Destination and Session Management for the SAP DCOM Connector

Destination and Session
Management for the
SAP DCOM Connector

Thomas G. Schuessler

Thomas G. Schuessler is
the founder of ARAsoft, a
company offering products,
consulting, custom
development, and training
around the world. The
company specializes in
integration between SAP and
non-SAP components and
applications. Thomas is the
author of SAP’s CA925
“Programming with BAPIs in
Visual Basic” class. Prior to
founding ARAsoft in 1993, he
worked with SAP AG and SAP
America for seven years.

(complete bio appears on page 50)

The SAP DCOM Connector (SDC) is the standard middleware for
Microsoft Windows! applications that require access to SAP
functionality through BAPISs or other functions.? These applications
could, for example, be desktop programs or Internet applications that
provide an alternative frontend to any transaction in the SAP system.

In order to get at the functionality in an SAP system, a client
program needs to log on, identifying a particular SAP system and
providing valid values for the client, userid, password, and optionally,
the language to be used. SDC allows you to store information about
an SAP system and a user on the client system, using the notion of a
destination. A destination identifies an SAP system and optionally
contains default values for the client, userid, password, and language.
Destinations are stored in the Windows Registry. SDC contains an
API — the CCRegistry API — to access these destinations from a
client program. On top of that API, SDC provides a destination
management screen (accessible through Internet Explorer) as part of
its administration facilities.

Based on these SAP-supplied capabilities, several opportunities
arise to build reusable components and applications:

* Building a component that encapsulates the CCRegistry API in a
more object-oriented fashion would make it easier for developers to

' Windows 95, 98, NT, 2000.

2 The protocol for communication between SAP and non-SAP systems is called RFC (Remote
Function Call). BAPIs (Business Application Programming Interfaces) are RFC-enabled
function modules (RFMs) defined as methods in the Business Object Repository (BOR).

In addition, there are other RFMs that are not BAPIs but can still be used from external
applications.

No portion of this publication may be reproduced without written consent. 29

SAP Professional Journal March/April 2000

work with destinations in their programs and
components.

e Some applications log on to R/3 transparently
(without any user interaction). Many, if not most,
applications, though, will need to present users
with a list of destinations to choose from and
provide an opportunity to view and change
the default user information (defined in the
destination) to be submitted to R/3. The current
version of SDC (4.6B) does not supply a
component for this task. Building a reusable
component, encapsulating the Registry access and
the user interaction, would prevent application
developers from having to spend time writing
their own component or — even worse — writing
slightly different logon code for each SDC-based
application.

¢ In some companies, maintenance of the
destinations on client systems will be entrusted to
administrators only. Other companies may want
their users to be able to define and change their
own destinations. Using standard SDC, this
requires the installation of Internet Explorer and
the complete SDC administration facilities on the
user’s machine. Building an application that only
allows destination management would solve the
dilemma of either giving the user all or no
administration capabilities.

There is one related subject that I want to cover
in this article. Once a client program has logged on
to R/3, it is often desirable that it has access to
session-specific information — for example, the
language code selected by the user during logon, or
whether or not the user is still connected to R/3. So I
will also show you how to retrieve information about
an active session with R/3 at runtime.

This article will show you how to accomplish all
four tasks, with coverage of:

¢ Destinations in SDC — an overview
e The CCRegistry API

* Building a component to encapsulate the
CCRegistry API

* Building a destination management application
* Building a visual logon component
Getting information about a session at runtime

The programming language used for the sample
code is Visual Basic, but if you are working with
another Windows-enabled language, you should have
no problem making use of the concepts that are
presented here.?

Freeware and Buyware

This article provides more than just a theoretical
treatment of these tasks. I have actually written a lot
of software based on the ideas presented here. Some
of it is free. You can download the ARAsoft DCOM
Connector Destination Manager and the ARAsoft
DCOM Connector Logon Component from SAP’s
Web site (see the appropriate sections of the article
for the URLs). Both pieces of software are freeware.
As for the encapsulation of the CCRegistry API and
the session information retrieval, I have supplied
generous amounts of source code in this article. You
can use it as the basis for your own solutions, or
license my ARAsoft DCOM BAPI Object Factory,
which contains many additional capabilities related to
SDC-based BAPI programming. To obtain a free
trial copy, just send me an e-mail.

Destinations in SDC —
An Overview

A destination in SDC is used to identify an R/3
system and, optionally, define default user
information. (Multiple destinations can refer to the
same SAP system.)

3 In order to benefit from this article, you should already know the
basics of DCOM Connector programming. An overview of these
basics was provided in my article “Programming with BAPIs
using the SAP DCOM Connector,” which was published in the
January/February 2000 issue of the SAP Professional Journal.

30 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Figure 1 Selecting an Individual Application Server

23 R/3 DCOM Connector - Micrasoft Intemet Explorer provided by SAP Americas M=

Fle Edt View Fawites Tock Hep |

a

Search Favoites History

B- & w

Mal Pt Ed

& o= @ [A

Back Eomyard Stop Refresh Home

[Oervien | lusilltion | Documentation | Componens—| Object Builder | Destinaions | —Monitor | Samgles | Notes |
RI/3 DCOM Connector

