate entries

(as far as the fields used in the SELECT are

concerned) then there is the possibility that the

database may spend valuable time accessing

and transmitting redundant data. The recommen-

dation, therefore, is to remove all duplicate

rows from the driver table before initiating

the SELECT.

4 To see an Execution Plan for a SELECT where index data is used to

access a specific row from the table data itself, refer to Figure 10.

5 In a separate test on another system, no index fields (other than

MANDT) were provided in the WHERE clause, and each fetch took

around 2.5 to 3 seconds!

109No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

2. Furthermore, if the fields being retrieved are such

that duplicate rows in the result set might be

generated, and multiple fetch requests are gener-

ated by the database interface, then the duplicate

information will need to be removed by the appli-

cation server. There is no automated way to

prevent this from occurring — careful scrutiny of

an SQL trace, however, should reveal that extra

data is being accessed (compare the retrieved

record counts in the trace to the actual number of

records returned to the program). If this is occur-

ring, then an altered SELECT strategy should

be considered.

Suppose we’ve removed the possibility of

retrieving redundant information, but an SQL trace

shows that we are making many database fetches

that are returning little or no usable data in each

fetch, as we saw in Figure 2. What further tech-

niques can we employ to make maximum use of

the transport buffers between the database and

application server?

In the normal case, the number of selection

criteria represented by each fetch is equal to the

number of OR’d requests for data (25, in the case

of the first sample program being discussed here).

If we can devise a way to increase the number of

selection criteria reflected by each fetch request,

we might be able to make much more efficient

use of transmission buffers. Here’s a mechanism

to enhance fetch effectiveness you might find useful,

plus an astounding related discovery that you may

be able to apply to your production jobs to cut

their times by factors of 100, 1,000, or even 10,000!

Read on…

The sample program is constructed to contrast

five different ways of accessing joined data. Using

the traditional FAEI model, there were 600 fetches,

averaging about 57 records per fetch, resulting in

about 3 percent utilization of the transmission buffers.

The total elapsed time to retrieve all the data was

about 9.2 seconds.

Assuming that the number of records returned

per fetch is normally distributed, roughly 95 percent

of the fetches contained from 43 to 71 records,

and all contained less than 111, as opposed to the

theoretical maximum of 1,877 each fetch could have

accommodated.

How can we make maximum use of the transport

buffers between the database and application server?

The generated SQL (shown in Figure 1) for the

SELECT traced earlier (see Figure 2) revealed that

a maximum of 25 OR’d values can be specified for

each fetch (although more records than that may

be returned).

One way that we can expand the number of

records requested by each fetch is by using sets

of BETWEENs. If a single BETWEEN, for instance,

represents a request for 1,877 records, such as those

being processed by the sample program, then a

single fetch request would return almost a full 34K

buffer’s worth of data. ABAP provides a handy

mechanism for processing data in sets of ranges —

the RANGE or SELECT-OPTION. The problem

then becomes one of creating a useable RANGE
and modifying the SELECT so that it references

that RANGE effectively.

In Appendix B, I have included ABAP code for

a simple FORM routine that can be called to create a

range table for a selected field in an internal table. In

the case of the sample program, this form can be used

to create a range table whose rows reflect all “runs”

(first and last number in a range of consecutive

numbers) of MBLNRs occurring in internal table

INT_DRIVER. Note that this form will only work

properly with character data containing numbers only.

Once we have created such a range (R_MBLNR in the

sample program), we can then issue a SELECT speci-

fying IN R_MBLNR.

Using this technique, only valid data will be

returned with each fetch, and the probability of empty

blocks being returned will be greatly reduced.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.110

Figure 7 shows the SQL trace for a slightly

different program that used this technique to select

MSEG data based solely on document numbers

(MBLNR). Bear in mind that this case was run

using Oracle rule-based optimization and SAP

Release 3.1H.

The total time required for getting the data

using the range table was almost five hours!6

Even though we gained superb utilization of

the transmission buffers (1,987 records fetched

versus 1,987 possible in two of three fetches),

we failed miserably to improve our SELECT
performance.

How could that be? A closer look at the Execu-

tion Plan for this case (Figure 8) reveals the answer,

and may show you a way to decrease some of your

production runtimes by huge factors.

Note that the primary index (MSEG______0)

was not used for the index scans, even though the

Figure 7 SQL Trace for SELECT Using Range Table

Figure 8 Execution Plan for SELECT Using Range Table

6 Since this example accessed MSEG data purely on MBLNR, to provide

a strictly apples-to-apples comparison to previous cases, we would

have to add to this time the amount of time it took to delete records

for incorrect fiscal year (GJAHR) and to read all 15,000 of the records

available.

111No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

selection criteria called out a range on field MBLNR,

the high-order key field of MSEG. Instead, the Oracle

optimizer has decided on index MSEG___Z02, which

contains no fields that help us (other than MANDT).

