
47No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

Password Management

for Extranet Applications

Thomas G. Schuessler

An extranet application is defined as one in which you allow users

outside your firewall limited, controlled access to certain functionality

within the firewall. If this functionality involves SAP, the question

arises whether you want to assign each user his own SAP userid or use a

generic one. Why do we need an SAP userid at all? Before being able

to call any BAPI (or other RFC-enabled Function Module), you have

to connect (log on) to SAP using a valid userid/password. If you are

willing to give each extranet user his own SAP userid, then you do not

need this article. Normally, though, buying one SAP userid for each

of your business partners (or, worse, one SAP userid for each of their

employees who need to access your application) is not high on your list

of ways to spend money.

You want to use a generic SAP userid instead. This obviously raises

a new question: How do we control access to our extranet applications

so that only selected business partners can use them? You can solve

this issue completely independently of SAP, but SAP has foreseen this

scenario and offers capabilities to manage special extranet userids for

customers, vendors, etc.

This article will discuss three topics:

• The online SAPGUI transaction for maintaining extranet userids.

This part is interesting for everybody involved in building extranet

solutions, but specifically for security administrators.

• The password BAPIs available for object types like Customer,

Vendor, etc. This part is for developers and architects involved in

Thomas G. Schuessler is

the founder of ARAsoft, a

company offering products,

consulting, custom

development, and training

to customers worldwide,

specializing in integration

between SAP and non-SAP

components and applications.

Thomas is the author of

SAP’s CA925 and CA926

classes. Prior to founding

ARAsoft in 1993, he worked

with SAP AG and SAP

America for seven years.

(complete bio appears on page 68)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.48

building extranet applications. We will discuss

the functionality required for a normal extranet

application (primarily the ability to check a user’s

password) as well as a maintenance application

for administrators (to be used instead of the

SAPGUI transaction mentioned previously).

• A component written in Java that encapsulates

access to the password BAPIs. This part will be

most beneficial for Java developers, but if you

use a different programming language, you

should be able to translate the concepts into your

own language. This component can be used in

normal extranet applications as well as in

administration tools.

Before we really get going, I would like to extend

the term “extranet” for the purpose of this article. As

indicated above, it usually refers to controlled access

to an application from without the firewall. This

applies mainly to business partners and employees

who happen to be outside the firewall (e.g., because

they are on a business trip). I would like to also

include employees who do not have their own SAP

userid, but reside within the firewall, in the definition.

So an extranet application would be one that

requires a special userid/password (but not an SAP

userid), regardless of whether the application is

accessed from within or without the firewall. While

this definition is not accurate outside the scope of this

article, it allows us to use concise language to discuss

our topics in the article.

Maintaining Extranet

Userids in SAP

SAP since 3.1 offers special web transactions,

initially called Internet Application Components

(IACs), and recently renamed to Easy Web

Transactions (EWTs). Some of them are true Internet

applications in the sense that anybody on the Internet

can use them without requiring a logon. Most EWTs,

though, are either for employees or selected business

partners, in other words they are extranet applications

according to the definition valid for the scope of this

article. For those EWTs, SAP needed a way to

manage extranet userids and passwords without

requiring an SAP userid for each user.

SAP added a new table to store the extranet

userids, called BAPIUSW01 (see Figure 1). This

table has two key fields (in addition to the normal

client key field): object type (OBJTYPE) and object

id (OBJID). Object type identifies the type of userid,

e.g., KNA1 denotes a customer, BUS1065 an

employee. This allows all the extranet userids to

be kept in one table. Object id is the object-type-

specific key, for a customer this would be the

customer number.

BAPIUSW01 contains all sorts of useful

information that we will discuss later when we learn

about the GetPassword BAPI, but there is one

field I would like to mention now, the one called

PASSWORD. This, contrary to what the name seems

to imply, does not contain the password, not even

the password in an encrypted form that could be

decrypted again. Instead, SAP calculates a hash code

based on the password and stores that hash code in

the table. The hashing algorithm is irreversible, so

there is no way to find out the password for a user

(unless you are willing to try out every possible

password, which is rendered impossible by the

fact that SAP locks the extranet userid after 12

consecutive incorrect logon attempts). But SAP can

easily check an entered password by calculating the

hash code for the entered password and comparing

this hash code to the one stored in the table.

Passwords for extranet users are case-sensitive.

