Password Management for Extranet Applications

Password Management
for Extranet Applications

Thomas G. Schuessler

Thomas G. Schuessler is
the founder of ARAsoft, a
company offering products,
consulting, custom
development, and training
to customers worldwide,
specializing in integration
between SAP and non-SAP
components and applications.
Thomas is the author of
SAP’s CA925 and CA926
classes. Prior to founding
ARAsoft in 1993, he worked
with SAP AG and SAP
America for seven years.

(complete bio appears on page 68)

An extranet application is defined as one in which you allow users
outside your firewall limited, controlled access to certain functionality
within the firewall. If this functionality involves SAP, the question
arises whether you want to assign each user his own SAP userid or use a
generic one. Why do we need an SAP userid at all? Before being able
to call any BAPI (or other RFC-enabled Function Module), you have

to connect (log on) to SAP using a valid userid/password. If you are
willing to give each extranet user his own SAP userid, then you do not
need this article. Normally, though, buying one SAP userid for each
of your business partners (or, worse, one SAP userid for each of their
employees who need to access your application) is not high on your list
of ways to spend money.

You want to use a generic SAP userid instead. This obviously raises
a new question: How do we control access to our extranet applications
so that only selected business partners can use them? You can solve
this issue completely independently of SAP, but SAP has foreseen this
scenario and offers capabilities to manage special extranet userids for
customers, vendors, etc.

This article will discuss three topics:
* The online SAPGUI transaction for maintaining extranet userids.
This part is interesting for everybody involved in building extranet

solutions, but specifically for security administrators.

* The password BAPIs available for object types like Cust oner ,
Vendor , etc. This part is for developers and architects involved in

No portion of this publication may be reproduced without written consent. a7

SAP Professional Journal July/August 2001

building extranet applications. We will discuss
the functionality required for a normal extranet
application (primarily the ability to check a user’s
password) as well as a maintenance application
for administrators (to be used instead of the
SAPGUI transaction mentioned previously).

* A component written in Java that encapsulates
access to the password BAPIs. This part will be
most beneficial for Java developers, but if you
use a different programming language, you
should be able to translate the concepts into your
own language. This component can be used in
normal extranet applications as well as in
administration tools.

Before we really get going, [would like to extend
the term “extranet” for the purpose of this article. As
indicated above, it usually refers to controlled access
to an application from without the firewall. This
applies mainly to business partners and employees
who happen to be outside the firewall (e.g., because
they are on a business trip). I would like to also
include employees who do not have their own SAP
userid, but reside within the firewall, in the definition.

So an extranet application would be one that
requires a special userid/password (but not an SAP
userid), regardless of whether the application is
accessed from within or without the firewall. While
this definition is not accurate outside the scope of this
article, it allows us to use concise language to discuss
our topics in the article.

Maintaining Extranet
Userids in SAP

SAP since 3.1 offers special web transactions,
initially called Internet Application Components
(IACs), and recently renamed to Easy Web
Transactions (EWTs). Some of them are true Internet
applications in the sense that anybody on the Internet
can use them without requiring a logon. Most EWTs,

though, are either for employees or selected business
partners, in other words they are extranet applications
according to the definition valid for the scope of this
article. For those EWTs, SAP needed a way to
manage extranet userids and passwords without
requiring an SAP userid for each user.

SAP added a new table to store the extranet
userids, called BAPI USWD1 (see Figure 1). This
table has two key fields (in addition to the normal
client key field): object type (OBJTYPE) and object
id (OBJI D). Object type identifies the type of userid,
e.g., KNAL denotes a customer, BUS1065 an
employee. This allows all the extranet userids to
be kept in one table. Object id is the object-type-
specific key, for a customer this would be the
customer number.

BAPI USWD1 contains all sorts of useful
information that we will discuss later when we learn
about the Get Passwor d BAPI, but there is one
field I would like to mention now, the one called
PASSWORD. This, contrary to what the name seems
to imply, does not contain the password, not even
the password in an encrypted form that could be
decrypted again. Instead, SAP calculates a hash code
based on the password and stores that hash code in
the table. The hashing algorithm is irreversible, so
there is no way to find out the password for a user
(unless you are willing to try out every possible
password, which is rendered impossible by the
fact that SAP locks the extranet userid after 12
consecutive incorrect logon attempts). But SAP can
easily check an entered password by calculating the
hash code for the entered password and comparing
this hash code to the one stored in the table.

Passwords for extranet users are case-sensitive.
They are a minimum of three and a maximum of 16
characters long and must obey the following rules:

* A password cannot be “sap”, “SAP”, “pass”, or
“PASS”; “SaP”, on the other hand, is a legal

password.