This has happened because the WHERE MANDT =
<client> (supplied by the interface) apparently

was not distributed across all of the OR’d WHEREs by

the Oracle rule-based optimizer, and the optimizer

therefore chose an inefficient (for us, at least) index.

When this occurs, the effect on job performance

may be dramatic — a SELECT for two subranges

may take thousands of times longer than twice the

time for two SELECTs, each using one subrange!7

In my experience, this appears to happen any time a

RANGE or SELECT-OPTION contains two or more

rows with sign/option = “IBT”.8

Figure 9 is an updated table showing our

progress so far, reflecting the degraded performance

of the 3.1H test case.

If index usage is the problem, is there a way

around it?

There are at least two ways to deal with this

problem — alternative use of a range and hints.

Let’s look at the alternative use of a range

first. In this approach, which is demonstrated in the

sample program, the generated range table is used

in a somewhat non-traditional manner, and is based

on FAEI usage.

Here is the rewritten SELECT:

Figure 9 Execution Time Table for the “Key Value Range (1)” SELECT Scenario

SELECT Total Total Time Record Time Records per

Strategy Fetches Time per Count per Database Fetch

(seconds) Fetch Record

(ms) (µµµµµs) mean s.d. min max

Baseline 600 9.173 15.3 34,228 268 57.0 7.1 29 110

Sorted 600 7.982* 13.3 28,572 279 47.6 17.3 13 92

Dupes removed 500 6.955 13.9 28,342 245 56.7 13.9 25 92

Key Value range (1) 3 4h 49m 1h 36m 4,722 3.67 sec 1,574 — 748 1,987

Key Value range (2)

* This time does not include the time required to sort the data prior to selection. However, our experience has shown that ABAP is a very

efficient sorter, and that this time can be safely ignored for comparison purposes here.

7 If you’re on a 3.1x or 4.6x system and using Oracle rule-based

optimization, here’s an experiment you can try at home. Pick a table

with a relatively large number of rows. In our case, we used MSEG,

which has about 17 million records. Use SE16 to display some of

those records, and then pick two short sequences of the high-order key

field (exclusive of MANDT, if the table is client-dependent). That is,

compose two ranges of high-order keys that will return at most one or

two records each. Then use SE16 to display the records for only the

first of those two sequences, using SE16. In our MSEG test case, it

took about 1 second to access the two records requested. Now add a

second row to the select-option criteria to include the second sequence

and rerun the SE16 query. In our case, the additional time to fetch the

second set of two records took an amazing 3 hours and 57 minutes —

a decrease in performance on the order of 14,000!

8 This phenomena also exists in 4.6x systems, when Oracle is forced

to use rule-based optimization. However, under cost-based optimi-

zation a more appropriate index is chosen and the system performs

as expected.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.112

SELECT DISTINCT MBLNR
 MJAHR
 ZEILE
FROM MSEG
INTO CORRESPONDING FIELDS OF
TABLE INT_MSEG
FOR ALL ENTRIES IN R_MBLNR
WHERE MBLNR >= R_MBLNR-LOW
AND MBLNR <= R_MBLNR-HIGH
.
.
.

From an elapsed time standpoint, the results are

encouraging: a total of only 4.2 seconds, which repre-

sents an almost 2.5 increase in performance over the

original case.

We can now update our table to show the results

of this final strategy (Figure 10).

There are some caveats to this last method,

however:

• The type of data in the driver table fields being

used should be amenable to conversion to a

range — document numbers, for instance, fall

into this category.

• Hopefully, the set of values in the driver table

will collapse into very few “runs” — in a perfect

world the driver table data would result in a

single range. In the real world, however, things

don’t always work out that way — the point here

is that you don’t want to end up with so many

individual subranges (“rangelets”?) that you end

up with as many rows in the range table as you

had in the driver table.

• Note that using FOR ALL ENTRIES IN against

the range table exposed us once again to the

problem of inefficient buffer utilization —

certainly not as bad as when we specified the

INT_BUFFER table as the driver table, but

certainly not as good as when we used the

R_MBLNR table as a RANGE or SELECT-
OPTION.

Now let’s turn our attention to hints. Is there any

way to get the best of both worlds — the efficient

buffer utilization of the RANGE used in a WHERE …
IN, coupled with an acceptable index usage? It may

be that the judicious use of database interface hints

Figure 10 Execution Time Table for the “Key Value Range (2)” SELECT Scenario

SELECT Total Total Time Record Time Records per

Strategy Fetches Time per Count per Database Fetch

(seconds) Fetch Record

(ms) (µµµµµs) mean s.d. min max

Baseline 600 9.173 15.3 34,228 268 57.0 7.1 29 110

Sorted 600 7.982* 13.3 28,572 279 47.6 17.3 13 92

Dupes removed 500 6.955 13.9 28,342 245 56.7 13.9 25 92

Key Value range (1) 3 4h 49m 1h 36m 4,722 3.67 sec 1,574 — 748 1,987

Key Value range (2) 38 4.249 112 28,342 150 745.8 681.4 66 1,987

* This time does not include the time required to sort the data prior to selection. However, our experience has shown that ABAP is a very

efficient sorter, and that this time can be safely ignored for comparison purposes here.