They are a minimum of three and a maximum of 16

characters long and must obey the following rules:

• A password cannot be “sap”, “SAP”, “pass”, or

“PASS”; “SaP”, on the other hand, is a legal

password.

• The first three characters cannot be identical,

49No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

e.g., “aaardvark” is not a legal password, but

“Aaardvark” is.

• A password may not contain the “<” or space

characters.

• A password cannot start with the “?” character.

• The first three characters of a password may not

be substrings of the extranet userid. For instance,

if the customer number is “0000001400”, a

password of “014tgs” would be illegal, whereas

“410tgs” would be okay.

The SAP transaction code used for the

maintenance of extranet userids is SU05
(see Figure 2).

Figure 1 Table BAPIUSW01

Figure 2 Transaction Code SU05

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.50

As you can see, SAP calls what I call an extranet

userid an “Internet user”. Both terms are slightly

inaccurate, but I think mine is a little closer to

the truth.

Which object types can have extranet userids in

SAP? At least in 4.6B, there are two answers to that

question. If you select input help on the “Type” field

in Figure 2, you will see the list in Figure 3.

Figure 4 Object Types With Password BAPIs

Object Type Key Description Object Type Name

APPLICANT Applicant Applicant

BUS1006001 Business partner employee BusPartnerEmployee

BUS1007 Customer Debtor

BUS1008 Vendor Creditor

BUS1065 Employee EmployeeAbstract

KNA1 Customer Customer

LFA1 Vendor Vendor

PDOTYPE_PT Attendee Attendee

If, on the other hand, you create a list of all object

types that have BAPIs to manipulate extranet userids,

you end up (in 4.6B) with Figure 4.

If you compare the two lists, you will note that

extranet userids for vendors are not supported by

SU05, but they can be created by the appropriate

BAPIs.

Let us now look at the functionality offered

by SU05.

To create an extranet userid, you enter the object

type and the object id (which will be the extranet

userid) and select the “Create” menu item or icon. A

dialog pops up (see Figure 5) that allows you to limit

the validity period of the userid.

If you do not specify any date, the new userid

will be valid forever.1 The next pop-up (cf. Figure 6)

shows the initial password assigned to the new user.

You can either give this password to the user

1 Or, more accurately, the userid will be valid until 9999-12-31. You

already knew that SAP’s software is not Y10K-compliant, didn’t you?

Figure 3 Supported Object Types in SU05

51No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

Figure 5 Restricting the Validity
Period of a Userid

Figure 6 The Initial Password

Figure 7 Are Object Ids Checked by the CreatePassword BAPI?

Object Type Key Object Type Name Checks Object Id

APPLICANT Applicant Yes

BUS1006001 BusPartnerEmployee Yes

BUS1007 Debtor Yes

BUS1008 Creditor Yes

BUS1065 EmployeeAbstract Yes

KNA1 Customer No

LFA1 Vendor Yes

PDOTYPE_PT Attendee N/A2

(especially if you have reason to believe that he will

still talk to you after having to enter the 16 characters

shown in Figure 6) or immediately change the

password to something else (see next page).

When creating a new extranet userid, SU05 does

not check whether the object id is valid, allowing

you to create an extranet userid for a non-existing

customer, for instance. The BAPIs are less forgiving.

Figure 7 contains information about whether the

CreatePassword BAPI works for a non-existing

object id in 4.6B.

2 The Attendee object type (PDOTYPE_PT) does not have a CreatePassword BAPI.

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.52

To change an extranet password, click the

“Change password” button in Figure 2. The pop-up

shown in Figure 8 requires you to enter the new

password twice to prevent typos. There are no

additional rules for new passwords beyond the

password rules discussed previously, specifically

there is no requirement that the new password must

differ from the old one. If you want to enforce

additional rules, you have to implement them

yourself.

If the userid is locked (see below), the password

cannot be changed.

To re-initialize an extranet password, click the

“Initialize” button in Figure 2. SAP will ask you to

confirm this in the pop-up displayed in Figure 9.

If you click the “Yes” button, a new initial

password will be generated and displayed in a pop-up

as seen before in Figure 6.

If the userid is locked (see below), the password

cannot be re-initialized.

To change the validity period of an extranet

userid (or correct the userid itself), select the

“Change” menu item or icon in Figure 2. The dialog

shown in Figure 10 allows you to make the necessary

changes. The check box labeled “without restrict.”

can be used to remove a previously set valid-to date,

as an alternative to entering the end-of-the-world date

of 9999-12-31.