‘Agdvess

T List Details Refresh Save New Delete =
Connector Destination T19

Host

local

 Connection

TI9
T94
BB Connection type | F/3 connection he

via | load balancing |# dedicated server

R/3 hostname [htphl019
System nuember [19

Lozon
(Chent W Language ﬁ ‘
rSecurity

TATS role |

I Single Login Mode

Tser ID [TGS Password |

Operation Mode
(l‘ Pooling of Ri3 context [Trace

S| KT

2] Done: [|EJ My Computer

Figure 2 Selecting a Load Balancing Group

Fle Edt View Fawoies Took Help \

- @ [A 2 W

Back Fomeerd | Stop Reflesh Home | Semch Favortes Histon | Mal Punt Edt

[Overview | Instllation | Documeniaton | Components | Object Builier | Destinations | —Monitor | —Somples | Noies |
R/3 DCOM Connector

JAdeess

Connect List Details Refresh Save New Delete =
ponmector Destination T94

Host

local

[Connection

TI9
T4
et Commection type [Fy3 connection =

via load balancing | dedicated server

Message server |h55094.wdf.sapfﬁg.de
E/3 system name [T94
Group [CONTROLUNG

Logon
’}:ﬁent 001 Languags [|

rSecurity
TATS role |
I Single Login Mode
Tser ID | Password [
Operation Mode o
"’_ Pocling of R/3 context I Trace
;l
&1 Done [[[Ed My Computer 7
An R/3 system can be identified by either: » Referring to a load balancing group,* specifying
the message server, system name, and group
* Referring to an individual application server, name, as shown in Figure 2 (note that this

specifying its host name and system number, as

shown in Figure 1. 4 Load balancing groups are typically used in larger SAP installations

in order to improve performance and/or support different code pages.

No portion of this publication may be reproduced without written consent. 31

SAP Professional Journal March/April 2000

Figure 3

Destination Management

J File Edit “iew Favorites Tool: Help

a R/3 DCOM Connector - Microsoft Internet Explorer provided by SAP Americas

|- 2,-9 A e
Back Farward Stop Refresh Home Search Favortes Histon,

% T [J Address

b il Pt Edit

Connect | [l Deiails =
Connector - -
Host Destinations
foca
T19 ashost=htphl019 client=402 lang=FX sysr=19 type=3 user=TG3
94 client=001 group=CONTROLLING mshost=hs5094 wdf sap-ag.de t3name=T94 type=3
|&] Dane ’_ ’_ My Computer g

approach is only applicable if the SAP system
administrator has actually defined load balancing
groups for a system).

Your system administrator will be able to tell you
which approach you should use and give you the
required information (server name, etc.).

In addition to this identification of the SAP
system, you can set defaults for the following fields
that are used during logon:

e Client
* Language
e Userid

¢ Password

Storing a default for the password is something I
would advise against, unless you are talking about a
test system in which everybody is allowed everything.
Although the password is encrypted before it is
stored, anybody with access to your PC could now
log on to this R/3 system without having to specify a
password.

The defaults for Client, Language, and Userid can
be overwritten at runtime, so storing a default value

for any of these parameters does not prevent an
application or a user from using other values during
logon.

If you do not specify a language during logon,
the default language defined by the SAP system
administrator will be used.

Figure 3 shows an overview list of the two
destinations defined in Figures 1 and 2.

The CCRegistry API

The CCRegistry class is part of the SAP DCOM
Connector Administration Component, which has a
file name of ccadm n. dl | . The name of its Type
Library is CCADM NLi b. This API encapsulates
access to the destinations in the Registry. Any
application that needs to deal with destinations must
use this API either directly or through some
encapsulation. SDC’s Destination Management
screen itself uses the APIL.

Figure 4 lists the important methods of the
CCRegistry class that are required to maintain
destinations.

32 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Figure 4

Important Methods of the CCRegistry Class

Function GetDestinations() As Object

Function GetOptionsAsRecord(destination As String) As Object

Sub DeleteDestination(destination As String)

Sub PutNewDestination(destination As String)

Sub PutOptionsAsRecord(destination As String, pln As Object, passwd As String)

Figure 5 The Fields in the GetDestinations Recordset

DESTINATION Destination name

OPTIONS Option string
Figure 6 Important Fields in the GetOptionsAsRecord and PutOptionsAsRecord Recordsets

Field Name Description

Loadbal Uses load balancing (0 = No, 1 = Yes)

Ashost Application server name

Sysnr System number

Mshost Message server name

Group Load balancing group

r3name R/3 system name

Type System type (2 = R/2, 3 = R/3)

Client Client number

Lang Language code

User Userid

Trace Trace setting (0 = Trace off, 1= Trace on)

We will use this API to: The DESTINATION field contains the name
assigned to the destination when it was created. The

* Show users a list of defined destinations and OPTIONS field contains the string shown in Figure 3

their attributes

in the Options column of the list. Instead of parsing
this string and extracting its various fields, we can use

* Maintain the destinations defined on a client the GetOptionsAsRecord method.

computer

The GetOptionsAsRecord method requires you

The first method you see listed in Figure 4, to pass the name of a destination (as obtained, for
GetDestinations, returns a Recordset with one example, from a call to GetDestinations) and returns
record for each destination defined in the Registry. — if the specified destination exists — a Recordset
The structure of the Recordset is shown in containing one record with several fields. The fields that
Figure 5. are relevant for our purposes are shown in Figure 6.

No portion of this publication may be reproduced without written consent. 33

SAP Professional Journal March/April 2000

Field “Loadbal” tells you whether load balancing
is used for this destination. If load balancing is not
used (as indicated by a value of 0), the fields
“Ashost” and “Sysnr” identify a specific application
server of an R/3 system. If load balancing is used
(as indicated by a value of 1), then fields “Mshost”,
“Group”, and “r3name” identify a load balancing
group of an R/3 system.

Field “Type” identifies the system type. You
can actually use SDC to call functions in an R/2
mainframe system!

