
29No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

Destination and Session
Management for the
SAP DCOM Connector
Thomas G. Schuessler

The SAP DCOM Connector (SDC) is the standard middleware for

Microsoft Windows1 applications that require access to SAP

functionality through BAPIs or other functions.2   These applications

could, for example, be desktop programs or Internet applications that

provide an alternative frontend to any transaction in the SAP system.

In order to get at the functionality in an SAP system, a client

program needs to log on, identifying a particular SAP system and

providing valid values for the client, userid, password, and optionally,

the language to be used.  SDC allows you to store information about

an SAP system and a user on the client system, using the notion of a

destination.  A destination identifies an SAP system and optionally

contains default values for the client, userid, password, and language.

Destinations are stored in the Windows Registry.  SDC contains an

API — the CCRegistry API — to access these destinations from a

client program.  On top of that API, SDC provides a destination

management screen (accessible through Internet Explorer) as part of

its administration facilities.

Based on these SAP-supplied capabilities, several opportunities

arise to build reusable components and applications:

• Building a component that encapsulates the CCRegistry API in a

more object-oriented fashion would make it easier for developers to

Thomas G. Schuessler is

the founder of ARAsoft, a

company offering products,

consulting, custom

development, and training

around the world.  The

company specializes in

integration between SAP and

non-SAP components and

applications.  Thomas is the

author of SAP’s CA925

“Programming with BAPIs in

Visual Basic” class.  Prior to

founding ARAsoft in 1993, he

worked with SAP AG and SAP

America for seven years.

(complete bio appears on page 50)

1 Windows 95, 98, NT, 2000.

2 The protocol for communication between SAP and non-SAP systems is called RFC (Remote

Function Call).  BAPIs (Business Application Programming Interfaces) are RFC-enabled

function modules (RFMs) defined as methods in the Business Object Repository (BOR).

In addition, there are other RFMs that are not BAPIs but can still be used from external

applications.



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.30

work with destinations in their programs and

components.

• Some applications log on to R/3 transparently

(without any user interaction).  Many, if not most,

applications, though, will need to present users

with a list of destinations to choose from and

provide an opportunity to view and change

the default user information (defined in the

destination) to be submitted to R/3.  The current

version of SDC (4.6B) does not supply a

component for this task.  Building a reusable

component, encapsulating the Registry access and

the user interaction, would prevent application

developers from having to spend time writing

their own component or — even worse — writing

slightly different logon code for each SDC-based

application.

• In some companies, maintenance of the

destinations on client systems will be entrusted to

administrators only.  Other companies may want

their users to be able to define and change their

own destinations.  Using standard SDC, this

requires the installation of Internet Explorer and

the complete SDC administration facilities on the

user’s machine.  Building an application that only

allows destination management would solve the

dilemma of either giving the user all or no

administration capabilities.

There is one related subject that I want to cover

in this article.  Once a client program has logged on

to R/3, it is often desirable that it has access to

session-specific information — for example, the

language code selected by the user during logon, or

whether or not the user is still connected to R/3.  So I

will also show you how to retrieve information about

an active session with R/3 at runtime.

This article will show you how to accomplish all

four tasks, with coverage of:

• Destinations in SDC — an overview

• The CCRegistry API

• Building a component to encapsulate the

CCRegistry API

• Building a destination management application

• Building a visual logon component

• Getting information about a session at runtime

The programming language used for the sample

code is Visual Basic, but if you are working with

another Windows-enabled language, you should have

no problem making use of the concepts that are

presented here.3

Freeware and Buyware

This article provides more than just a theoretical

treatment of these tasks.  I have actually written a lot

of software based on the ideas presented here.  Some

of it is free.  You can download the ARAsoft DCOM

Connector Destination Manager and the ARAsoft

DCOM Connector Logon Component from SAP’s

Web site (see the appropriate sections of the article

for the URLs).  Both pieces of software are freeware.

As for the encapsulation of the CCRegistry API and

the session information retrieval, I have supplied

generous amounts of source code in this article.  You

can use it as the basis for your own solutions, or

license my ARAsoft DCOM BAPI Object Factory,

which contains many additional capabilities related to

SDC-based BAPI programming.  To obtain a free

trial copy, just send me an e-mail.

Destinations in SDC —

An Overview

A destination in SDC is used to identify an R/3

system and, optionally, define default user

information.  (Multiple destinations can refer to the

same SAP system.)

3 In order to benefit from this article, you should already know the

basics of DCOM Connector programming.  An overview of these

basics was provided in my article “Programming with BAPIs

using the SAP DCOM Connector,” which was published in the

January/February 2000 issue of the SAP Professional Journal.