To display information about an extranet userid

without making any changes, select the “Display”

menu item or icon in Figure 2. As you can see in

Figure 11, there is no validity period specified for

this userid, but the userid is locked.

I have artificially created this situation by

attempting to log on 12 times in a row with an invalid

password.

To lock or unlock an extranet userid, select

the “Lock/unlock” menu item or icon in Figure 2.

Figure 8 Changing a Password

Figure 9 Confirming Password Initialization

Figure 10 Changing an Extranet Userid

Figure 11 Displaying an Extranet Userid

53No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

The message in Figure 12 tells you that the userid

was actually locked due to too many invalid logon

attempts. Click the unlock icon to unlock the userid

again. In real life, you would now probably also

assign a new password and contact the user to

figure out whether he had forgotten his password.

Otherwise, we should alert our network security

people so that they can try to find out who has been

trying to hack into our system.

Finally, it is also possible to delete an extranet

userid in SU05. Selecting the “Delete” menu item or

icon in Figure 2 will cause a window like the one in

Figure 13 to show up.

Let me summarize what we have learned about

SU05: This transaction code allows us to create,

display, lock, unlock, and delete extranet userids. We

can change the validity period of a userid, as well as

change or re-initialize the associated password. At

least in 4.6B, the Vendor object type is not

supported in SU05, and — as opposed to most of the

equivalent BAPIs — object ids are not validated.

Using the Password BAPIs

When developing an extranet application that wants

to take advantage of SAP extranet userid capabilities,

we obviously need at least a BAPI to check a

password entered by the user. SAP has been nice

enough to give us more than just that: There is a

whole group of BAPIs that can be used to deal with

extranet userids and passwords. All these BAPIs

contain the string “Password” so I will call them the

password BAPIs hereinafter. The functionality

offered by these BAPIs overlaps with the

functionality available in SU05. There are things you

can do with the BAPIs that cannot be done in SU05
and vice versa. One example was discussed above:

To create an extranet userid for a vendor, SU05 does

not work, but you can use BAPIs instead. On the

other hand, there is no BAPI to lock a userid (unless

you resort to the trick of calling CheckPassword
12 times in a row with incorrect passwords).

Using the password BAPIs for the first time is not

trivial. SAP’s naming conventions are such that you

Figure 12 Unlocking a Userid

Figure 13 Confirming the Deletion of a Userid

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.54

Figure 14 The Standard Password BAPIs

BAPI Name Description

ChangePassword Changes a password.

CheckPassword Checks whether a password is correct.

CreatePassword Creates an extranet userid in the database, but does not create the actual password.

DeletePassword Deletes an extranet userid from the database.

GetPassword Returns status information, but not the password itself.

InitPassword Creates an initial password; requires an extranet userid created via CreatePassword.

Figure 15 Object Types with Password BAPIs

Object Type Name Object Type Description Standard Remarks

Key Password

BAPIs

Applicant APPLICANT Applicant Yes

Attendee PDOTYPE_PT Attendee No Supports only

ChangePassword and

CheckPassword.

BusPartnerEmployee BUS1006001 Business partner employee Yes

Creditor BUS1008 Vendor No Obsolete since 4.6A;

uses non-standard names

for CreatePassword,

DeletePassword, and

GetPassword.

Customer KNA1 Customer Yes New version of the

CheckPassword BAPI

since 4.6A.

Debtor BUS1007 Customer No Obsolete since 4.6A;

uses non-standard names

for CreatePassword,

DeletePassword, and

GetPassword.

EmployeeAbstract BUS1065 Employee Yes Additionally, all its

subclasses (e.g.,

Employee, EmployeeCH).

Vendor LFA1 Vendor Yes New since 4.6A.

55No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

are easily confused as to the purpose of a specific

BAPI. Figure 14 contains the standard BAPIs

supported by most object types that have password

BAPIs at all.

And when I tell you that CreatePassword
does lots of things, but does not create a password,

and that GetPassword returns very useful

information, but never the password, you may

appreciate that this requires a little more study.

So, let us get busy…

First, I want to give you an extended version of

Figure 4 (see Figure 15).

Applicant, BusPartnerEmployee,

Customer, EmployeeAbstract (and its

subclasses), and Vendor have complete support for

the standard password BAPIs. See the remarks

column in Figure 15 to find out how the other object

types differ.

Figure 16 is a screenshot that lists all BAPIs

for the Vendor object type in the BAPI Explorer.