» The first three characters cannot be identical,

48 www.SAPpro.com

©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 1 Table BAPIUSWO01
Tahle Edit Goto Ulilities Extras Epvironment Systern Help
B dH @ BRE ODonERA
Dictionary: Display Table
4= | = | 293 oY | aall |5 | BH Technical settings || Indexes.. | Append structures.
EAPILSWEY Active
User 1D Table for Internet Appplication Components
Afiributes * Fields | Currencyfguant. fields |
3 @m Tlety oS @| w | Data element/Direct type |
Fields Key|Init. |Field type Data..|Lgth. |Dec.p...|Short text
MANDANT MANDT CLNT 3 Blclient [<]
OBITYPE 0.1 MAME CHER 10 Bl0bject type @
0BJID WWWOBJID [CHAR 16 BlUser D in Internet user master |
PASSWORD [1{] |HCODE RAW 16 BHashcode for encryption
CODEYWERS []{[] [XUCODEVERS [CHER 1 B\ ode version of encryption algorithm
SERVICE [[]|5RYID INT1 3 BiSenice ID for Internet user ID
STATE [[C] [UIDSTATE CHAR 1 Blinternet user status (UID status): lockedinot locked
UIDDATE 1| [] [XUERDAT DATS a BiCreation date of user master record
WAL IDTO 1| [] [XUGLTGE DATS g BlUservalid to
LCHT [1) [] [#ULOCNT INT1 3 BICounter for incorrect logons per user
LDATE [{] [XULDATE DATS g BlLastlogon date
LTIHE [[] [XULTIME TIMS] BlLast logon time | |
UPDPASS [1) [] UBCDAT DATS g BDate of last password change [+]
| [~]
[0 [I[«[r]
4.7
e.g., “aaardvark” is not a legal password, but Figure 2 Transaction Code SUO5

“Aaardvark” is.

11 Edit

Goto

: » 2 dH S
* A password may not contain the “<” or space
characters. Maintain Internet user

D Eaare ﬁ' E Initialize | Change passward

* A password cannot start with the “?”” character.

Internet user

* The first three characters of a password may not
be substrings of the extranet userid. For instance,
if the customer number is “0000001400”, a Co
password of “014tgs” would be illegal, whereas Type KNAT|
“410tgs” would be okay.

The SAP transaction code used for the
maintenance of extranet userids is SUO5
(see Figure 2).

No portion of this publication may be reproduced without written consent. 49

SAP Professional Journal July/August 2001

As you can see, SAP calls what I call an extranet
userid an “Internet user”. Both terms are slightly
inaccurate, but I think mine is a little closer to
the truth.

Which object types can have extranet userids in
SAP? At least in 4.6B, there are two answers to that
question. If you select input help on the “Type” field
in Figure 2, you will see the list in Figure 3.

Figure 3 Supported Object Types in SU05

| i
“|Object name |
Applicant

BLUIS1006001 Business patner employee

BLIS1007 Dehitor

BLIS1008 Creditor

BLIS1065 Emplovee

AR Customer E|

FOOTYFE_FT Aftendes E|
| W,

Figure 4

Object Types With Password BAPIs

If, on the other hand, you create a list of all object
types that have BAPIs to manipulate extranet userids,
you end up (in 4.6B) with Figure 4.

If you compare the two lists, you will note that
extranet userids for vendors are not supported by
SU05, but they can be created by the appropriate
BAPIs.

Let us now look at the functionality offered
by SUOS5.

To create an extranet userid, you enter the object
type and the object id (which will be the extranet
userid) and select the “Create” menu item or icon. A
dialog pops up (see Figure 5) that allows you to limit
the validity period of the userid.

If you do not specify any date, the new userid
will be valid forever.! The next pop-up (cf. Figure 6)
shows the initial password assigned to the new user.
You can either give this password to the user

' Or, more accurately, the userid will be valid until 9999-12-31. You
already knew that SAP’s software is not Y 10K-compliant, didn’t you?

Object Type Key Description Object Type Name
APPLICANT Applicant Applicant
BUS1006001 Business partner employee BusPartnerEmployee
BUS1007 Customer Debtor

BUS1008 Vendor Creditor

BUS1065 Employee EmployeeAbstract
KNA1 Customer Customer

LFA1 Vendor Vendor
PDOTYPE_PT Attendee Attendee

50 www.SAPpro.com

©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 5 Restricting the Validity (especially if you have reason to believe that he will
Period of a Userid still talk to you after having to enter the 16 characters

shown in Figure 6) or immediately change the

password to something else (see next page).

When creating a new extranet userid, SUO5 does
not check whether the object id is valid, allowing
you to create an extranet userid for a non-existing
customer, for instance. The BAPIs are less forgiving.
Figure 7 contains information about whether the
Cr eat ePasswor d BAPI works for a non-existing
object id in 4.6B.

Figure 6 The Initial Password

Figure 7 Are Object Ids Checked by the CreatePassword BAPI?
Object Type Key Object Type Name Checks Object Id
APPLICANT Applicant Yes
BUS1006001 BusPartnerEmployee Yes
BUS1007 Debtor Yes
BUS1008 Creditor Yes
BUS1065 EmployeeAbstract Yes
KNA1 Customer No
LFA1 Vendor Yes
PDOTYPE_PT Attendee N/A2

2 The Attendee object type (PDOTYPE_PT) does not have a CreatePassword BAPI.

No portion of this publication may be reproduced without written consent. 51

SAP Professional Journal July/August 2001

To change an extranet password, click the
“Change password” button in Figure 2. The pop-up
shown in Figure 8 requires you to enter the new
password twice to prevent typos. There are no
additional rules for new passwords beyond the
password rules discussed previously, specifically
there is no requirement that the new password must
differ from the old one. If you want to enforce
additional rules, you have to implement them
yourself.

If the userid is locked (see below), the password
cannot be changed.

To re-initialize an extranet password, click the
“Initialize” button in Figure 2. SAP will ask you to
confirm this in the pop-up displayed in Figure 9.