31No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

An R/3 system can be identified by either:

• Referring to an individual application server,

specifying its host name and system number, as

shown in Figure 1.

• Referring to a load balancing group,4  specifying

the message server, system name, and group

name, as shown in Figure 2 (note that this

4 Load balancing groups are typically used in larger SAP installations

in order to improve performance and/or support different code pages.

Figure 1 Selecting an Individual Application Server

Figure 2 Selecting a Load Balancing Group



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.32

approach is only applicable if the SAP system

administrator has actually defined load balancing

groups for a system).

Your system administrator will be able to tell you

which approach you should use and give you the

required information (server name, etc.).

In addition to this identification of the SAP

system, you can set defaults for the following fields

that are used during logon:

• Client

• Language

• Userid

• Password

Storing a default for the password is something I

would advise against, unless you are talking about a

test system in which everybody is allowed everything.

Although the password is encrypted before it is

stored, anybody with access to your PC could now

log on to this R/3 system without having to specify a

password.

The defaults for Client, Language, and Userid can

be overwritten at runtime, so storing a default value

for any of these parameters does not prevent an

application or a user from using other values during

logon.

If you do not specify a language during logon,

the default language defined by the SAP system

administrator will be used.

Figure 3 shows an overview list of the two

destinations defined in Figures 1 and 2.

The CCRegistry API

The CCRegistry class is part of the SAP DCOM

Connector Administration Component, which has a

file name of ccadmin.dll.  The name of its Type

Library is CCADMINLib.  This API encapsulates

access to the destinations in the Registry.  Any

application that needs to deal with destinations must

use this API either directly or through some

encapsulation.  SDC’s Destination Management

screen itself uses the API.

Figure 4 lists the important methods of the

CCRegistry class that are required to maintain

destinations.

Figure 3 Destination Management



33No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

We will use this API to:

• Show users a list of defined destinations and

their attributes

• Maintain the destinations defined on a client

computer

The first method you see listed in Figure 4,

GetDestinations, returns a Recordset with one

record for each destination defined in the Registry.

The structure of the Recordset is shown in

Figure 5.

The DESTINATION field contains the name

assigned to the destination when it was created.  The

OPTIONS field contains the string shown in Figure 3

in the Options column of the list.  Instead of parsing

this string and extracting its various fields, we can use

the GetOptionsAsRecord method.

The GetOptionsAsRecord method requires you

to pass the name of a destination (as obtained, for

example, from a call to GetDestinations) and returns

— if the specified destination exists — a Recordset

containing one record with several fields.  The fields that

are relevant for our purposes are shown in Figure 6.

Function GetDestinations() As Object

Function GetOptionsAsRecord(destination As String) As Object

Sub DeleteDestination(destination As String)

Sub PutNewDestination(destination As String)

Sub PutOptionsAsRecord(destination As String, pIn As Object, passwd As String)

Figure 4 Important Methods of the CCRegistry Class

Field Name Description

DESTINATION Destination name

OPTIONS Option string

Figure 5 The Fields in the GetDestinations Recordset

Figure 6 Important Fields in the GetOptionsAsRecord and PutOptionsAsRecord Recordsets
Field Name Description

Loadbal Uses load balancing (0 = No, 1 = Yes)

Ashost Application server name

Sysnr System number

Mshost Message server name

Group Load balancing group

r3name R/3 system name

Type System type (2 = R/2, 3 = R/3)

Client Client number

Lang Language code

User Userid

Trace Trace setting (0 = Trace off, 1= Trace on)



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.34

Field “Loadbal” tells you whether load balancing

is used for this destination.  If load balancing is not

used (as indicated by a value of 0), the fields

“Ashost” and “Sysnr” identify a specific application

server of an R/3 system.  If load balancing is used

(as indicated by a value of 1), then fields “Mshost”,

“Group”, and “r3name” identify a load balancing

group of an R/3 system.

Field “Type” identifies the system type.  You

can actually use SDC to call functions in an R/2

mainframe system!

Fields “Client”, “Lang”, and “User” contain the

defaults defined for client, language, and userid,

respectively.  All of them are empty if no defaults

were set.

Field “Trace” informs you whether or not the

trace option has been enabled for this destination.

Used together, methods GetDestinations and

GetOptionsAsRecord allow you to first retrieve a list

of all destinations and then all the attributes for each

individual destination.

The DeleteDestination method allows you to

delete a destination — identified by its name — from

the Windows Registry.  Obviously, this method

should be used with great care!