You can see that all standard password BAPIs are

supported. The BAPI Explorer (transaction code

BAPI) is the best starting point if you want to

study and try out any BAPI, so you may want to

use it while reading the remaining paragraphs

of this section.

Figure 16 The Vendor Object Type in the BAPI Explorer

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.56

Next, we want to discuss the standard password

BAPIs one by one, starting with CreatePassword.

Contrary to its name, this BAPI does not create a

password, but it creates an extranet userid. Figure 17

contains all the parameters, in this case exactly one,

the standard BAPI return parameter that informs us

about success or failure of our BAPI call. Where do

we specify the object id (e.g., the vendor number)?

Remember (or if you do not remember, find out

now) that the BAPI Explorer does not show key

field parameters for instance3 BAPIs, instead

it lists all key fields for the object type directly

underneath the object name (cf. Figure 16, key

field “VendorNo” right above the highlighted

“ChangePassword” BAPI).

Figure 17 CreatePassword Standard Parameters

Parameter Data Type In/Out Description

Return Structure Out The standard BAPI return parameter

Figure 18 The RFM for Vendor.CreatePassword

3 An instance BAPI is one that requires key fields to access a particular

record in a database table.

57No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

Figure 19 InitPassword Standard Parameters

Parameter Data Type In/Out Description

Password Character 16 Out Generated password

Return Structure Out The standard BAPI return parameter

Figure 20 ChangePassword Standard Parameters

Parameter Data Type In/Out Description

Password Character 16 In Old password

NewPassword Character 16 In New password

VerifyPassword Character 16 In New password again

Return Structure Out The standard BAPI return parameter

Figure 18 is a screenshot of the RFM

(RFC-enabled Function Module) that implements the

CreatePassword BAPI for the Vendor object

type. And there you can see that it has indeed the

expected import parameter for the vendor number

(which will become the userid of the extranet user).

If the return code from the CreatePassword
BAPI (in parameter Return) indicates success,

we have created a new extranet userid, but not yet

assigned a password (whereas in SU05, creating a

userid automatically initializes the password).

In order to (re-)initialize the password, we use the

InitPassword BAPI, the parameters of which are

listed in Figure 19.

The Return parameter tells us whether the call

succeeded, Password contains the freshly generated

password. In addition to generating a (new) initial

password, InitPassword also unlocks the extranet

userid if it was locked before. This is different from

the behavior in SU05, where we cannot re-initialize

the password of a locked userid without unlocking

it first.

The initial password is not something a user

will want to remember, so a normal application will

include a dialog for the user to change the password.

This is accomplished using the ChangePassword
BAPI. Its parameters are enumerated in Figure 20.

ChangePassword will fail for a locked userid.

The BAPI obviously assumes that you require

the user to type the new password twice, which is

a good way of preventing typos from creating a

different new password than the user expected. Note

that the old password must be specified here, whereas

InitPassword did not require that. The reason is

that ChangePassword provides functionality that

is used in normal applications, whereas resetting a

password is usually restricted to administrators.

Also, since there is no way to figure out somebody’s

password, we would not be able to assign somebody a

new password once he had forgotten the current one,

if that required us to know the old password.

The most commonly used password-related

function in an application is to check a password

entered by a user. CheckPassword allows us to do

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.58

that (see Figure 21 for the parameters). The

password to be checked is passed in parameter

Password, Return tells us whether the entered

password was correct.

To find out about the status of an extranet userid,

including whether it is locked and when the password

was changed last, we use the GetPassword BAPI.

Figure 22 shows its parameters. All the interesting

Figure 21 CheckPassword Standard Parameters

Parameter Data Type In/Out Description

Password Character 16 In Password to be checked

Return Structure Out The standard BAPI return parameter

Figure 22 GetPassword Standard Parameters

Parameter Data Type In/Out Description

StatusInfo Structure Out Status information (see Figure 23)

Return Structure Out The standard BAPI return parameter

Field Name Data Type Description

OBJTYPE Character 10 Object type

OBJID Character 16 User ID in Internet user master

SERVICE 1-byte Integer Service ID for Internet user ID

STATE Character 1 Internet user status (UID status):

locked/not locked

UIDDATE Date Creation date of user master record

VALIDTO Date User valid to

LCNT 1-byte Integer Counter for incorrect logons per user

LDATE Date Last logon date

LTIME Time Last logon time

UPDPASS Date Date of last password change

Figure 23 StatusInfo Fields

59No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

information is returned in table parameter

StatusInfo, the structure of which is given

in Figure 23.