If you click the “Yes” button, a new initial
password will be generated and displayed in a pop-up
as seen before in Figure 6.

If the userid is locked (see below), the password
cannot be re-initialized.

To change the validity period of an extranet
userid (or correct the userid itself), select the
“Change” menu item or icon in Figure 2. The dialog
shown in Figure 10 allows you to make the necessary
changes. The check box labeled “without restrict.”
can be used to remove a previously set valid-to date,
as an alternative to entering the end-of-the-world date
0f 9999-12-31.

To display information about an extranet userid
without making any changes, select the “Display”
menu item or icon in Figure 2. As you can see in
Figure 11, there is no validity period specified for
this userid, but the userid is locked.

I have artificially created this situation by
attempting to log on 12 times in a row with an invalid
password.

To lock or unlock an extranet userid, select
the “Lock/unlock” menu item or icon in Figure 2.

Changing a Password

Figure 8

ser 200000Q0Q0QE14080 [type KM&T 3

IR E R R E R R E R

Mesy password

IEEEEREEEEEERESE]

Repeat password

¥ Transfer 3

Figure 9 Confirming Password Initialization

Initialize Internet user

_ User 0000000000001 400
&) (twe kna1) initialize?

Figure 10 Changing an Extranet Userid

Change Internet user

User DOOOODOOOOOOT400 { fype KNAT)

Fename
from: DOAEEROAAREET400
fo: QOEEEROAAREET400
YWalidity period
frorm
to:
[] without restrict.

v R

&l

Figure 11 Displaying an Extranet Userid

User D000000OOOEE1400 | type KWA1)

Walid until Locked

v R

52 www.SAPpro.com

©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 12

Unlocking a Userid

Lockiunlock Internet user

& ®

leer 0000000000007400 ¢ type kMNAT Y locked due to incorrect logon

Figure 13

Confirming the Deletion of a Userid

Delete Internet uzer

&P (twe KNAT the user?

Do you really want to delete 0000000000007 400

Yes Mo

u 3 Cancel

The message in Figure 12 tells you that the userid
was actually locked due to too many invalid logon
attempts. Click the unlock icon to unlock the userid
again. In real life, you would now probably also
assign a new password and contact the user to
figure out whether he had forgotten his password.
Otherwise, we should alert our network security
people so that they can try to find out who has been
trying to hack into our system.

Finally, it is also possible to delete an extranet
userid in SUO5. Selecting the “Delete” menu item or
icon in Figure 2 will cause a window like the one in
Figure 13 to show up.

Let me summarize what we have learned about
SUO5: This transaction code allows us to create,
display, lock, unlock, and delete extranet userids. We
can change the validity period of a userid, as well as
change or re-initialize the associated password. At
least in 4.6B, the Vendor object type is not
supported in SUO5, and — as opposed to most of the
equivalent BAPIs — object ids are not validated.

Using the Password BAPIs

When developing an extranet application that wants
to take advantage of SAP extranet userid capabilities,
we obviously need at least a BAPI to check a
password entered by the user. SAP has been nice
enough to give us more than just that: There is a
whole group of BAPIs that can be used to deal with
extranet userids and passwords. All these BAPIs
contain the string “Password” so I will call them the
password BAPIs hereinafter. The functionality
offered by these BAPIs overlaps with the
functionality available in SUO5. There are things you
can do with the BAPIs that cannot be done in SUO5
and vice versa. One example was discussed above:
To create an extranet userid for a vendor, SUO5 does
not work, but you can use BAPIs instead. On the
other hand, there is no BAPI to lock a userid (unless
you resort to the trick of calling CheckPasswor d
12 times in a row with incorrect passwords).

Using the password BAPIs for the first time is not
trivial. SAP’s naming conventions are such that you

No portion of this publication may be reproduced without written consent. 53

SAP Professional Journal

July/August 2001

Figure 14

The Standard Password BAPIs

BAPI Name Description

ChangePassword Changes a password.
CheckPassword Checks whether a password is correct.
CreatePassword Creates an extranet userid in the database, but does not create the actual password.

DeletePassword

Deletes an extranet userid from the database.

GetPassword

Returns status information, but not the password itself.

InitPassword

Creates an initial password; requires an extranet userid created via CreatePassword.

Figure 15

Object Types with Password BAPIs

Object Type Name Object Type Description Standard G ET G
G Password
BAPIs

Applicant APPLICANT Applicant Yes

Attendee PDOTYPE_PT | Attendee No Supports only
ChangePassword and
CheckPassword.

BusPartnerEmployee | BUS1006001 Business partner employee | Yes

Creditor BUS1008 Vendor No Obsolete since 4.6A;
uses non-standard names
for CreatePassword,
DeletePassword, and
GetPassword.

Customer KNA1 Customer Yes New version of the
CheckPassword BAPI
since 4.6A.

Debtor BUS1007 Customer No Obsolete since 4.6A;
uses non-standard names
for CreatePassword,
DeletePassword, and
GetPassword.

EmployeeAbstract BUS1065 Employee Yes Additionally, all its
subclasses (e.g.,
Employee, EmployeeCH).

Vendor LFA1 Vendor Yes New since 4.6A.