The PutNewDestination method allows you to

create a new destination with the specified name.  To

set the values for the various attributes of the new

destination, use the PutOptionsAsRecord method.

The PutOptionsAsRecord method allows you to

change the attributes of a destination.  Figure 7 lists

the method’s parameters.  PutOptionsAsRecord can

be used to change the attributes of any existing

destination, including one that was only just created

by PutNewDestination.  Note that “passwd” is not

part of the Recordset used by both the

GetOptionsAsRecord and PutOptionsAsRecord

methods.  This is a good design decision because it

prevents a program from retrieving passwords from

the Registry.5   The “passwd” parameter of the

PutOptionsAsRecord method enables you to store a

password, though.

Building a Component

to Encapsulate the

CCRegistry API

The CCRegistry API provides the functionality

you need to create an application that enables

administrators to add, change, and delete destinations.

The problem is that this API is not very object-

oriented.  The attributes of a destination are not

exposed as properties of a Destination class, for

example.  Instead, you have to deal with the

Recordset shown in Figure 6 and hard-code its field

names in your client application.

Since I am a firm believer in the encapsulation of

anything complex into a simple-to-use component, I

have designed and built a set of classes that makes

it easier for a client program to interact with

destinations.  I am using three classes, Destination,

Destinations, and ObjectFactory to accomplish this.

As you can easily deduce from their names, the

Destinations class is a collection of items of type

Destination.  The role of ObjectFactory will be

explained later.

The Destination Class

Figure 8 shows the properties supported by the

Destination class.

If you compare Figure 6 and Figure 8, you will

notice a few differences (besides slightly different

names in some cases):

• The UsesLoadBalancing and Trace properties of

the Destination class are defined as Boolean.

This is a little easier to interpret for a client

program.

• The “Type” field in Figure 6 is not represented

by any property.  I decided that I did not want
5 Remember that I do not recommend storing any passwords in the

Registry in the first place.



35No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

to support R/2 in my component.  If you

would like to have R/2 support in your

component, you will have to add suitable

properties and code.

• Fields “Ashost” and “Mshost” in Figure 6

are combined into the one property, HostName,

in the Destination class.  This is okay since a

destination either uses load balancing, or it does

not.  Therefore, only one host name needs to

be stored.

The Destination class has one method, with the

following signature:

Public Function CreateConnectionString(
                pPassword As String,
                Optional pUserId,
                Optional pClient,
                Optional pLanguage,
                Optional pTrace) As String

Figure 9 describes the method’s parameters.

The raison d’être for this method is that the

PutSessionInfo method offered by SDC’s Session

class does not have a Trace6  parameter:

Figure 7     The Parameters of the PutOptionsAsRecord Method

Parameter Name Description

destination Destination name

pIn Recordset as defined in Figure 6

passwd Password

Figure 8    The Properties of the Destination Class

Property Name Data Type Read/Write

Name String Yes

UsesLoadBalancing Boolean Yes

HostName String Yes

SystemNumber String Yes

SystemId String Yes

GroupName String Yes

Client String Yes

UserId String Yes

Language String Yes

Trace Boolean Yes

Figure 9 The Parameters of the CreateConnectionString Method

Parameter Name Optional Description

pPassword No Password (required for logon)

pUserId Yes Userid (String)

pClient Yes Client number (String)

pLanguage Yes Language code (String)

pTrace Yes Trace (Boolean)

6  The RFC trace is useful when your SDC-based application is not

working as expected.  The generated trace file helps a developer

to debug an application.  All BAPI and non-BAPI function calls

together with their parameters are listed in the trace file.



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.36

Sub PutSessionInfo(Optional destination As String,
Optional userid As String,
Optional Password As String,
Optional language As String,
Optional client As String)

While PutSessionInfo allows us to override

the defaults stored in the destination for the userid,

password, language, and client, we cannot override

the trace setting stored for the destination at runtime.

Fortunately, the method allows us to pass a string,

with all required keywords set appropriately, instead

of the name of the destination.  This string needs

to be surrounded by curly braces and could look

like this:

"{ ashost=pswdf071.wdf.sap-ag.de
  client=002 lang=EN sysnr=75 type=3

  user=c3026902 passwd=*** trace=1 }"

The CreateConnectionString method of

the Destination class facilitates the construction

of the required string and allows us to optionally

override all fields, including Trace.  This now enables

us to turn on the trace for a particular program

execution, without having to turn it on for the

destination as such (i.e., all programs using this

destination) in SDC.