OBJTYPE and OBJID should be obvious by

now. What SERVICE is used for, I cannot tell you,

probably it has some meaning for ITS applications.

STATE is blank to indicate an unlocked userid,

non-blank for a locked userid. UIDDATE contains

the date when the extranet userid was created.

VALIDTO is either empty (indicating unlimited

validity) or contains the end of the validity period.

LCNT contains the number of consecutive invalid

logon attempts. This field is reset after a successful

logon and after the password is (re-)initialized.

LDATE and LTIME contain the date and time,

respectively, of the last logon. UPDPASS tells us

when the password was changed last. This could be

used in an application that wants to force a user to

change his password after a certain interval in order

to provide more security.4

Finally, there is a BAPI to delete an extranet

userid, DeletePassword. Its parameters are

contained in Figure 24.

Let us summarize this part of the article: Once

you have recovered from the shock that some of the

password BAPIs have inappropriate names, it is not so

difficult to use them. CheckPassword will be used

in all your extranet applications, ChangePassword
whenever you want to allow the users to change their

passwords. GetPassword returns information

relevant for advanced functionality like forcing users

to change their passwords periodically.

CreatePassword, InitPassword, and

DeletePassword will normally only be used in

administrative tools.

Building a Java Component

for the Password BAPIs

Whenever something takes a few hours or more to

figure out, and you assume that the functionality

might be useful for other projects, you should

try to build a reusable component that hides the

complexity. For this article I have chosen Java as

the programming language, because it facilitates

the development of reusable components.

I had the following goals in mind when designing

this component:

• All SAP object types that implement all standard

password BAPIs should be supported.

• Adding additional object types in the future

should be very easy.

• The idiosyncrasies of the SAP password BAPIs

should be hidden.

• The component should be extremely easy to use

and require as little SAP knowledge as possible.

In order to make it simple to add new specific

userid classes, everything that can be done generically

is done in class UserId. But this base class cannot

know the names of the RFMs implementing the

Figure 24 DeletePassword Standard Parameters

Parameter Data Type In/Out Description

Return Structure Out The standard BAPI return parameter

4 In reality, sometimes the opposite happens: A user forced to change

passwords periodically is more likely to write the passwords on a little

piece of paper hidden under the mouse pad than somebody who is

allowed to select a password once and keep it. Security is a difficult

business!

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.60

various password BAPIs for the different SAP object

types. Also, in some cases the RFM parameter names

used are different for different object types. Each

subclass needs to provide the necessary information by

implementing the abstract methods of class UserId
shown in Figure 25.

Figure 26 is a listing of the complete source

code for one of the subclasses, CustomerUserId.

The code for ApplicantUserId,

BusPartnerEmployeeUserId,

EmployeeUserId, and VendorUserId looks

very similar.

As you can see the code is pretty straight-

forward, each method just returns the required

string. The only logic takes place in method

Figure 25 Abstract Methods of Class UserId

protected abstract String getCheckPasswordMethodName();
protected abstract String getChangePasswordMethodName();
protected abstract String getCreatePasswordMethodName();
protected abstract String getDeletePasswordMethodName();
protected abstract String getGetPasswordMethodName();
protected abstract String getInitPasswordMethodName();
protected abstract String getNewPasswordParameterName();
protected abstract String getVerifyPasswordParameterName();

Figure 26 Source Code for Class CustomerUserId

package de.arasoft.sap.jco.password;
import com.sap.mw.jco.*;
public class CustomerUserId extends UserId {
 public CustomerUserId (String objectKey,
 JCO.Client connection,
 IRepository repository)
 throws UserIdException {
 super(objectKey, connection, repository);
 }
 protected String getObjectKeyName() {
 return "CUSTOMERNO";
 }
 protected String getChangePasswordMethodName() {
 return "BAPI_CUSTOMER_CHANGEPASSWORD";

getCheckPasswordMethodName() since there

are two versions of the appropriate BAPI, one for

systems below 4.6 and a new one available since 4.6.

The code simply checks the release of the connected

SAP system and returns the correct name.

As stated before, all real work takes place in

class UserId. This class defines four private fields

(Figure 27).

The first three of these will be set when the

constructor of the class is called, the last one

will be discussed later in the context of the

getUserIdInformation() method.

The constructor for class UserId is shown in

Figure 28.