Fields “Client”, “Lang”, and “User” contain the
defaults defined for client, language, and userid,
respectively. All of them are empty if no defaults
were set.

Field “Trace” informs you whether or not the
trace option has been enabled for this destination.
Used together, methods GetDestinations and
GetOptionsAsRecord allow you to first retrieve a list
of all destinations and then all the attributes for each
individual destination.

The DeleteDestination method allows you to
delete a destination — identified by its name — from
the Windows Registry. Obviously, this method
should be used with great care!

The PutNewDestination method allows you to
create a new destination with the specified name. To
set the values for the various attributes of the new
destination, use the PutOptionsAsRecord method.

The PutOptionsAsRecord method allows you to
change the attributes of a destination. Figure 7 lists
the method’s parameters. PutOptionsAsRecord can
be used to change the attributes of any existing
destination, including one that was only just created
by PutNewDestination. Note that “passwd” is not
part of the Recordset used by both the
GetOptionsAsRecord and PutOptionsAsRecord
methods. This is a good design decision because it
prevents a program from retrieving passwords from
the Registry.” The “passwd” parameter of the

> Remember that I do not recommend storing any passwords in the
Registry in the first place.

PutOptionsAsRecord method enables you to store a
password, though.

Building a Component
to Encapsulate the
CCRegistry API

The CCRegistry API provides the functionality

you need to create an application that enables
administrators to add, change, and delete destinations.
The problem is that this API is not very object-
oriented. The attributes of a destination are not
exposed as properties of a Destination class, for
example. Instead, you have to deal with the
Recordset shown in Figure 6 and hard-code its field
names in your client application.

Since I am a firm believer in the encapsulation of
anything complex into a simple-to-use component, I
have designed and built a set of classes that makes
it easier for a client program to interact with
destinations. I am using three classes, Destination,
Destinations, and ObjectFactory to accomplish this.
As you can easily deduce from their names, the
Destinations class is a collection of items of type
Destination. The role of ObjectFactory will be
explained later.

The Destination Class

Figure 8 shows the properties supported by the
Destination class.

If you compare Figure 6 and Figure 8, you will
notice a few differences (besides slightly different
names in some cases):

» The UsesLoadBalancing and Trace properties of
the Destination class are defined as Boolean.
This is a little easier to interpret for a client
program.

* The “Type” field in Figure 6 is not represented
by any property. I decided that I did not want

34 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Figure 7 The Parameters of the PutOptionsAsRecord Method
Parameter Name Description
destination Destination name
pin Recordset as defined in Figure 6
passwd Password

Figure 8 The Properties of the Destination Class

Property Name Data Type Read/Write

Name String Yes

UseslLoadBalancing Boolean Yes

HostName String Yes

SystemNumber String Yes

Systemld String Yes

GroupName String Yes

Client String Yes

Userld String Yes

Language String Yes

Trace Boolean Yes

Figure 9 The Parameters of the CreateConnectionString Method

Parameter Name Optional Description

pPassword No Password (required for logon)

pUserld Yes Userid (String)

pClient Yes Client number (String)

pLanguage Yes Language code (String)

pTrace Yes Trace (Boolean)
to support R/2 in my component. If you Publ i ¢ Function CreateConnectionString(
would like to have R/2 support in your pPassword As String,

Optional pUserld,

Optional pCient,

Opti onal plLanguage,
Optional pTrace) As String

component, you will have to add suitable
properties and code.

Fields “Ashost” and “Mshost” in Figure 6

are combined into the one property, HostName, Figure 9 describes the method’s parameters.
in the Destination class. This is okay since a The raison d’étre for this method is that the
destination either uses load balancing, or it does PutSessionInfo method offered by SDC’s Session
not. Therefore, only one host name needs to class does not have a Trace® parameter:

be stored.

¢ The RFC trace is useful when your SDC-based application is not

. . . working as expected. The generated trace file helps a developer
The Destination class has one rnethod, with the to debug an application. All BAPI and non-BAPI function calls

following signature: together with their parameters are listed in the trace file.

No portion of this publication may be reproduced without written consent. 35

SAP Professional Journal March/April 2000

Figure 10 The Properties of the Destinations Class
Count Long Read-only
Item(vntindexKey As Variant) Destination Read-only

Figure 11

Public Methods of the Destinations Class

Public Sub Add(ByVal ltem As Destination)

Public Function Exists(Key As String) As Boolean

Public Sub Refresh()

Public Sub Remove(Name As String)

Public Sub Update(ByVal Item As Destination)

Sub Put Sessi onl nf o(Opti onal destination As String,
Optional userid As String,
Opti onal Password As String,
Opti onal | anguage As String,
Optional client As String)

While PutSessionInfo allows us to override
the defaults stored in the destination for the userid,
password, language, and client, we cannot override
the trace setting stored for the destination at runtime.
Fortunately, the method allows us to pass a string,
with all required keywords set appropriately, instead
of the name of the destination. This string needs
to be surrounded by curly braces and could look
like this:

"{ ashost =pswdf 071. wdf . sap- ag. de
client=002 | ang=EN sysnr=75 type=3
user =c3026902 passwd=*** trace=1 }"

The CreateConnectionString method of
the Destination class facilitates the construction
of the required string and allows us to optionally
override all fields, including Trace. This now enables
us to turn on the trace for a particular program
execution, without having to turn it on for the
destination as such (i.e., all programs using this
destination) in SDC.

The Destinations Class

The Destinations class is a collection of Destination
objects. Figure 10 shows the properties supported by
the Destinations class.