The Destinations Class

The Destinations class is a collection of Destination

objects.  Figure 10 shows the properties supported by

the Destinations class.

These are standard properties for a collection

class.

Figure 11 contains the public methods of the

Destinations class.

The Add method adds a new Destination object

to the collection and also writes it to the Registry.  It

will fail if a destination with the name of the new

destination already exists.

The Exists method checks whether a destination

with the specified name exists.

The Refresh method re-initializes the collection.

The only time a client program would want to call

Refresh is when the destinations in the Registry were

updated by some other program after the client

program created the Destinations collection object.

The Remove method removes the destination

with the specified name from the collection and the

Registry.  It will fail if no destination with this name

exists.

Figure 10 The Properties of the Destinations Class

Property Name Data Type Read/Write

Count Long Read-only

Item(vntIndexKey As Variant) Destination Read-only

Figure 11 Public Methods of the Destinations Class

Public Sub Add(ByVal Item As Destination)

Public Function Exists(Key As String) As Boolean

Public Sub Refresh()

Public Sub Remove(Name As String)

Public Sub Update(ByVal Item As Destination)



37No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

The Update method updates the destination

identified by the Item parameter’s Name property

with the properties of the Destination object passed in

parameter Item.  This is done both in the collection

and in the Registry.  The method will fail if no

destination with this name exists.

The ObjectFactory Class

The Destination and Destinations classes are very

useful once an object of type Destinations has been

created.  How does a client program instantiate the

Destinations class?  I decided not to allow the client

program to create multiple instances of the

Destinations class (using Visual Basic’s “New”

keyword).  This would have led to some difficulties,

because each instance would have believed that it

has exclusive control over the destinations in the

Registry.  Instead, I have applied the design pattern

known as “Singleton”: All requests for an object of

type Destinations always return the same instance.

This is accomplished via a method called

GetDestinations.  This method is offered by a class

called ObjectFactory, which is responsible for the

creation of objects for which we need to closely

control object creation.

The GetDestinations method returns a reference

to the Destinations object created by the

ObjectFactory.

Summary of the Destinations Component

If you compare the native destination management

API offered by the CCRegistry class with the

component containing the Destination, Destinations,

and ObjectFactory classes, and if you like the latter

approach better, Listing 1, Listing 2, and Listing 3

offer you an opportunity to review the source code for

the Destination, Destinations, and ObjectFactory

classes.  If you prefer the standard API, just continue

using the CCRegistry class.

Listing 1: The Destination Class
Const CLASSNAME = "Destination"
Const ERRSOURCE = LIBNAME + "." + CLASSNAME

Private sName As String

Private sUserId As String
Private sClient As String
Private sLanguage As String

Private bUsesLoadBalancing As Boolean
Private bTrace As Boolean
Private sHostName As String

Private sSystemNumber As String

Private sSystemId As String
Private sGroupName As String

Public Function CreateConnectionString(pPassword As String, _
                                       Optional pUserId, _
                                       Optional pClient, _
                                       Optional pLanguage, _
                                       Optional pTrace) As String

(text continues on page 42)



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.38

Dim s As String
  s = "{ type=3"
  If bUsesLoadBalancing Then
    s = s & " mshost=" & sHostName & " group=" & sGroupName & _
        " r3name=" & sSystemId
  Else
    s = s & " ashost=" & sHostName & " sysnr=" & sSystemNumber
  End If
  s = s & " passwd=" & pPassword
  If IsMissing(pUserId) Then
    s = s & " user=" & sUserId
  Else
    s = s & " user=" & pUserId
  End If
  If IsMissing(pClient) Then
    s = s & " client=" & sClient
  Else
    s = s & " client=" & pClient
  End If
  If IsMissing(pLanguage) Then
    s = s & " lang=" & sLanguage
  Else
    s = s & " lang=" & pLanguage
  End If
  If IsMissing(pTrace) Then
    s = s & " trace=" & IIf(bTrace, "1", "0")
  Else
    s = s & " trace=" & IIf(pTrace, "1", "0")
  End If
  s = s & " }"
  CreateConnectionString = s
End Function

Public Property Get Name() As String
  Name = sName
End Property
Public Property Let Name(ByVal sNewValue As String)
  If sName = "" Then
    sName = sNewValue
  Else
    Err.Raise ERR3010, ERRSOURCE, ERR3010Text
  End If
End Property

Public Property Get UserId() As String
  UserId = sUserId
End Property
Public Property Let UserId(ByVal sNewValue As String)
  sUserId = sNewValue
End Property