61No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

 }
 protected String getCheckPasswordMethodName() {
 if (getConnection().getAttributes().
 getPartnerRelease().compareTo("46A") < 0)
 return "BAPI_CUSTOMER_CHECKPASSWORD";
 else
 return "BAPI_CUSTOMER_CHECKPASSWORD1";
 }
 protected String getCreatePasswordMethodName() {
 return "BAPI_CUSTOMER_CREATEPWREG";
 }
 protected String getDeletePasswordMethodName() {
 return "BAPI_CUSTOMER_DELETEPWREG";
 }
 protected String getGetPasswordMethodName() {
 return "BAPI_CUSTOMER_GETPWREG";
 }
 protected String getInitPasswordMethodName() {
 return "BAPI_CUSTOMER_INITPASSWORD";
 }
 protected String getNewPasswordParameterName() {
 return "NEW_PASSWORD";
 }
 protected String getVerifyPasswordParameterName() {
 return "VERIFY_PASSWORD";
 }
}

Figure 27 Private Fields for Class UserId

private String objectKey = null;
private JCO.Client connection = null;
private IRepository repository = null;
private UserIdInformation pi = null;

Figure 28 Constructor for Class UserId

protected UserId (String objectKey,
 JCO.Client connection,
 IRepository repository) throws UserIdException {
 this.objectKey = objectKey;
 this.connection = connection;
 this.repository = repository;
}

Figure 26 (continued)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.62

Figure 29 The create() method of Class UserId

synchronized public String create () throws UserIdException {
 JCO.Function function =
 createFunction(this.getCreatePasswordMethodName());
 if (function == null)
 throw new UserIdException("Required RFM " +
 this.getCreatePasswordMethodName() +
 " not found.");
 try {
 function.getImportParameterList().
 setValue(objectKey, getObjectKeyName());
 getConnection().execute(function);
 JCO.Structure bapiReturn =
 function.getExportParameterList().getStructure("RETURN");
 if (bapiReturn.getName().equals("BAPIRETURN")) {
 if (! (bapiReturn.getString("TYPE").equals("") ||
 bapiReturn.getString("TYPE").equals("S") ||
 bapiReturn.getString("CODE").equals("S>501")
))
 throw new
 UserIdException(getBapiReturnErrorMessage(bapiReturn));
 } else {
 if (! (bapiReturn.getString("TYPE").equals("") ||
 bapiReturn.getString("TYPE").equals("S") ||
 bapiReturn.getString("NUMBER").equals("501")
))
 throw new
 UserIdException(getBapiReturnErrorMessage(bapiReturn));
 }
 }
 catch (UserIdException ex) {
 throw ex;
 }
 catch (Exception ex) {
 throw new UserIdException(ex.getMessage(), ex);
 }
 function = createFunction(this.getInitPasswordMethodName());
 if (function == null)
 throw new UserIdException("Required RFM " +
 this.getInitPasswordMethodName() +
 " not found.");
 try {
 function.getImportParameterList().
 setValue(objectKey, getObjectKeyName());
 getConnection().execute(function);
 JCO.Structure bapiReturn =
 function.getExportParameterList().getStructure("RETURN");
 if (! (bapiReturn.getString("TYPE").equals("") ||
 bapiReturn.getString("TYPE").equals("S")
))

63No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

The objectKey parameter is the key

identifying the entity, for a customer this would be

the customer number. This key is the extranet userid.

The formatting of the key must be appropriate for the

specific subclass. When calling the constructor

of subclass CustomerUserId, for example, an

all-numeric customer number must be left-padded

with zeroes.

The connection parameter is used to pass an

active connection to SAP, required so that the object

can call BAPIs in SAP.

The repository parameter must contain a

reference to a JCo5 repository object connected

to the same SAP system. The repository

dynamically retrieves the required metadata

for the BAPIs.

The creation of a new extranet userid and the

initialization of its password is done via a call to

create() (see Figure 29) in our component. This

method makes two BAPI calls, one for the creation

and one for the password initialization. We have

combined the two BAPIs into one method since it is

not very useful to create an extranet userid without

giving it a password. The generated password is

returned by the create() method.

What would happen if we called create() for

a userid that already exists? In our implementation,

we simply continue and (re-)initialize the password.

This can be useful if a user has forgotten his

password and an administrator, using a GUI built on

top of our component, needs to assign a new one.

The next method we need to implement is

changePassword(). The initial password

generated by create() is impossible to remember

for most users. We can either change the initial

password immediately after the creation and give the

changed password to the user or give the user the

initial password and an option to change it when

he logs on for the first time. Anyway, we need

changePassword(), as shown in Figure 30.