113No portion of this publication may be reproduced without written consent.

Learn How to Avoid Lackluster System Performance When Using the “FOR ALL ENTRIES IN” Clause

could have been used to entice the Oracle rule-based

optimizer into using an appropriate index, but that

subject is outside the scope of this article, and I leave

the exploration of that possibility as an exercise for

the reader.

✓✓✓✓✓ Tip

Hints can be used to influence the decisions made

by the Oracle query optimizer. An Index hint can

be used to force the use of a particular index for

the specified table. Heretofore, hints could only

be utilized by coding in SQL using EXEC SQL,

but recent versions of SAP now allow the use

of a %_HINTS clause in OPEN SQL SELECTs.

OSS note 129385 contains information that can

help you get started using hints.

Conclusion

With all the foregoing as a foundation, we are in a

position to make a set of general recommendations on

the use of SELECT … FOR ALL ENTRIES IN:

✓ The driver table should not be empty — if it is,

all records in the database table will be accessed

(constrained, of course, by the other elements in the

WHERE clause).

✓ The benefits of using UP TO x ROWS in con-

junction with FAEI may be overshadowed by the

extra time required to transport unneeded records.

✓ The driver table should contain no duplicates

(as it pertains to fields being used in the SELECT’s

WHERE clause) — if it exists in the database, a record

will be fetched from the table for each row in the

driver table, regardless of redundancy.

✓ The driver table should be sorted by the fields

that will be used in index range scans when the

SELECT for detail data is executed.

✓ If the SELECT statement WHERE clause does

not contain high-order fields from some index, each

generated SQL statement may cause a full scan of the

database table. In this case, it may be much more

efficient to do a single SELECT/ENDSELECT
on the table and use a CHECK to filter out the

unwanted rows.

✓ Contrary to what we’d like to believe, it can take

considerable time to scan an index. Depending on

the index fields you have available, you may find it

cheaper (in terms of time) to forgo multiple index

scans in favor of a single full-table scan.

✓ Use debug and SQL trace to make sure that

you have a good understanding of the data you’ll be

accessing using FAEI. This includes the entries you

expect to see in the driver table (counts, distributions,

data types, etc.) and the database table characteristics

(row counts and available indexes, etc.)

✓ If the number of entries in the driver table is

high, but the expectation of finding entries in the

database table is low, then you run the risk of making

many empty fetches from the database — that is,

fetches containing no records. Each of these fetches

costs, in terms of time, as much as one where the

block is fully populated with data records. Therefore,

you should attempt to find some way to enhance the

blocking of valid data into blocks returned from

the database.

In summary, the use of FOR ALL ENTRIES IN
can ease your programming load, but can cause

immense performance problems if not wisely used.

Before you place a program into production, make

sure that you’ve fully evaluated the effect of this

coding technique on your program’s performance,

and have evaluated alternative methods such as

VIEWs and JOINs to accomplish the same results.

Each of these other methods has its own advantages

and disadvantages, and you should understand

these well before implementing your particular

application solution.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.114

David Jenkins joined RCG Information

Technology in 1995 after 29 years as a Consulting

Systems Representative at IBM, and 4 years in the

Ph.D. program at the University of Houston. In

the fall of 2000, David was named a Director

Consultant at RCG, where he develops and

teaches classes in beginning and advanced ABAP

programming, ABAP performance and tuning, and

Java, and consults with clients on all aspects of

ABAP development.

David Jenkins has been involved with Data

Processing since 1957, when he entered the

business as a punchcard machine operator. Dave

worked for a Houston bank for 10 years before

receiving his B.S. in Math from the University of

Houston. He then joined IBM, where he worked in

various marketing support positions, supporting

contractors at the NASA Johnson Space Center.

Since leaving IBM, Dave has received a Master’s

in Management, Computing and Systems from

Houston Baptist University, and has finished

coursework for a Ph.D. in Management

Information Systems at the University of Houston.

For the last six years, Dave has been a Consultant

for RCG Information Technology, specializing in

ABAP development — his latest assignment has

been at Texaco, supporting their installation of

SAP IS-Oil Upstream.

Dave is married with four children, and one

beautiful granddaughter. He and his wife Joy live

in the country 80 miles from Houston, where they

enjoy the wide-open spaces and fresh air, and

their horse, dog, cats, rabbits, and fish. Dave can

be reached at djenkins@pointecom.net.