These are standard properties for a collection
class.

Figure 11 contains the public methods of the
Destinations class.

The Add method adds a new Destination object
to the collection and also writes it to the Registry. It
will fail if a destination with the name of the new
destination already exists.

The Exists method checks whether a destination
with the specified name exists.

The Refresh method re-initializes the collection.
The only time a client program would want to call
Refresh is when the destinations in the Registry were
updated by some other program after the client
program created the Destinations collection object.

The Remove method removes the destination
with the specified name from the collection and the
Registry. It will fail if no destination with this name
exists.

36 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

The Update method updates the destination
identified by the Item parameter’s Name property
with the properties of the Destination object passed in
parameter Item. This is done both in the collection
and in the Registry. The method will fail if no
destination with this name exists.

The ObjectFactory Class

The Destination and Destinations classes are very
useful once an object of type Destinations has been
created. How does a client program instantiate the
Destinations class? I decided not to allow the client
program to create multiple instances of the
Destinations class (using Visual Basic’s “New”
keyword). This would have led to some difficulties,
because each instance would have believed that it
has exclusive control over the destinations in the
Registry. Instead, I have applied the design pattern
known as “Singleton”: All requests for an object of
type Destinations always return the same instance.

Listing 1: The Destination Class
Const CLASSNAME = "Destinati on"

This is accomplished via a method called
GetDestinations. This method is offered by a class
called ObjectFactory, which is responsible for the
creation of objects for which we need to closely
control object creation.

The GetDestinations method returns a reference
to the Destinations object created by the
ObjectFactory.

Summary of the Destinations Component

If you compare the native destination management
API offered by the CCRegistry class with the
component containing the Destination, Destinations,
and ObjectFactory classes, and if you like the latter
approach better, Listing 1, Listing 2, and Listing 3
offer you an opportunity to review the source code for
the Destination, Destinations, and ObjectFactory
classes. If you prefer the standard API, just continue
using the CCRegistry class.

(text continues on page 42)

Const ERRSOURCE = LIBNAME + "." + CLASSNAME

Private sNane As String

Private sUserld As String
Private sClient As String
Private sLanguage As String

Private bUsesLoadBal anci ng As Bool ean
Private bTrace As Bool ean

Private sHost Nane As String

Private sSystemNunber As String

Private sSystemd As String
Private sG oupNane As String

Publ i ¢ Functi on CreateConnectionString(pPassword As Stri ng,

Opti onal pUserld,

Optional pdient,

Opti onal plLanguage, _
Optional pTrace) As String

No portion of this publication may be reproduced without written consent. 37

SAP Professional Journal

March/April 2000

Dms As String
s = "{ type=3"
I f bUseslLoadBal anci ng Then

s =s & " nshost=" & sHostNane & " group="
" r3name=" & sSystend
El se
s =s & " ashost=" & sHostNane & " sysnr="
End |f
s =s &" passwd=" & pPassword
If 1sMssing(pUserld) Then
s =s &" user=" & sUserld
El se
s =s &" user=" & pUserld
End |f
If 1sMssing(pClient) Then
s =s &" client=" & sCient
El se
s =s &" client=" & pdient
End |f
I f 1sM ssing(pLanguage) Then
s =s &" lang=" & slLanguage
El se
s =s &" lang=" & plLanguage
End |f
If 1sMssing(pTrace) Then
s =s &" trace=" & IIf(bTrace, "1", "0")
El se
s =s &" trace=" & IIf(pTrace, "1", "0")
End If
s =s &" }"

Cr eat eConnectionString = s
End Function

Public Property Get Name() As String
Nanme sNanme
End Property

Public Property Let Nane(ByVal sNewval ue As St
If sName = "" Then
sNane = sNewval ue
El se

Err. Rai se ERR3010, ERRSOURCE, ERR3010Text
End |f
End Property

Public Property Get Userld() As String
Userld = sUserld

End Property

Public Property Let Userl d(ByVal
sUserld = sNewal ue

End Property

sNewVval ue As

& sG oupNanme & _

& sSyst emNunber

ring)

String)

38

www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Public Property Get Client() As String
Client = sCient

End Property

Public Property Let Cient(ByVal sNewval ue As String)
sCient = sNewal ue

End Property

Public Property Get Language() As String
Language = slLanguage

End Property

Public Property Let Language(ByVal sNewval ue As String)
sLanguage = sNewval ue

End Property

Public Property Get UseslLoadBal anci ng() As Bool ean
UsesLoadBal anci ng = bUsesLoadBal anci ng

End Property

Public Property Let UseslLoadBal anci ng(ByVal Newal ue As Bool ean)
bUsesLoadBal anci ng = Newval ue

End Property

Public Property Get Trace() As Bool ean
Trace = bTrace

End Property

Public Property Let Trace(ByVal Newval ue As Bool ean)
bTrace = Newval ue

End Property

Public Property Get HostNane() As String
Host Name = sHost Nane

End Property

Public Property Let Host Nane(ByVal sNewval ue As String)
sHost Name = sNewval ue

End Property

Public Property Get SystenNumber() As String
Syst emNunber = sSyst emNunber

End Property

Public Property Let SystenNunber(ByVal sNewal ue As String)
sSyst emNunber = sNewVal ue

End Property

Public Property Get Systemid() As String
Systemd = sSystem d

End Property

Public Property Let Systenl d(ByVal sNewval ue As String)
sSystenml d = sNewval ue