54 www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 16 The Vendor Object Type in the BAPI Explorer

Explarer Edit Gaoto Environment . |
& s dHIC@GA ICRE 8040 Eea
BAPI Explorer
Gl R
f = lig] Detail k [l Documentation k dFs Tools k 4 Project ?
ol —
Method (BAPI)
P’ Wethod) ChangePassvora
Hierarchical Alphabetical |
Business object Yendor
= @ Vendor [«]
& vendorhio =] || short description Change password
% @& ChangePassword
{ P d
lié Passwor Mew in Release 468
[NewPassward
[E¢ verifPassword
@Return Function module BAPT VENDOR CHAWGEPASSWORD
I @& CheckPassword
b [Creats ALE messange type Does not exist
I @& CreatePasswaord
> & Delete = ;
b & DelataPassword &, Instance-depend [] Dialog
> & Display
b & Edit Status
> & ExistenceCheck Release status Released
I & Find
b & GetDetail
I R GetinternalMumber — |:
b & GetPassword - N
b & InitPassword [«] =
S = hd
L]l D]
| 14/

are easily confused as to the purpose of a specific
BAPI. Figure 14 contains the standard BAPIs
supported by most object types that have password
BAPIs at all.

And when I tell you that Cr eat ePasswor d
does lots of things, but does not create a password,
and that Get Passwor d returns very useful
information, but never the password, you may
appreciate that this requires a little more study.

So, let us get busy...

First, I want to give you an extended version of
Figure 4 (see Figure 15).

Appl i cant , BusPar t ner Enpl oyee,
Cust oner , Enpl oyeeAbstract (and its
subclasses), and Vendor have complete support for
the standard password BAPIs. See the remarks
column in Figure 15 to find out how the other object
types differ.

Figure 16 is a screenshot that lists all BAPIs
for the Vendor object type in the BAPI Explorer.
You can see that all standard password BAPIs are
supported. The BAPI Explorer (transaction code
BAPI) is the best starting point if you want to
study and try out any BAPI, so you may want to
use it while reading the remaining paragraphs
of this section.

No portion of this publication may be reproduced without written consent.

55

SAP Professional Journal July/August 2001

Figure 17 CreatePassword Standard Parameters

Parameter

Data Type

Description

Return Structure Out The standard BAPI return parameter

Figure 18 The RFM for Vendor.CreatePassword

onment

G 0

WS

Function module

] R OE R e
Function Builder: Display BAPI_VENDOR_CREATEFP...
& = | |76 | gu 1|2 %] AlE B | (@) Patem| | || =f nser

-]
iFunction module; BAFI_YEMDOR_GREATEPASSWORD Active B
// Export h Changing h Tahles h Exceptions " Source code | _
FAE =
FUNCTION BAPI_MENDOR_CREATEPASSWORD E|
*UE" okale Schnittstelle: El
o IHPORTING
oy WALUE (VENDORNDY LIKE BAPIMEMDOR_ID-YENDOR_MO
i EXPORTING
i WALUE (RETURM) LIKE BAPIRET1 STRUCTURE EMFIRETH
* walue of id_type corresponds to name of business object in the BOR —
CONSTANTS IDTYPE_ LIKE BAPIUSWO1-OBJTYPE WALUE 'LFA1'. "obhject IDtyp
DATA: OBJID LIKE BAPIUSWAT-OBJID.
MOYE WENDORWO TO OBJID. E|
Snanadina Rl =
W

Next, we want to discuss the standard password
BAPIs one by one, starting with Cr eat ePasswor d.
Contrary to its name, this BAPI does not create a
password, but it creates an extranet userid. Figure 17
contains all the parameters, in this case exactly one,
the standard BAPI return parameter that informs us
about success or failure of our BAPI call. Where do
we specify the object id (e.g., the vendor number)?
Remember (or if you do not remember, find out

now) that the BAPI Explorer does not show key
field parameters for instance® BAPISs, instead

it lists all key fields for the object type directly
underneath the object name (cf. Figure 16, key
field “VendorNo” right above the highlighted
“ChangePassword” BAPI).

3 An instance BAPI is one that requires key fields to access a particular
record in a database table.

56

www.SAPpro.com

©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 19 InitPassword Standard Parameters

Parameter Data Type In/Out Description

Password Character 16 Out Generated password

Return Structure Out The standard BAPI return parameter
Figure 20 ChangePassword Standard Parameters

Parameter Data Type In/Out Description

Password Character 16 In Old password

NewPassword Character 16 In New password

VerifyPassword Character 16 In New password again

Return Structure Out The standard BAPI return parameter

Figure 18 is a screenshot of the RFM
(RFC-enabled Function Module) that implements the
Cr eat ePasswor d BAPI for the Vendor object
type. And there you can see that it has indeed the
expected import parameter for the vendor number
(which will become the userid of the extranet user).

If the return code from the Cr eat ePasswor d
BAPI (in parameter Ret ur n) indicates success,
we have created a new extranet userid, but not yet
assigned a password (whereas in SUO5, creating a
userid automatically initializes the password).

In order to (re-)initialize the password, we use the
I ni t Passwor d BAPI, the parameters of which are
listed in Figure 19.

The Ret ur n parameter tells us whether the call
succeeded, Passwor d contains the freshly generated
password. In addition to generating a (new) initial
password, | ni t Passwor d also unlocks the extranet
userid if it was locked before. This is different from
the behavior in SUO5, where we cannot re-initialize
the password of a locked userid without unlocking
it first.