About RCG Information Technology

RCG Information Technology

(www.rcgit.com) provides ERP practices

utilizing strategic alliances with leading

providers such as SAP to bring in-depth

knowledge and experience to client

customers, employees, partners, and

suppliers. RCG IT combines seven essential

practices: CRM, Data Warehousing,

Application Management, e-Solutions, ERP,

Project Management, and Discovery. Its

1,600 consultants average over eight years

of experience and are trained in e-business

strategy and design, application development

and integration, and management. RCG IT

serves over 500 customers in a broad range

of markets, including financial services,

energy, health care, pharmaceutical,

telecommunications, government,

manufacturing, distribution, and retail.

RCG’s project management methodology is

certified company-wide at Level 2 of the

Capability Maturity Model® of the Software

Engineering Institute. For further

information, call 800-350-9770.

115No portion of this publication may be reproduced without written consent.

Appendix A — Sample Program

Appendix A —
Sample Program

This appendix accompanies the article “Learn How to Avoid Lackluster System Performance When Using the

‘FOR ALL ENTRIES IN’ Clause: An ABAP Developer’s Guide” and contains the sample program used to

generate most of the results described in the article. This sample program contains references to the FORM
routines F_START_SQL_TRACE and F_END_SQL_TRACE. These two routines consist primarily of calls

to transaction ST05 via CALL TRANSACTION. While they are not included in this appendix due to space

constraints, these routines, in addition to the sample program, are available for download at www.SAPpro.com,

or from the author at djenkins@pointecom.net.

REPORT ZDJSQL1 MESSAGE-ID ZV.

--
* PROGRAM: zdjsql1 DATE WRITTEN: 11/1/2000 *
* *
* AUTHOR(s): David F. Jenkins LAST UPDATE: *
* RCG Information Technology *
* *
* PROGRAM TITLE: Using FOR ALL ENTRIES IN in SELECTs: *
* Comparisons of the effects of various techniques *
* on overall performance *
* *
* DESCRIPTION: This program demonstrates the usage of the SELECT... *
* FOR ALL ENTRIES IN construct, and presents various test *
* cases to help in the evaluation of alternative usages *
* of that construct. *
* *
--

TABLES:
 mkpf,
 mseg.

**
* *
* The following parameters were included so that separate SELECT *
* strategies could be evaluated independently - especially important *
* since SQL trace table storage allocated was insufficient to hold *
* trace data for all five SELECTs at one time. *
* *
**

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.116

SELECTION-SCREEN BEGIN OF BLOCK DRIVER
 WITH FRAME
 TITLE TEXT-DRV.
Parameters:

* maximum number of driver records to use
 P_MAXCT LIKE DATATYPE-INTEGER4 DEFAULT 15000,

* percent of driver records that are duplicates
 P_DUPES LIKE DATATYPE-INTEGER4 DEFAULT 20.

SELECTION-SCREEN END OF BLOCK DRIVER.

SELECTION-SCREEN BEGIN OF BLOCK PROC
 WITH FRAME
 TITLE TEXT-PRC.
SELECTION-SCREEN SKIP.

Parameters:
* maximum number of keys to be retrieved with one fetch
CB_PRE AS CHECKBOX DEFAULT ' ',
CB_DBFLD AS CHECKBOX DEFAULT ' '.

SELECTION-SCREEN SKIP.

SELECTION-SCREEN BEGIN OF BLOCK BASE
 WITH FRAME
 TITLE TEXT-BAS.
Parameters:
* execute initial baseline select
 CB_INIT AS CHECKBOX DEFAULT 'X',
 CB_TRBAS AS CHECKBOX DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK BASE.

SELECTION-SCREEN BEGIN OF BLOCK SORT
 WITH FRAME
 TITLE TEXT-SRT.
Parameters:
* execute after sort of driver table
 CB_SORT AS CHECKBOX DEFAULT 'X',
 CB_TRSRT AS CHECKBOX DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK SORT.

SELECTION-SCREEN BEGIN OF BLOCK DUPE
 WITH FRAME
 TITLE TEXT-DUP.
Parameters:
* execute after dupes removed

117No portion of this publication may be reproduced without written consent.

Appendix A — Sample Program

 CB_DUPE AS CHECKBOX DEFAULT 'X',
 CB_TRDUP AS CHECKBOX DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK DUPE.

SELECTION-SCREEN BEGIN OF BLOCK RNG1
 WITH FRAME
 TITLE TEXT-RG1.
Parameters:
* execute with normal range table use
 CB_RNG1 AS CHECKBOX DEFAULT 'X',
 CB_TRRG1 AS CHECKBOX DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK RNG1.

SELECTION-SCREEN BEGIN OF BLOCK RNG2
 WITH FRAME
 TITLE TEXT-RG2.
Parameters:
* execute with modified range table use
 CB_RNG2 AS CHECKBOX DEFAULT 'X',
 CB_TRRG2 AS CHECKBOX DEFAULT 'X'.
SELECTION-SCREEN END OF BLOCK RNG2.