End Property

No portion of this publication may be reproduced without written consent. 39

SAP Professional Journal March/April 2000

Public Property Get G oupNane() As String
G oupNanme = sG oupNane

End Property

Public Property Let G oupNane(ByVal sNewval ue As String)
sG oupNane = sNewval ue

End Property

Listing 2: The Destinations Class
Const CLASSNAME = "Destinati ons”
Const ERRSOURCE LI BNAME + "." + CLASSNAME

Private col X As Col | ecti on

Public Property Get Count() As Long
Count = col X. Count
End Property

Publ i c Function Exists(Key As String) As Bool ean
On Error Resunme Next
col X. I t em Key
Exists = I If(Err.Nunber = 0, True, False)
Err.d ear

End Function

Public Property Get Iten(vntlndexKey As Variant) As Destination
Set Item = col X(vnt | ndexKey)
End Property

Public Property Get NewkEnunm() As | Unknown
Set NewkEnum = col X. [_NewEnuni
End Property

Public Sub Renpve(Nane As String)
I f Exists(Name) Then
0CCRegi stry. Del et eDesti nati on Name
col X. Renove Name
El se
Err. Rai se ERR3012, ERRSOURCE, ERR3012Text
End |f
End Sub

Private Sub Class Initialize()
Ref resh

End Sub

Private Sub Cl ass_Terni nate()
Set col X = Not hi ng

End Sub

40 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Public Sub Add(ByVal Item As Destinati on)
I f Exists(ltem Nanme) Then
Err. Rai se ERR3011, ERRSOURCE, ERR3011Text
El se
0CCRegi stry. Put NewDesti nati on |Item Name
Addl nternal |tem
Update Item
End |f
End Sub
Friend Sub Addlnternal (ByVal Item As Desti nati on)
col X. Add Item Item Nane
End Sub

Public Sub Refresh()
DimrsX As Recordset
Di m destinati onX As Destination
Set col X = New Col | ecti on
Set rsX = 0CCRegi stry. Get Desti nati ons
r sX. MoveFi r st
Do Until rsX EOF
Set destinationX = New Destination
desti nati onX. Nane = rsX("Desti nation")
desti nati onX. Connect String = rsX("Options")
Addl nt ernal destinationX
r sX. MoveNext
Loop
For Each destinationX In col X
Set rsX = oCCRegi stry. Get Opti onsAsRecord(desti nati onX. Nane)
rsX. MoveFi r st
desti nati onX. UsesLoadBal anci ng = _
I1f(rsX("loadbal") = 0, False, True)
destinationX Trace = |If(rsX("trace") = 1, True, False)
destinationX Client = rsX("client")
desti nati onX. G- oupNanme = rsX("group")
desti nati onX. Host Name = _
I'1f(destinati onX. UsesLoadBal anci ng, rsX("nmshost"), rsX("ashost"))
desti nati onX. Language = rsX("l ang")
destinati onX. System d = rsX("r3nane")
desti nati onX. Syst emNunber = rsX("sysnr")
destinationX Userld = rsX("user")
Next destinationX
End Sub

Publ i c Sub Update(ByVal |Item As Desti nati on)
DimrsX As Recordset
I f Not Exists(ltem Nane) Then
Err. Rai se ERR3012, ERRSOURCE, ERR3012Text
El se
Set rsX = 0CCRegi stry. Get Opti onsAsRecord(|tem Nane)
rsX. MoveFi r st
rsX("client") = Itemdient

No portion of this publication may be reproduced without written consent. 41

SAP Professional Journal March/April 2000

rsX("lang") = Item Language
rsX("user") = ltem Userld
rsX("l oadbal ") = II1f(ltem UsesLoadBal anci ng, 1, 0)

rsX("trace")

rsX("group") It em Gr oupNane

rsX("r3nane") = Item System d

rsX("sysnr") = Item Syst enNunber

I f Item UsesLoadBal anci ng Then
rsX("mshost") = Item Host Nane
rsX("ashost") "

El se
rsX("ashost")
rsX("nmshost")

|t em Host Nane

I1f(ltem Trace, 1, 0)

End |f
r sX. Updat e
Cal | oCCRegi stry. Put Opti onsAsRecord(ltem Nane, rsX, "")
End |f
End Sub

Listing 3: The GetDestinations Method in the ObjectFactory Class
Publ i c Functi on Get Destinations() As Destinations

I f oDestinations |Is Nothing Then

Set oDestinati ons = New Desti nations

End | f
Set Get Destinati ons = oDesti nations
End Functi on

Building a Destination
Management Application

If normal users of SDC-based applications want to
maintain their own destinations (e.g., to define a new
R/3 system they want to use), they can only do so if
they have access to SDC’s administration features.
Some system administrators might not like the idea of
giving normal users complete SDC administration
capabilities. On the other hand, letting users maintain
just destinations will be acceptable in most cases.
Since we now have a nice component (in my opinion)
that encapsulates access to the destinations, it is not
hard to develop an application that allows a user to

do this. Figure 12 contains a screenshot of the
application I built for this purpose. This program is
freeware and can be downloaded from:

Figure 12 The Destination Manager for SAP R/3

@AHAsolt DCOM Connector Destination Manager for SAP R/3 [x]
D estination Details I Ahout |
Diestination Mam
8@ (Destinatipr: T34 ‘
Connection Type
’7(‘ Application Server @ Load Balancing ‘
i~ Load Balancing Group
113 Message Server: [hsS094 wdll sap-a de
System Hame: | T34
Group Name: [CONTROLLING
Trac
’VI' Trace On
[UserData
Llient: |001
User:
Language: [English -
Refresh | ‘ Save | Delete: | Hew | Test | ‘

http://www.sap.com/solutions/technology/
bapis/com/ara_dest.zip

42 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Using this program, you can add, change,
and delete destinations. In addition, you can test
any destination (logging on to the R/3 system) to
make sure that its definition is correct. The only
hard thing about writing this program was making
sure that the GUI was intuitive to use. The
Destination and Destinations classes took care
of everything else.