The initial password is not something a user
will want to remember, so a normal application will
include a dialog for the user to change the password.
This is accomplished using the ChangePasswor d
BAPI. Its parameters are enumerated in Figure 20.
ChangePasswor d will fail for a locked userid.

The BAPI obviously assumes that you require
the user to type the new password twice, which is
a good way of preventing typos from creating a
different new password than the user expected. Note
that the old password must be specified here, whereas
I ni t Passwor d did not require that. The reason is
that ChangePasswor d provides functionality that
is used in normal applications, whereas resetting a
password is usually restricted to administrators.
Also, since there is no way to figure out somebody’s
password, we would not be able to assign somebody a
new password once he had forgotten the current one,
if that required us to know the old password.

The most commonly used password-related
function in an application is to check a password
entered by a user. CheckPasswor d allows us to do

No portion of this publication may be reproduced without written consent.

SAP Professional Journal

July/August 2001

Figure 21 CheckPassword Standard Parameters

Parameter Data Type In/Out Description

Password Character 16 In Password to be checked

Return Structure Out The standard BAPI return parameter
Figure 22 GetPassword Standard Parameters

Parameter Data Type In/Out Description

Statuslinfo Structure Out Status information (see Figure 23)

Return Structure Out The standard BAPI return parameter

Figure 23 Statusinfo Fields

Field Name Data Type Description

OBJTYPE Character 10 Object type

OBJID Character 16 User ID in Internet user master

SERVICE 1-byte Integer Service ID for Internet user ID

STATE Character 1 Internet user status (UID status):

locked/not locked

UIDDATE Date Creation date of user master record

VALIDTO Date User valid to

LCNT 1-byte Integer Counter for incorrect logons per user

LDATE Date Last logon date

LTIME Time Last logon time

UPDPASS Date Date of last password change
that (see Figure 21 for the parameters). The To find out about the status of an extranet userid,
password to be checked is passed in parameter including whether it is locked and when the password
Passwor d, Ret ur n tells us whether the entered was changed last, we use the Get Passwor d BAPI.

password was correct.

Figure 22 shows its parameters. All the interesting

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 24

DeletePassword Standard Parameters

Return Structure Out

The standard BAPI return parameter

information is returned in table parameter
St at usl nf o, the structure of which is given
in Figure 23.

OBJTYPE and OBJ| D should be obvious by
now. What SERVI CE is used for, I cannot tell you,
probably it has some meaning for ITS applications.

STATE is blank to indicate an unlocked userid,
non-blank for a locked userid. Ul DDATE contains
the date when the extranet userid was created.

VALI DTOris either empty (indicating unlimited
validity) or contains the end of the validity period.
LCNT contains the number of consecutive invalid
logon attempts. This field is reset after a successful
logon and after the password is (re-)initialized.
LDATE and LTI ME contain the date and time,
respectively, of the last logon. UPDPASS tells us
when the password was changed last. This could be
used in an application that wants to force a user to
change his password after a certain interval in order
to provide more security.*

Finally, there is a BAPI to delete an extranet
userid, Del et ePasswor d. Its parameters are
contained in Figure 24.

Let us summarize this part of the article: Once
you have recovered from the shock that some of the
password BAPIs have inappropriate names, it is not so
difficult to use them. CheckPasswor d will be used
in all your extranet applications, ChangePasswor d
whenever you want to allow the users to change their
passwords. Get Passwor d returns information

4 In reality, sometimes the opposite happens: A user forced to change
passwords periodically is more likely to write the passwords on a little
piece of paper hidden under the mouse pad than somebody who is
allowed to select a password once and keep it. Security is a difficult
business!

relevant for advanced functionality like forcing users
to change their passwords periodically.

Cr eat ePasswor d, | ni t Passwor d, and
Del et ePasswor d will normally only be used in
administrative tools.

Building a Java Component
for the Password BAPIs

Whenever something takes a few hours or more to
figure out, and you assume that the functionality
might be useful for other projects, you should

try to build a reusable component that hides the
complexity. For this article I have chosen Java as
the programming language, because it facilitates
the development of reusable components.

I had the following goals in mind when designing
this component:

* All SAP object types that implement all standard
password BAPIs should be supported.

* Adding additional object types in the future
should be very easy.

* The idiosyncrasies of the SAP password BAPIs
should be hidden.

The component should be extremely easy to use
and require as little SAP knowledge as possible.

In order to make it simple to add new specific
userid classes, everything that can be done generically
is done in class User | d. But this base class cannot
know the names of the RFMs implementing the

No portion of this publication may be reproduced without written consent. 59

SAP Professional Journal July/August 2001

various password BAPIs for the different SAP object
types. Also, in some cases the RFM parameter names
used are different for different object types. Each
subclass needs to provide the necessary information by
implementing the abstract methods of class User | d
shown in Figure 25.

Figure 26 is a listing of the complete source
code for one of the subclasses, Cust oner User | d.
The code for Appl i cant User | d,

BusPar t ner Enpl oyeeUser | d,
Enpl oyeeUser | d, and Vendor User | d looks
very similar.

As you can see the code is pretty straight-

forward, each method just returns the required
string. The only logic takes place in method

Figure 25

get CheckPasswor dMet hodName() since there
are two versions of the appropriate BAPI, one for
systems below 4.6 and a new one available since 4.6.
The code simply checks the release of the connected
SAP system and returns the correct name.