Figure 30 The changePassword() method of Class UserId

 throw new UserIdException(getBapiReturnErrorMessage(bapiReturn));
 return function.getExportParameterList().getString("PASSWORD");
 }
 catch (UserIdException ex) {
 throw ex;
 }
 catch (Exception ex) {
 throw new UserIdException(ex.getMessage(), ex);
 }
}

synchronized public void changePassword (String oldPassword,
 String newPassword)
 throws UserIdException {
 JCO.Function function =
 createFunction(this.getChangePasswordMethodName());

Figure 29 (continued)

5 The SAP Java Connector (or JCo) is the standard middleware

for Java connectivity to SAP. You can download it from

http://service.sap.com/connectors.

(continued on next page)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.64

 if (function == null)
 throw new UserIdException("Required RFM " +
 this.getChangePasswordMethodName() +
 " not found.");
 try {
 function.getImportParameterList().
 setValue(objectKey, getObjectKeyName());
 function.getImportParameterList().
 setValue(oldPassword, "PASSWORD");
 function.getImportParameterList().
 setValue(newPassword, this.getNewPasswordParameterName());
 function.getImportParameterList().
 setValue(newPassword, this.getVerifyPasswordParameterName());
 getConnection().execute(function);
 JCO.Structure bapiReturn =
 function.getExportParameterList().getStructure("RETURN");
 if (! (bapiReturn.getString("TYPE").equals("") ||
 bapiReturn.getString("TYPE").equals("S")
))
 throw new UserIdException(getBapiReturnErrorMessage(bapiReturn));
 }
 catch (UserIdException ex) {
 throw ex;
 }
 catch (Exception ex) {
 throw new UserIdException(ex.getMessage(), ex);
 }
}

The code is not very exciting. Just remember

that SAP’s change password BAPIs want the same

password twice. Our changePassword() method

assumes that the client has verified that the user has

entered the exact same new password twice and

therefore requires only one parameter with the

new password.

The most important function for a normal

Figure 31 The isPasswordCorrect() method of Class UserId

application is the ability to check a user’s

password. This is accomplished in our

isPasswordCorrect() method (see Figure 31).

In order to facilitate access to the information

made available by the GetPassword BAPI, we

have built the getUserIdInformation()
method (source code listed in Figure 32). This

method has a parameter that lets the client program

synchronized public boolean isPasswordCorrect (String passWord)
 throws UserIdException {
 JCO.Function function =
 createFunction(this.getCheckPasswordMethodName());
 if (function == null)

Figure 30 (continued)

65No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

synchronized public UserIdInformation
 getUserIdInformation(boolean refresh)
 throws UserIdException {
 if ((! refresh) && (pi != null)) return pi;
 JCO.Function function =
 createFunction(this.getGetPasswordMethodName());
 if (function == null)
 throw new UserIdException("Required RFM " +
 this.getGetPasswordMethodName() +
 " not found.");
 try {
 function.getImportParameterList().
 setValue(objectKey, getObjectKeyName());
 getConnection().execute(function);
 JCO.Structure bapiReturn =
 function.getExportParameterList().getStructure("RETURN");
 if (! (bapiReturn.getString("TYPE").equals("") ||
 bapiReturn.getString("TYPE").equals("S")
))
 throw new UserIdException(getBapiReturnErrorMessage(bapiReturn));
 JCO.Table status =
 function.getTableParameterList().getTable("STATUSINFO");
 if (status.getNumRows() != 1)
 throw new UserIdException("Incorrect status info returned.");
 status.setRow(0);
 Date validToDate = status.getDate("VALIDTO");

Figure 32 The getUserIdInformation() method of Class UserId

 throw new UserIdException("Required RFM " +
 this.getCheckPasswordMethodName() +
 " not found.");
 try {
 function.getImportParameterList().setValue(passWord, "PASSWORD");
 function.getImportParameterList().
 setValue(objectKey, getObjectKeyName());
 getConnection().execute(function);
 JCO.Structure bapiReturn =
 function.getExportParameterList().getStructure("RETURN");
 return bapiReturn.getString("TYPE").equals("") ||
 bapiReturn.getString("TYPE").equals("S") ? true : false;
 }
 catch (Exception ex) {
 throw new UserIdException(ex.getMessage(), ex);
 }
}

Figure 31 (continued)