Building a Visual Logon
Component

The current version of SDC does not have a

dialog component that would allow users to pick a
destination from the list stored in the Registry and
log on by providing their password and other user
information. Based on the Destinations component,
it was not too hard to build one. My visual logon
component can be downloaded from:

http://www.sap.com/products/techno/bapis/

com/ara_dcom_2.zip

and it is freeware. Figure 13 shows a screenshot of
the component.

Figure 13 The ARAsoft DCOM Connector
Logon Component
@AHASD" DCOM Connector Logon Component for SAP R/3
Uger Data |Qestmatmn Delalls' Ahﬂul'
Q@ § Llient ILUZ
User ITGS
Pazzwoard I’““”
Language: IEnghsh 'I
119 | Tiee

T4

Users logging on to R/3 have to enter a language
code unless they want to use whatever default
language the system administrator has defined for the

particular system. Forcing the user to remember
these codes is not nice. My component therefore
contains a dropdown combobox, which lists the
names of the languages in the languages themselves,
so anyone can easily find their own language in the
list, instead of having to know the code for the
language.

In addition, the component allows the user to turn
on the trace without having to change the trace setting
for the destination. This allows us to enable the trace
for a specific execution of one application without
having to turn it on for the destination globally. How
is this accomplished? Earlier in this article, I
introduced the CreateConnectionString method
available for the Destination class. This method
retrieves all the information available for the
destination and allows the client program to override
the client, userid, password, language, and trace
default settings, generating the explicit curly braced
string that the PutSessionInfo method accepts instead
of the destination name.

Using the Logon Component

The file name of the component is ARAs of t
Logon Conponent. dl | . The name of its Type
Library is ARAsof t DLC. The component has one
global method, called LogonDialog:

Function LogonD al og(Sessi on As RfcSessi on,
Error Message As String)
As LOGONDI ALOGRESULT

You have to pass a valid Session object and
a string that after the call contains the error
message returned by the Logon method. The
LOGONDIALOGRESULT enumeration contains
the constants shown in Figure 14.

Figure 14 Constants in LOGONDIALOGRESULT

Const Cancel = 2

Const Failure = 1

Const Success =0

No portion of this publication may be reproduced without written consent. 43

SAP Professional Journal March/April 2000

Listing 4: Invoking the LogonDialog Method
Di m oSessi on As Sessi onConponent
Di m skError Message As String

Di m | dSuccess As ARAsof t DLC. LOGONDI ALOGRESULT

Set oSessi on = New Sessi onConponent

| dSuccess = ARAsoft DLC. LogonDi al og(oSessi on, sError Message)

If | dSuccess = Success Then
MsgBox " Ckay"
El self | dSuccess = Failure Then
MsgBox sError Message
El self | dSuccess = Cancel Then
User cancel |l ed the | ogon dial og
End |f

The complete source code required to call the
LogonDialog method is given in Listing 4.

Once more you can see the benefits of
proper encapsulation. Using the component
in a client application is extremely easy and
straightforward.

Additional Ideas

You have just seen how to use an encapsulation of the
CCRegistry API as the basis upon which to build the
destination management application and the visual
logon component. What else could you do with this
Destinations component? You could, for example,
build a utility that enables the export and import of
XML files containing the attributes of destinations so
that an administrator could automatically update the
destinations in the Registry of multiple client PCs.
This utility could be made part of the startup script
for all PCs. When executed, it would fetch the

latest version of the XML file from a server and
update the local Registry accordingly.

Getting Information About a
Session at Runtime

Once a user has successfully logged on to R/3, your

application may need to retrieve the following types
of session-related information:

¢ What release of R/3 is running on the server?
This information allows your application to use
more advanced features available in a higher
release of R/3 if, and only if, the user logged
on to a system with a certain minimum
release level.

e Which userid did the user of your application
use to log on?

e What release of SDC is your application running
with? (Future versions of SDC will include
additional capabilities. An application needs to
check the release of SDC before trying to use
these capabilities.)

e Which code pages are being used on the client
and on the server? (The RFC layer does a good
job of converting different data representations,
so I have not had to rely on information about
code pages, yet. But you might be able to
benefit from it somehow.)

e Which language did the user log on with?

e Which character is used as the decimal symbol
in R/3?

e Which date format is used by R/3?

e Is the user still connected? (A user could have
been disconnected by R/3 after exceeding the

44 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Figure 15

Useful Attributes of GetConnectionAttribute

Attribute Name Description

OWN_CODEPAGE

Code page on the client

OWN_REL

Release of SDC

PARTNER_CODEPAGE

Code page on the application server

PARTNER_HOST

Application server

PARTNER_REL

R/3 release on the server

SYSID Name of the R/3 system
SYSTNR System number
USER Userid

Figure 16 The Properties of the ConnectionAttributes Class
Property Name Data Type Description
Systemld String Name of the R/3 system
HostName String Application server
Userld String System number
SystemNumber Integer Userid
SapRelease String R/3 release on the server
SapCodePage String Code page on the application server
SdcRelease String Release of SDC
LocalCodePage String Code page on the client

maximum inactivity threshold.) If, for example,
a user gets disconnected in the middle of a
transaction containing multiple update BAPI
calls, the application needs to take appropriate
action (e.g., start from scratch).