As stated before, all real work takes place in
class User | d. This class defines four private fields
(Figure 27).

The first three of these will be set when the
constructor of the class is called, the last one
will be discussed later in the context of the
get User | dI nf or mat i on() method.

The constructor for class User | d is shown in
Figure 28.

Abstract Methods of Class Userld

protected abstract String get CheckPasswor dMet hodNane() ;
protected abstract String get ChangePasswor dMvet hodName() ;
protected abstract String get Creat ePasswor dvet hodName() ;
protected abstract String getDel et ePasswor dMvet hodName() ;
protected abstract String get Get Passwor dMet hodNane() ;
protected abstract String getlnitPasswordMet hodName() ;
protected abstract String get NewPasswor dPar amet er Name() ;
protected abstract String get VerifyPasswor dParanet er Nane() ;

Figure 26

Source Code for Class CustomerUserld

package de. arasoft. sap.j co. password;
i mport com sap. mw. j co. *;

public class CustonerUserld extends Userld {
public CustonmerUserld (String objectKey,
JCO. dient connection,
| Repository repository)

throws User| dException {

super (obj ect Key, connection, repository);

}

protected String get Gbj ect KeyNane() {

return " CUSTOVERNO' ;
}

protected String get ChangePasswor dvet hodNane() {
return "BAPI _CUSTOVER CHANGEPASSWORD' ;

60 www.SAPpro.com

©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 26 (continued)

}
protected String get CheckPasswor dMet hodName() {
i f (getConnection().getAttributes().
get Part ner Rel ease() . conpareTo("46A") < 0)
return "BAPI _CUSTOVER CHECKPASSWORD';
el se
return " BAPI _CUSTOVER CHECKPASSWORD1";

}

protected String getCreat ePasswor dvet hodNane() {
return "BAPI _CUSTOVER_CREATEPWREG';

}

protected String getDel et ePasswor dvet hodNane() {
return "BAPI _CUSTOVER _DELETEPWREG';
}

protected String get Get Passwor dvet hodName() {
return "BAPI _CUSTOVER GETPWREG';
}

protected String getlnitPasswordMet hodNane() {
return "BAPI _CUSTOVER_|I NI TPASSWORD" ;
}

protected String get NewPasswor dPar anet er Nane() {
return " NEW PASSWORD' ;
}

protected String getVerifyPasswor dPar anet er Nane() {
return "VERI FY_PASSWORD' ;
}

}

Figure 27 Private Fields for Class Userld

private String objectKey = null;
private JCO dient connection = null;
private | Repository repository = null;
private Userldlnformation pi = null;

Figure 28 Constructor for Class Userld

protected Userld (String objectKey,
JCO. dient connection,
| Repository repository) throws Userl dException {
thi s. obj ect Key = obj ect Key;
t hi s. connecti on connecti on;
this.repository reposi tory;

}

No portion of this publication may be reproduced without written consent. 61

SAP Professional Journal July/August 2001

Figure 29 The create() method of Class Userld

synchroni zed public String create () throws Userl dException {
JCO. Function function =
creat eFuncti on(t hi s. get Cr eat ePasswor dMet hodName()) ;
if (function == null)
throw new User | dException("Required RFM " +
t hi s. get Cr eat ePasswor dMet hodNane() +
" not found.");
try {
function. get | nport Paramnet er Li st ().
set Val ue(obj ect Key, get Obj ect KeyName());
get Connecti on() . execut e(functi on);
JCO. Structure bapi Return =
function. get Export Paramnet er Li st (). getStruct ure("RETURN') ;
i f (bapi Return. get Nane(). equal s("BAPI RETURN")) {
if (! (bapi Return.getString("TYPE").equals("") ||
bapi Return. get String("TYPE"). equal s("S") ||
bapi Ret urn. get Stri ng(" CODE") . equal s("S>501")
))
t hr ow new
User | dExcept i on(get Bapi Ret ur nEr r or Message(bapi Ret urn)) ;
} else {
if (! (bapi Return.getString("TYPE").equals("") ||
bapi Return. get String("TYPE"). equal s("S") ||
bapi Ret urn. get Stri ng(" NUMBER") . equal s("501")
))
t hr ow new
User | dExcept i on(get Bapi Ret ur nEr r or Message(bapi Ret urn)) ;

}

}
catch (Userl dException ex) ({

t hrow ex;
}
catch (Exception ex) {
t hrow new User | dExcepti on(ex. get Message(), ex);
}
function = creat eFunction(this.getlnitPasswordMet hodNane());
if (function == null)
throw new User | dExcepti on(" Required RFM " +
thi s. getlnitPasswordMet hodNane() +
" not found.");
try {
function. get | nport Paranet er Li st ().
set Val ue(obj ect Key, get Obj ect KeyNamne());
get Connecti on() . execut e(functi on);
JCO. Structure bapi Return =
function. get Export Paramnet er Li st (). getStruct ure("RETURN') ;
if (! (bapiReturn.getString("TYPE").equals("") ||
bapi Return. get String("TYPE"). equal s("S")

))

62 www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 29 (continued)

}
catch (Userl dException ex) {

t hrow ex;

}
catch (Exception ex) {

}
}

t hrow new User | dExcepti on(get Bapi Ret ur nEr r or Message(bapi Ret urn));
return function. get Export ParaneterList().getString("PASSWORD") ;

t hrow new User | dExcepti on(ex. get Message(), ex);

The obj ect Key parameter is the key
identifying the entity, for a customer this would be

the customer number. This key is the extranet userid.