(continued on next page)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.66

 if (validToDate == null)
 validToDate = new GregorianCalendar(9999, 11, 31).getTime();
 pi = new UserIdInformation(
 status.getString("OBJTYPE"),
 status.getInt("SERVICE"),
 status.getString("STATE").equals("") ? false : true,
 status.getDate("UIDDATE"),
 validToDate,
 status.getInt("LCNT"),
 UserId.combineDateAndTime(
 status.getDate("LDATE"), status.getDate("LTIME")),
 status.getDate("UPDPASS")
);
 }
 catch (UserIdException ex) {
 throw ex;
 }
 catch (Exception ex) {
 throw new UserIdException(ex.getMessage(), ex);
 }
 return pi;
}

decide whether we should obtain fresh information

from SAP, or whether the information obtained

before is still sufficient. This allows us to improve

the performance by not making unnecessary SAP

calls, but also to provide up-to-date information

when required.

The information returned by

getUserIdInformation() is encapsulated in an

object of class UserIdInformation, as shown in

Figure 33. The individual properties were discussed

earlier in this article.

Figure 33 Class UserIdInformation

public class UserIdInformation extends Object {
 private String objectType;
 private int serviceID;
 private boolean isLocked;
 private Date created;
 private Date validTo;
 private int incorrectLogons;
 private Date lastLogon;
 private Date passwordChanged;
 UserIdInformation(String objectType,
 int serviceID,
 boolean isLocked,
 Date created,
 Date validTo,
 int incorrectLogons,

Figure 32 (continued)

67No portion of this publication may be reproduced without written consent.

Password Management for Extranet Applications

 Date lastLogon,
 Date passwordChanged) {
 this.objectType = objectType;
 this.serviceID = serviceID;
 this.isLocked = isLocked;
 this.created = created;
 this.validTo = validTo;
 this.incorrectLogons = incorrectLogons;
 this.lastLogon = lastLogon;
 this.passwordChanged = passwordChanged;
 }
 public String getObjectType() {
 return objectType;
 }
 public int getServiceID() {
 return serviceID;
 }
 public boolean isLocked() {
 return isLocked;
 }
 public Date getCreated() {
 return created;
 }
 public Date getValidTo() {
 return validTo;
 }
 public int getIncorrectLogons() {
 return incorrectLogons;
 }
 public Date getLastLogon() {
 return lastLogon;
 }
 public Date getPasswordChanged() {
 return passwordChanged;
 }
 public String toString() {
 return "ObjectType: \t" + getObjectType() + "\n"
 + "ServiceID: \t" + String.valueOf(getServiceID()) + "\n"
 + "IsLocked: \t" + String.valueOf(isLocked()) + "\n"
 + "Created: \t" + getCreated().toString() + "\n"
 + "ValidTo: \t" + getValidTo().toString() + "\n"
 + "IncorrectLogons: \t"
 + String.valueOf(getIncorrectLogons()) + "\n"
 + "LastLogon: \t" + getLastLogon().toString() + "\n"
 + "PasswordChanged: \t"
 + getPasswordChanged().toString() + "\n"
 ;
 }
}

Figure 33 (continued)

SAP Professional Journal July/August 2001

www.SAPpro.com ©2001 SAP Professional Journal. All rights reserved.68

The code for the delete() method is

trivial to build, refer to our discussion of the

DeletePassword BAPI earlier.

If you are interested in obtaining an up-to-date

version of a jar file with all the classes discussed

in this article, please send an e-mail to the author.

And, as always, have fun using the information

from this article!

Thomas G. Schuessler is the founder of ARAsoft

(www.arasoft.de), a company offering products,

consulting, custom development, and training to

a worldwide base of customers. The company

specializes in integration between SAP and non-

SAP components and applications. ARAsoft offers

various products for BAPI-enabled programs on

the Windows and Java platforms. These products

facilitate the development of desktop and Internet

applications that communicate with R/3. Thomas

is the author of SAP’s CA925 “Developing BAPI-

enabled Web applications with Visual Basic”

and CA926 “Developing BAPI-enabled Web

applications with Java” classes, which he teaches

in Germany and in English-speaking countries.

Thomas is a regularly featured speaker at SAP

TechEd and SAPPHIRE conferences. Prior to

founding ARAsoft in 1993, he worked with SAP

AG and SAP America for seven years. Thomas

can be contacted at thomas.schuessler@sap.com

or at tgs@arasoft.de.