The first four questions can be answered by

calling the Session’s GetConnectionAttribute method:

Functi on Get Connecti onAttri bute
(Optional AttrNanme As String)
As Vari ant

The AttrName parameter allows you to retrieve
an individual attribute. When you specify this
parameter, the method returns a Variant with the
requested data. If you omit the parameter, you get
a Recordset with all attributes. The most useful
attributes are shown in Figure 15.

There are some other attributes in the
Recordset that sound promising, like CALLS,
LAST FUNCTION, and STATE, but at least on my
computer (using SDC 4.6A), they were either never
set (CALLS returned “0”, LAST FUNCTION an
empty string) or always contained the same value
(STATE always contained “connecting,” even after
I had been disconnected by R/3).

Encapsulating the GetConnectionAttribute
Method

In order to facilitate a client program’s access
to the important attributes returned by
GetConnectionAttribute, I have created a class
called ConnectionAttributes.

The properties of this class are shown in
Figure 16.

No portion of this publication may be reproduced without written consent. 45

SAP Professional Journal March/April 2000

The source code for this class appears in
Listing 5.

After setting the ObjectFactory’s Session property,
the client program can get an instance of the
ConnectionAttributes class by calling the
ObjectFactory’s GetConnectionAttributes method,
shown in Listing 6. Then the client program can easily
access the various properties of ConnectionAttributes.

Listing 5: The ConnectionAttributes Class
Private sSystemd As String
Private sHost Nane As String
Private sUserld As String
Private iSystemNunber As I|nteger
Private sSapRel ease As String
Private sSapCodePage As String
Private sSdcRel ease As String
Private sLocal CodePage As String

Checking the SAP
Connection

The only way to find out whether or not a connection
to R/3 is still intact is a BAPI or other RFM. The
cheapest RFM in terms of performance to call is
RFCPING. Therefore, the ObjectFactory contains

a method, IsConnectionValid, that tries RFCPING and
returns True if that call was successful, False

Public Property Get Systeml d() As String

System d = sSystenid
End Property

Friend Property Let Systenl d(ByVal sNewval ue As String)

sSystenml d = sNewval ue
End Property

Public Property Get HostNane() As String

Host Name = sHost Nane
End Property

Friend Property Let Host Nane(ByVal sNewval ue As String)

sHost Name = sNewval ue
End Property

Public Property Get Userld() As String

Userld = sUserld
End Property

Friend Property Let Userld(ByVal sNewval ue As String)

sUserld = sNewval ue
End Property

Public Property Get SapRel ease() As String

SapRel ease = sSapRel ease

End Property

Friend Property Let SapRel ease(ByVal
sSapRel ease = sNewval ue

End Property

sNewval ue As String)

46 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Public Property Get SystenNunber() As |nteger
Syst emNunber = i Syst emNunber

End Property

Friend Property Let SystenmNunber(ByVal i Newal ue As | nteger)
i Syst emNunber = i Newal ue

End Property

Public Property Get SapCodePage() As String
SapCodePage = sSapCodePage

End Property

Friend Property Let SapCodePage(ByVal sNewval ue As String)
sSapCodePage = sNewval ue

End Property

Public Property Get SdcRel ease() As String
SdcRel ease = sSdcRel ease

End Property

Friend Property Let SdcRel ease(ByVal sNewal ue As String)
sSdcRel ease = sNewval ue

End Property

Public Property Get Local CodePage() As String
Local CodePage = slLocal CodePage

End Property

Friend Property Let Local CodePage(ByVal sNewval ue As String)
sLocal CodePage = sNewval ue

End Property

Listing 6: The GetConnectionAttributes Method in the ObjectFactory Class
Publ i ¢ Function Get ConnectionAttributes() As ConnectionAttri butes
DimrsX As Recordset
Di m caX As ConnectionAttri butes

If oSession Is Nothing Then

Err. Rai se ERR3001, ERRSOURCE, ERR3001Text

End |f

Set caX = New ConnectionAttri butes

Set rsX = oSession. Get Connecti onAttri bute

r sX. MoveFi r st

caX. Host Nane = rsX(" PARTNER _HOST")

caX. SapRel ease = rsX("PARTNER REL")

caX. System d = rsX("SYSID")

caX. Syst emNunmber = rsX(" SYSTNR")

caX. Userld = rsX("USER")

caX. Local CodePage = rsX(" OAN_CODEPAGE")

caX. SapCodePage = rsX("PARTNER CODEPAGE")

caX. SdcRel ease = rsX("OMNN_REL")

Set Cet ConnectionAttributes = caX
End Function

No portion of this publication may be reproduced without written consent. 47

SAP Professional Journal March/April 2000

Listing 7: The IsConnectionValid Method in the ObjectFactory Class
Public Function |sConnectionValid() As Bool ean

On Error Resune Next
oFuncti ons. Rf cpi ng
If Err.Nunber <> 0 Then

Err.Cl ear

| sConnectionValid = Fal se
El se

I sConnectionValid = True
End |f

End Functi on

otherwise. The source code for this method is
shown in Listing 7.

The GetConnectAttributes method gives you a
means to extract information about the attributes
listed in Figure 15. For information about R/3’s date
format and decimal sign, as well as the language the
user logged on with, we turn to a very useful RFM,
Rfc Get Sap System Parameters. This R/3 function
returns the parameters shown in Figure 17.