The formatting of the key must be appropriate for the
specific subclass. When calling the constructor

of subclass Cust oner User | d, for example, an
all-numeric customer number must be left-padded
with zeroes.

The connect i on parameter is used to pass an
active connection to SAP, required so that the object
can call BAPIs in SAP.

The r eposi t or y parameter must contain a
reference to a JCo® repository object connected
to the same SAP system. The repository
dynamically retrieves the required metadata
for the BAPIs.

The creation of a new extranet userid and the
initialization of its password is done via a call to

> The SAP Java Connector (or JCo) is the standard middleware
for Java connectivity to SAP. You can download it from
http://service.sap.com/connectors.

Figure 30

create() (see Figure 29) in our component. This
method makes two BAPI calls, one for the creation
and one for the password initialization. We have
combined the two BAPIs into one method since it is
not very useful to create an extranet userid without
giving it a password. The generated password is
returned by the cr eat e() method.

What would happen if we called cr eat e() for
a userid that already exists? In our implementation,
we simply continue and (re-)initialize the password.
This can be useful if a user has forgotten his
password and an administrator, using a GUI built on
top of our component, needs to assign a new one.

The next method we need to implement is
changePasswor d() . The initial password
generated by cr eat e() is impossible to remember
for most users. We can either change the initial
password immediately after the creation and give the
changed password to the user or give the user the
initial password and an option to change it when
he logs on for the first time. Anyway, we need
changePasswor d(), as shown in Figure 30.

The changePassword() method of Class Userld

JCO Function function =

synchroni zed public void changePassword (String ol dPassword,

String newPasswor d)

throws Userl dException {

creat eFuncti on(t hi s. get ChangePasswor dMet hodNane()) ;

(continued on next page)

No portion of this publication may be reproduced without written consent. 63

SAP Professional Journal July/August 2001

Figure 30 (continued)

if (function == null)
t hrow new User | dExcepti on("Required RFM " +
t hi s. get ChangePasswor dMet hodNane() +
" not found.");
try {
function. getl nport Paranet er Li st ().
set Val ue(obj ect Key, get Obj ect KeyName());
function. getl nport Paranet er Li st ().
set Val ue(ol dPasswor d, " PASSWORD") ;
function. getl nport Paranet er Li st ().
set Val ue(newPasswor d, this.get NewPasswor dPar anet er Nane()) ;
function. getl nport Paranet er Li st ().
set Val ue(newPasswor d, this. getVerifyPasswordPar anet er Narme()) ;
get Connection() . execute(function);
JCO. Structure bapi Return =
function. get Export Paranet er Li st ().getStructure("RETURN') ;
if (! (bapi Return.getString("TYPE").equals("") ||
bapi Return. get String("TYPE"). equal s("S")
))
t hrow new User | dExcepti on(get Bapi Ret ur nErr or Message(bapi Return));
}
catch (Userl| dException ex) {
t hr ow ex;
}
catch (Exception ex) {
t hr ow new User | dExcepti on(ex. get Message(), ex);

}

}

The code is not very exciting. Just remember application is the ability to check a user’s
that SAP’s change password BAPIs want the same password. This is accomplished in our
password twice. Our changePasswor d() method i sPasswor dCor r ect () method (see Figure 31).
assumes that the client has verified that the user has
entered the exact same new password twice and In order to facilitate access to the information
therefore requires only one parameter with the made available by the Get Passwor d BAPI, we
new password. have built the get User | dI nf or mat i on()

method (source code listed in Figure 32). This

The most important function for a normal method has a parameter that lets the client program

Figure 31 The isPasswordCorrect() method of Class Userld

synchroni zed public bool ean i sPasswordCorrect (String passWrd)
throws User| dException {
JCO. Function function =
creat eFuncti on(t hi s. get CheckPasswor dMet hodNane()) ;
if (function == null)

64 www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 31 (continued)

t hrow new User | dExcepti on(" Required RFM " +
t hi s. get CheckPasswor dMet hodNanme() +
" not found.");
try {
function. getl nport Paramet er Li st (). set Val ue(passWord, "PASSWORD");
function. getl nport Paranet er Li st ().
set Val ue(obj ect Key, get Obj ect KeyName());
get Connection() . execute(function);
JCO. Structure bapi Return =
function. get Export Paranet er Li st (). get Struct ure("RETURN') ;
return bapi Return.getString("TYPE"). equal s("") ||
bapi Return. get String("TYPE"). equal s("S") ? true : false;
}
catch (Exception ex) {
t hr ow new User | dExcepti on(ex. get Message(), ex);
}