SELECTION-SCREEN END OF BLOCK PROC.

* generated range table for requested MBLNRs
ranges:
 r_mblnr for mseg-mblnr.

* global data
DATA:

* used to compute elapsed times in second resolution
 Z_ELAPSED_TIME LIKE SY-UZEIT,
 Z_END_TIME LIKE SY-UZEIT,
 Z_START_TIME LIKE SY-UZEIT,

* table containing names of mseg fields to be selected
 INT_FIELDS(72) OCCURS 0 WITH HEADER LINE,

* target table for SELECTed data
 INT_mseg LIKE mseg OCCURS 0 WITH HEADER LINE,

* driver table
 BEGIN OF INT_DRIVER OCCURS 0,
 mjahr LIKE mkpf-mjahr,
 mblnr LIKE mkpf-mblnr,
 RAND LIKE DATATYPE-INTEGER4, " random integer
 END OF INT_DRIVER.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.118

**
* end-of-selection *
**
END-OF-SELECTION.

* initial load of driver table with requested number of entries
 perform f_fill_initial_data using p_maxct
 p_dupes.

* initialize table with names of mseg fields to be selected
 PERFORM F_SETUP_FIELDS.

 PERFORM F_BASELINE_SELECT.

 PERFORM F_SORTED_SELECT.

 PERFORM F_DUPE_REMOVED_SELECT.

 PERFORM F_RANGE_TABLE_VERSION_1_SELECT.

 PERFORM F_RANGE_TABLE_VERSION_2_SELECT.

* form for building a range from a table of values
 include zbldrang.

* forms for SQL tracing: start, end, and display
 INCLUDE ZTRACING.
&--
*& Form F_FILL_INITIAL_DATA
&--
* —>P_P_MAXCT text
* —>P_P_DUPES text

FORM F_FILL_INITIAL_DATA USING P_P_MAXCT LIKE DATATYPE-INTEGER4
 P_P_DUPES LIKE DATATYPE-INTEGER4.

 data:
 z_norm_count type i,
 z_dupe_count type i.

 if p_p_dupes <> 0.

 z_norm_count = p_p_maxct / ('1.0' + p_p_dupes / '100.0').
 z_dupe_count = p_p_maxct - z_norm_count.

 else.

 z_norm_count = p_p_maxct.

119No portion of this publication may be reproduced without written consent.

Appendix A — Sample Program

 z_dupe_count = 0.

 endif.

 SELECT mjahr
 MBLNR
 FROM MKPF UP TO Z_NORM_COUNT ROWS
 INTO CORRESPONDING FIELDS OF TABLE INT_DRIVER
 WHERE MJAHR >= '1999'.

 if z_dupe_count > 0.

 SELECT
 mjahr
 mblnr
 FROM MKPF UP TO Z_DUPE_COUNT ROWS
 APPENDING CORRESPONDING FIELDS OF TABLE INT_DRIVER
 WHERE MJAHR >= '1999'.

 endif.

* randomize contents of driver table
 loop at int_driver.
 call function 'RANDOM_I4'
 exporting
 rnd_max = p_p_maxct
 importing
 rnd_value = int_driver-rand.
 modify int_driver.
 endloop.

 sort int_driver by rand.
 COMMIT WORK.

ENDFORM. " F_FILL_INITIAL_DATA

&---
*& Form F_BASELINE_SELECT
&---
FORM F_BASELINE_SELECT.

 DATA:
 INT_LOC_DRIVER LIKE INT_DRIVER OCCURS 0.

 IF CB_INIT = 'X'.

 INT_LOC_DRIVER[] = INT_DRIVER[].
 FREE INT_MSEG.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.120

* issue SELECT of interest: pseudo-random, with dupes

* demonstrate effect of UP TO 2 ROWS on SELECT time and establish
* base timing case

* run a "pre-load" run to load buffers?
 IF CB_PRE = 'X'.
 SELECT (INT_FIELDS)
 FROM mseg UP TO 2 ROWS
 INTO CORRESPONDING FIELDS OF TABLE INT_mseg
 FOR ALL ENTRIES IN INT_LOC_DRIVER
 WHERE MBLNR = INT_LOC_DRIVER-MBLNR
 AND MJAHR = INT_LOC_DRIVER-MJAHR.
 ENDIF.

 IF CB_TRBAS = 'X'.
 PERFORM F_START_SQL_TRACE.
 ENDIF.