Some of this information is already available via
a call to GetConnectionAttribute (R/3 release, userid),
but the rest cannot be retrieved without calling the
Rfc_Get Sap System Parameters function. As
before, I have encapsulated the access to this function

Figure 17 The Fields Returned by
Rfc_Get _Sap_System_Parameters

Date Format Date format used in R/3

Decimal_Sign Decimal symbol used in R/3

Language Logon language
Sap_System_Release R/3 release on the server
User_Name Userid

in the ObjectFactory. The source code for the
methods of the ObjectFactory that use the
Rfc_Get Sap System Parameters function is
shown in Listing 8.

(text continues on page 50)

Listing 8: Additional Methods in the ObjectFactory Class
Publ i c Function GetDateFormat() As String

On Error GoTo EH
| f gsDateFormat = "" Then

oFunctions. Rfc_Get _Sap_System Paraneters _

Dat e_For mat : =gsDat eFor mat,
Deci mal _Si gn: =gsDeci mal Si gn,
Language: =gsLanguage,

Sap_Syst em Rel ease: =gs§apReI ease,

User Name: =gsUser | d
End |f
Cet Dat eFor mat = gsDat eFor mat
Exit Function
EH:

Err. Rai se Err.Nunber, ERRSOURCE, ERRSOURCE + _

".GetDateFormat (Line " + CStr(Erl) + ")" +

vbCrLf + Err.Description
End Function

48 www.SAPpro.com

©2000 Wellesley Information Services. All rights reserved.

Destination and Session Management for the SAP DCOM Connector

Publ i c Functi on Get Deci mal Si gn() As String

On Error GoTo EH

If gsDecimal Sign = "" Then
oFunctions. Rfc_Get _Sap_System Paraneters _

Dat e_For mat : =gsDat eFor mat,

Deci mal _Si gn: =gsDeci mal Si gn,
Language: =gsLanguage, _

Sap_Syst em Rel ease: =gsSapRel ease,
User Name: =gsUser | d

End |f

Cet Deci mal Si gn = gsDeci mal Si gn

Exit Function

EH:

Err. Rai se Err.Nunber, ERRSOURCE, ERRSOURCE + _
".GetDecimal Sign (Line " + CStr(Erl) + ")" +
vbCrLf + Err.Description

End Function

Publ i c Functi on Get LogonLanguage() As String

On Error GoTo EH

I f gsLanguage = "" Then
oFunctions. Rfc_Get _Sap_System Paraneters _

Dat e_For mat : =gsDat eFor mat,

Deci mal _Si gn: =gsDeci mal Si gn,
Language: =gsLanguage, _

Sap_Syst em Rel ease: =gsSapRel ease,
User Name: =gsUserl| d

End |f

Cet LogonLanguage = gslLanguage

Exit Function

EH:

Err. Rai se Err.Nunber, ERRSOURCE, ERRSOURCE + _
".Get LogonLanguage (Line " + CStr(Erl) + ")" +
vbCrLf + Err.Description

End Function

Publ i c Functi on Get SapRel ease() As String
On Error GoTo EH
| f gsSapRel ease = "" Then
oFunctions. Rfc_Get _Sap_System Paraneters _
Dat e_For mat : =gsDat eFor mat,
Deci mal _Si gn: =gsDeci mal Si gn,
Language: =gsLanguage, _
Sap_Syst em Rel ease: =gsSapRel ease,
User Name: =gsUser | d
End |f
Cet SapRel ease = gsSapRel ease
Exit Function
EH:

No portion of this publication may be reproduced without written consent. 49

SAP Professional Journal March/April 2000

Err. Rai se Err.Nunber, ERRSOURCE, ERRSOURCE + _

". CGet SapRel ease (Line " + CStr(Erl) + ")" +

vbCrLf + Err.Description
End Function

Public Function GetUserld() As String

On Error GoTo EH
If gsUserld = "" Then

oFunctions. Rfc_Get _Sap_System Paraneters _

Dat e_For mat : =gsDat eFor mat,
Deci mal _Si gn: =gsDeci mal Si gn,
Language: =gsLanguage,

Sap_Syst em Rel ease: =gs§apReI ease,

User Name: =gsUser | d
End |f
CGetUserld = gsUserld
Exit Function
EH:

Err. Rai se Err.Nunber, ERRSOURCE, ERRSOURCE + _

".GetUserld (Line " + CStr(Erl) + ")"

vbCrLf + Err.Description
End Function

As you review the source code you will notice
that Rfc_ Get Sap System Parameters is called
only once, even if the client makes multiple calls to
the appropriate ObjectFactory methods. This is
accomplished by storing the retrieved information
in global variables.

Summary

Congratulations! We have covered a lot of ground
together. You should now have all the information
required to deal with destination and session

management in SDC. If you have any questions or

suggestions concerning the presented topics, [would

love to hear from you.

+

Thomas G. Schuessler is the founder of ARAsofft,

a company offering products, consulting, custom
development, and training around the world.

The company specializes in integration between
SAP and non-SAP components and applications.
ARAsoft offers various products for BAPI-enabled
programs on the Windows and Java platforms.
These products facilitate the development

of desktop and Internet applications that
communicate with R/3. Thomas is the author of
SAP’s CA925 “Programming with BAPIs in
Visual Basic” class, which he teaches in Germany
and in English-speaking countries. His book on
the same subject will be published soon. Thomas
is a regularly featured speaker at SAP’s TechEd
and SAPPHIRE conferences. Prior to founding
ARAsoft in 1993, he worked with SAP AG and
SAP America for seven years. Thomas can be
contacted at thomas.schuessler@sap.com or at
arasoft@t-online.de.

50 www.SAPpro.com ©2000 Wellesley Information Services. All rights reserved.