}

Figure 32 The getUserldinformation() method of Class Userld

synchroni zed public Userldlnformation
get User | dl nf or mati on(bool ean refresh)
t hrows User| dException {
if ((! refresh) & (pi !'= null)) return pi;
JCO Function function =
creat eFuncti on(thi s. get Get Passwor dMet hodNare()) ;
if (function == null)
t hrow new User | dExcepti on(" Required RFM " +
t hi s. get Get Passwor dMet hodNane() +
" not found.");
try {
function. getl nmport Paramet er Li st () .
set Val ue(obj ect Key, get Obj ect KeyName());
get Connecti on() . execut e(function);
JCO. Structure bapi Return =
functi on. get Export Paramet er Li st (). get Struct ure("RETURN") ;
if (! (bapi Return.getString("TYPE").equals("") ||
bapi Return. get String("TYPE"). equal s("S")
))
t hrow new User | dExcepti on(get Bapi Ret ur nErr or Message(bapi Return));
JCO. Tabl e status =
functi on. get Tabl ePar anet er Li st (). get Tabl e(" STATUSI NFO') ;
if (status.getNunRows() != 1)
t hrow new User | dExcepti on("l ncorrect status info returned.");
st at us. set Row(0) ;
Dat e val i dToDat e = status. get Dat e("VALI DTO") ;

(continued on next page)

No portion of this publication may be reproduced without written consent. 65

SAP Professional Journal July/August 2001

Figure 32 (continued)

if (validToDate == null)
val i dToDat e = new G egori anCal endar (9999, 11, 31).getTime();
pi = new User | dl nformati on(
status.getString("OBIJTYPE"),
status. getlnt (" SERVICE"),
status.getString("STATE"). equal s("") ? false : true,
st at us. get Dat e(" Ul DDATE") ,
val i dToDat e,
status. getlnt ("LCNT"),
User | d. conbi neDat eAndTi ne(
status. get Dat e("LDATE"), status.getDate("LTIME")),
st at us. get Dat e(" UPDPASS")

)i
}
catch (Userl dException ex) {
t hrow ex;

}
catch (Exception ex) {

t hrow new User | dExcepti on(ex. get Message(), ex);

} .
return pi;
}

decide whether we should obtain fresh information The information returned by
from SAP, or whether the information obtained get User | dIl nf or mati on() is encapsulated in an
before is still sufficient. This allows us to improve object of class User | dI nf or nat i on, as shown in
the performance by not making unnecessary SAP Figure 33. The individual properties were discussed
calls, but also to provide up-to-date information earlier in this article.

when required.

Figure 33 Class UserldIinformation

public class Userldlnformtion extends Object {
private String objectType;
private int servicel D
private bool ean isLocked;
private Date created;
private Date validTo;
private int incorrectlLogons;
private Date | astlLogon;
private Date passwordChanged;
User I dl nformati on(String object Type,
i nt servicel D,
bool ean i sLocked,
Dat e creat ed,
Dat e val i dTo,
i nt incorrectlLogons,

66 www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.

Password Management for Extranet Applications

Figure 33 (continued)

Dat e | ast Logon,
Dat e passwordChanged) {

t hi s. obj ect Type = obj ect Type;
this.servicelD = servicel D
this.isLocked = isLocked;

this.created = created;

this.validTo = validTo;
this.incorrectlLogons = incorrectlLogons;
this.|lastLogon = | ast Logon;

t hi s. passwor dChanged = passwor dChanged,;

}
public String get Object Type() {

return object Type;
}
public int getServicel D() {

return servicelD
}
publ i ¢ bool ean isLocked() {

return islLocked;
}
public Date getCreated() {

return created;
}
public Date getValidTo() ({

return validTo;
}
public int getlncorrectlLogons() ({

return incorrectlLogons;
}
public Date getlLastLogon() ({

return | astLogon;
}
publ i c Date get PasswordChanged() {

return passwor dChanged;
}
public String toString() {

return "CbjectType: \t" + get CbjectType() + "\n"

+ "ServicelD: \t" + String.val ue (getServicelD()) + "\n"

"I sLocked: \t" + String.valueO(isLocked()) + "\n"
"Created: \t" + getCreated().toString() + "\n"
"Val i dTo: \t" + getValidTo().toString() + "\n"
"I ncorrectLogons: \t"
String. val ue (getlncorrectLogons()) + "\n"
"LastLogon: \t" + getlLastlLogon().toString() + "\n"
"Passwor dChanged: \t"
get Passwor dChanged() .toString() + "\n"

+ 4+ + + 4+ + + +

No portion of this publication may be reproduced without written consent. 67

SAP Professional Journal July/August 2001

The code for the del et e() method is
trivial to build, refer to our discussion of the
Del et ePasswor d BAPI earlier.

If you are interested in obtaining an up-to-date
version of a jar file with all the classes discussed
in this article, please send an e-mail to the author.
And, as always, have fun using the information
from this article!

Thomas G. Schuessler is the founder of ARAsoft
(www.arasoft.de), a company offering products,
consulting, custom development, and training to
a worldwide base of customers. The company
specializes in integration between SAP and non-
SAP components and applications. ARAsoft offers
various products for BAPI-enabled programs on
the Windows and Java platforms. These products
facilitate the development of desktop and Internet
applications that communicate with R/3. Thomas
is the author of SAP’s CA925 “Developing BAPI-
enabled Web applications with Visual Basic”
and CA926 “Developing BAPI-enabled Web
applications with Java” classes, which he teaches
in Germany and in English-speaking countries.
Thomas is a regularly featured speaker at SAP
TechEd and SAPPHIRE conferences. Prior to
founding ARAsoft in 1993, he worked with SAP
AG and SAP America for seven years. Thomas
can be contacted at thomas.schuessler@sap.com
or at tgs@arasoft.de.

68

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.