 GET TIME.
 Z_START_TIME = SY-UZEIT.
 SELECT (INT_FIELDS)
 FROM mseg UP TO 2 ROWS
 INTO CORRESPONDING FIELDS OF TABLE INT_mseg
 FOR ALL ENTRIES IN INT_LOC_DRIVER
 WHERE MBLNR = INT_LOC_DRIVER-MBLNR
 AND MJAHR = INT_LOC_DRIVER-MJAHR.
 GET TIME.
 Z_END_TIME = SY-UZEIT.
 Z_ELAPSED_TIME = Z_END_TIME - Z_START_TIME.
 WRITE: / 'Base elapsed time: ', Z_ELAPSED_TIME.

 IF CB_TRBAS = 'X'.
 PERFORM F_END_SQL_TRACE.
 ENDIF.

 ENDIF.
 COMMIT WORK.

ENDFORM. " F_BASELINE_SELECT

&--
*& Form F_SORTED_SELECT
&--
&--
* —> p1 text
* <— p2 text

FORM F_SORTED_SELECT.

121No portion of this publication may be reproduced without written consent.

Appendix A — Sample Program

 IF CB_SORT = 'X'.

 DATA:
 INT_LOC_DRIVER LIKE INT_DRIVER OCCURS 0.

 FREE INT_MSEG.
 INT_LOC_DRIVER[] = INT_DRIVER[].

* issue SELECT of interest: sorted, but still with dupes
 SORT INT_LOC_DRIVER BY MBLNR
 MJAHR.

* run a "pre-load" run to load buffers?
 IF CB_PRE = 'X'.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_mseg
 FOR ALL ENTRIES IN INT_LOC_DRIVER
 WHERE MBLNR = INT_LOC_DRIVER-MBLNR
 AND MJAHR = INT_LOC_DRIVER-MJAHR.
 ENDIF.

 IF CB_TRSRT = 'X'.
 PERFORM F_START_SQL_TRACE.
 ENDIF.

 GET TIME.
 Z_START_TIME = SY-UZEIT.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_mseg
 FOR ALL ENTRIES IN INT_LOC_DRIVER
 WHERE MBLNR = INT_LOC_DRIVER-MBLNR
 AND MJAHR = INT_LOC_DRIVER-MJAHR.
 GET TIME.
 Z_END_TIME = SY-UZEIT.
 Z_ELAPSED_TIME = Z_END_TIME - Z_START_TIME.
 WRITE: / 'Sorted elapsed time: ', Z_ELAPSED_TIME.

 IF CB_TRSRT = 'X'.
 PERFORM F_END_SQL_TRACE.
 ENDIF.

 ENDIF.
 COMMIT WORK.

ENDFORM. " F_SORTED_SELECT

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.122

&---
*& Form F_DUPE_REMOVED_SELECT
&---
FORM F_DUPE_REMOVED_SELECT.

 DATA:
 INT_LOC_DRIVER LIKE INT_DRIVER OCCURS 0.

 IF CB_DUPE = 'X'.

 FREE INT_MSEG.
 INT_LOC_DRIVER[] = INT_DRIVER[].

* issue SELECT of interest: sorted and with dupes eliminated
 SORT INT_LOC_DRIVER BY MBLNR
 MJAHR.
 DELETE ADJACENT DUPLICATES FROM INT_LOC_DRIVER COMPARING MBLNR
 MJAHR.

* run a "pre-load" run to load buffers?
 IF CB_PRE = 'X'.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_mseg
 FOR ALL ENTRIES IN INT_LOC_DRIVER
 WHERE MBLNR = INT_LOC_DRIVER-MBLNR
 AND MJAHR = INT_LOC_DRIVER-MJAHR.
 ENDIF.

 IF CB_TRDUP = 'X'.
 PERFORM F_START_SQL_TRACE.
 ENDIF.

 GET TIME.
 Z_START_TIME = SY-UZEIT.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_mseg
 FOR ALL ENTRIES IN INT_LOC_DRIVER
 WHERE MBLNR = INT_LOC_DRIVER-MBLNR
 AND MJAHR = INT_LOC_DRIVER-MJAHR.
 GET TIME.
 Z_END_TIME = SY-UZEIT.
 Z_ELAPSED_TIME = Z_END_TIME - Z_START_TIME.
 WRITE: / 'Dupe elapsed time: ', Z_ELAPSED_TIME.

 IF CB_TRDUP = 'X'.
 PERFORM F_END_SQL_TRACE.
 ENDIF.

123No portion of this publication may be reproduced without written consent.

Appendix A — Sample Program

 ENDIF.
 COMMIT WORK.

ENDFORM. " F_DUPE_REMOVED_SELECT
&---
*& Form F_RANGE_TABLE_VERSION_1_SELECT
&---
FORM F_RANGE_TABLE_VERSION_1_SELECT.

 DATA:
 INT_LOC_DRIVER LIKE INT_DRIVER OCCURS 0,
 Z_COUNT TYPE I VALUE 0,
 Z_DELETE TYPE I.

 IF CB_RNG1 = 'X'.

* build a range table reflecting all the MBLNRs in the driver table
 INT_LOC_DRIVER[] = INT_DRIVER[].
 SORT INT_LOC_DRIVER BY MBLNR
 MJAHR.
 DELETE ADJACENT DUPLICATES FROM INT_LOC_DRIVER COMPARING MBLNR
 MJAHR.
 PERFORM F_BUILD_RANGE TABLES R_MBLNR
 INT_LOC_DRIVER
 USING 'MBLNR'.

 FREE INT_MSEG.

* issue SELECT of interest using IN RANGE

* run a "pre-load" run to load buffers?
 IF CB_PRE = 'X'.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_MSEG
 WHERE MBLNR IN R_MBLNR.
 ENDIF.

 IF CB_TRRG1 = 'X'.
 PERFORM F_START_SQL_TRACE.
 ENDIF.

 GET TIME.
 Z_START_TIME = SY-UZEIT.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_MSEG
 WHERE MBLNR IN R_MBLNR.
 GET TIME.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.124

 Z_END_TIME = SY-UZEIT.
 Z_ELAPSED_TIME = Z_END_TIME - Z_START_TIME.
 WRITE: / 'Range (version 1): ', Z_ELAPSED_TIME.

 IF CB_TRRG1 = 'X'.
 PERFORM F_END_SQL_TRACE.
 ENDIF.

 ENDIF.
 COMMIT WORK.

ENDFORM. " F_RANGE_TABLE_VERSION_1_SELECT

&---
*& Form F_RANGE_TABLE_VERSION_2_SELECT
&---
FORM F_RANGE_TABLE_VERSION_2_SELECT.

 DATA:
 INT_LOC_DRIVER LIKE INT_DRIVER OCCURS 0.

 IF CB_RNG2 = 'X'.

* build a range table reflecting all the MBLNRs in the driver table
 INT_LOC_DRIVER[] = INT_DRIVER[].
 SORT INT_LOC_DRIVER BY MBLNR
 MJAHR.
 DELETE ADJACENT DUPLICATES FROM INT_LOC_DRIVER COMPARING MBLNR
 MJAHR.
 PERFORM F_BUILD_RANGE TABLES R_MBLNR
 INT_LOC_DRIVER
 USING 'MBLNR'.
 FREE INT_MSEG.

* issue SELECT of interest using FOR ALL ENTRIES IN the RANGE

* run a "pre-load" run to load buffers?
 IF CB_PRE = 'X'.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_MSEG
 FOR ALL ENTRIES IN R_MBLNR
 WHERE MBLNR >= R_MBLNR-LOW
 AND MBLNR <= R_MBLNR-HIGH.
 ENDIF.

 IF CB_TRRG2 = 'X'.
 PERFORM F_START_SQL_TRACE.

125No portion of this publication may be reproduced without written consent.

Appendix A — Sample Program

 ENDIF.

 GET TIME.
 Z_START_TIME = SY-UZEIT.
 SELECT (INT_FIELDS)
 FROM MSEG
 INTO CORRESPONDING FIELDS OF TABLE INT_MSEG
 FOR ALL ENTRIES IN R_MBLNR
 WHERE MBLNR >= R_MBLNR-LOW
 AND MBLNR <= R_MBLNR-HIGH.
 GET TIME.
 Z_END_TIME = SY-UZEIT.
 Z_ELAPSED_TIME = Z_END_TIME - Z_START_TIME.
 WRITE: / 'Range (version 2): ', Z_ELAPSED_TIME.

 IF CB_TRRG2 = 'X'.
 PERFORM F_END_SQL_TRACE.
 ENDIF.

 ENDIF.
 COMMIT WORK.

ENDFORM. " F_RANGE_TABLE_VERSION_2_SELECT

&--
*& Form F_SETUP_FIELDS
&--
* text

* —> p1 text
* <— p2 text

FORM F_SETUP_FIELDS.

 APPEND 'MBLNR' TO INT_FIELDS.
 APPEND 'MJAHR' TO INT_FIELDS.
 APPEND 'ZEILE' TO INT_FIELDS.
 IF CB_DBFLD = 'X'.
 APPEND 'BWART' TO INT_FIELDS.
 ENDIF.

ENDFORM. " F_SETUP_FIELDS

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.126

Appendix B —
ABAP Code for the
“F_BUILD_RANGE” Form

This appendix accompanies the article “Learn How to Avoid Lackluster System Performance When Using the

‘FOR ALL ENTRIES IN’ Clause: An ABAP Developer’s Guide” and contains the ABAP code for a simple

FORM routine that can be called to create a range table for a selected field in an internal table. In the case of the

sample program (Appendix A), this form can be used to create a range table whose rows reflect all “runs” (first

and last number in a range of consecutive numbers) of MBLNRs occurring in internal table INT_DRIVER. Note

that this form will only work properly with character data containing numbers only. This code is also available

for download at www.SAPpro.com, or from the author at djenkins@pointecom.net.

FORM F_BUILD_RANGE TABLES P_RANGE
 P_DATA
 USING P_FIELD_NAME TYPE C. "name of field

* NOTE: This routine assumes that p_data has a header line. It also
* sorts the data table by the key for which the table is to be
* built, and removes duplicates (using the specified field to
* identify duplicates).
*
* Note also that the header is not preserved across this
* subroutine.

* NOTE: This routine will create some entries with sign and option =
* 'IEQ' and with both high and low set to the same value.
* Although setting the high value may appear redundant, this
* ploy will allow the resulting range table to be used in a
* SELECT...FOR ALL ENTRIES IN... referencing the range table
* as a driver table.

* Note that the maximum length of the key field is 128.
 DATA:
 Z_CHECK(128),
 Z_PREV(128),
 Z_TEST(128).

 DATA:
 Z_LENGTH TYPE I.

127No portion of this publication may be reproduced without written consent.

Appendix B — ABAP Code for the “F_BUILD_RANGE” Form

 FIELD-SYMBOLS:
 <FS_CHECK>,
 <FS_PREV>,
 <FS_TEST>,
 <FS_KEY>,
 <FS_R_LOW>,
 <FS_R_HIGH>,
 <FS_R_SIGN>,
 <FS_R_OPT>.

 SORT P_DATA BY (P_FIELD_NAME).
 DELETE ADJACENT DUPLICATES FROM P_DATA COMPARING (P_FIELD_NAME).

* This form assumes that the field to be used in building the range
* table is a character (or numeric field containing numeric-only data).
 ASSIGN COMPONENT P_FIELD_NAME OF STRUCTURE P_DATA TO <FS_KEY>.
 IF SY-SUBRC <> 0.
 EXIT.
 ELSE.
 DESCRIBE FIELD <FS_KEY> LENGTH Z_LENGTH.
 ASSIGN Z_CHECK(Z_LENGTH) TO <FS_CHECK>.
 ASSIGN Z_TEST(Z_LENGTH) TO <FS_TEST>.
 ASSIGN Z_PREV(Z_LENGTH) TO <FS_PREV>.

 ASSIGN COMPONENT 'LOW' OF STRUCTURE P_RANGE TO <FS_R_LOW>.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.

 ASSIGN COMPONENT 'HIGH' OF STRUCTURE P_RANGE TO <FS_R_HIGH>.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.

 ASSIGN COMPONENT 'SIGN' OF STRUCTURE P_RANGE TO <FS_R_SIGN>.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.

 ASSIGN COMPONENT 'OPTION' OF STRUCTURE P_RANGE TO <FS_R_OPT>.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.

 CLEAR P_RANGE.
 FREE P_RANGE.
 <FS_R_SIGN> = 'I'.
 <FS_R_OPT> = 'BT'.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.128

 LOOP AT P_DATA.
 IF SY-TABIX = 1.
 <FS_R_LOW> = <FS_R_HIGH> = <FS_KEY>.
 ELSE.
 IF NOT <FS_PREV> CO '0123456789 '.
 APPEND P_RANGE.
 IF <FS_R_LOW> = <FS_R_HIGH>.
 <FS_R_OPT> = 'EQ'.
 ELSE.
 <FS_R_OPT> = 'BT'.
 ENDIF.
 <FS_R_LOW> = <FS_R_HIGH> = <FS_KEY>.
 ELSE.
 <FS_CHECK> = <FS_PREV> + 1.
 SHIFT <FS_CHECK> LEFT DELETING LEADING '0'.
 SHIFT <FS_CHECK> LEFT DELETING LEADING ' '.
 <FS_TEST> = <FS_KEY>.
 SHIFT <FS_TEST> LEFT DELETING LEADING '0'.
 SHIFT <FS_TEST> LEFT DELETING LEADING ' '.
 IF <FS_TEST> = <FS_CHECK>.
 <FS_R_HIGH> = <FS_KEY>.
 ELSE.
 IF <FS_R_LOW> = <FS_R_HIGH>.
 <FS_R_OPT> = 'EQ'.
 ELSE.
 <FS_R_OPT> = 'BT'.
 ENDIF.
 APPEND P_RANGE.
 <FS_R_LOW> = <FS_R_HIGH> = <FS_KEY>.
 ENDIF.
 ENDIF.
 ENDIF.
 <FS_PREV> = <FS_KEY>.
 ENDLOOP.

 IF <FS_R_LOW> = <FS_R_HIGH>.
 <FS_R_OPT> = 'EQ'.
 ELSE.
 <FS_R_OPT> = 'BT'.
 ENDIF.
 APPEND P_RANGE.

 ENDIF. " field exist in input table?

ENDFORM. " F_BUILD_RANGE