39No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

Public Property Get Client() As String
  Client = sClient
End Property
Public Property Let Client(ByVal sNewValue As String)
  sClient = sNewValue
End Property

Public Property Get Language() As String
  Language = sLanguage
End Property
Public Property Let Language(ByVal sNewValue As String)
  sLanguage = sNewValue
End Property

Public Property Get UsesLoadBalancing() As Boolean
  UsesLoadBalancing = bUsesLoadBalancing
End Property
Public Property Let UsesLoadBalancing(ByVal NewValue As Boolean)
  bUsesLoadBalancing = NewValue
End Property

Public Property Get Trace() As Boolean
  Trace = bTrace
End Property
Public Property Let Trace(ByVal NewValue As Boolean)
  bTrace = NewValue
End Property

Public Property Get HostName() As String
  HostName = sHostName
End Property
Public Property Let HostName(ByVal sNewValue As String)
  sHostName = sNewValue
End Property

Public Property Get SystemNumber() As String
  SystemNumber = sSystemNumber
End Property
Public Property Let SystemNumber(ByVal sNewValue As String)
  sSystemNumber = sNewValue
End Property

Public Property Get SystemId() As String
  SystemId = sSystemId
End Property
Public Property Let SystemId(ByVal sNewValue As String)
  sSystemId = sNewValue
End Property



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.40

Public Property Get GroupName() As String
  GroupName = sGroupName
End Property
Public Property Let GroupName(ByVal sNewValue As String)
  sGroupName = sNewValue
End Property

Listing 2: The Destinations Class

Const CLASSNAME = "Destinations"
Const ERRSOURCE = LIBNAME + "." + CLASSNAME

Private colX As Collection

Public Property Get Count() As Long
  Count = colX.Count
End Property

Public Function Exists(Key As String) As Boolean
  On Error Resume Next
  colX.Item Key
  Exists = IIf(Err.Number = 0, True, False)
  Err.Clear
End Function

Public Property Get Item(vntIndexKey As Variant) As Destination
  Set Item = colX(vntIndexKey)
End Property

Public Property Get NewEnum() As IUnknown
  Set NewEnum = colX.[_NewEnum]
End Property

Public Sub Remove(Name As String)
  If Exists(Name) Then
    oCCRegistry.DeleteDestination Name
    colX.Remove Name
  Else
    Err.Raise ERR3012, ERRSOURCE, ERR3012Text
  End If
End Sub

Private Sub Class_Initialize()
  Refresh
End Sub
Private Sub Class_Terminate()
  Set colX = Nothing
End Sub



41No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

Public Sub Add(ByVal Item As Destination)
  If Exists(Item.Name) Then
    Err.Raise ERR3011, ERRSOURCE, ERR3011Text
  Else
    oCCRegistry.PutNewDestination Item.Name
    AddInternal Item
    Update Item
  End If
End Sub
Friend Sub AddInternal(ByVal Item As Destination)
  colX.Add Item, Item.Name
End Sub

Public Sub Refresh()
Dim rsX As Recordset
Dim destinationX As Destination
  Set colX = New Collection
  Set rsX = oCCRegistry.GetDestinations
  rsX.MoveFirst
  Do Until rsX.EOF
    Set destinationX = New Destination
    destinationX.Name = rsX("Destination")
    destinationX.ConnectString = rsX("Options")
    AddInternal destinationX
    rsX.MoveNext
  Loop
  For Each destinationX In colX
    Set rsX = oCCRegistry.GetOptionsAsRecord(destinationX.Name)
    rsX.MoveFirst
    destinationX.UsesLoadBalancing = _
      IIf(rsX("loadbal") = 0, False, True)
    destinationX.Trace = IIf(rsX("trace") = 1, True, False)
    destinationX.Client = rsX("client")
    destinationX.GroupName = rsX("group")
    destinationX.HostName = _
      IIf(destinationX.UsesLoadBalancing, rsX("mshost"), rsX("ashost"))
    destinationX.Language = rsX("lang")
    destinationX.SystemId = rsX("r3name")
    destinationX.SystemNumber = rsX("sysnr")
    destinationX.UserId = rsX("user")
  Next destinationX
End Sub

Public Sub Update(ByVal Item As Destination)
Dim rsX As Recordset
  If Not Exists(Item.Name) Then
    Err.Raise ERR3012, ERRSOURCE, ERR3012Text
  Else
    Set rsX = oCCRegistry.GetOptionsAsRecord(Item.Name)
    rsX.MoveFirst
    rsX("client") = Item.Client



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.42

    rsX("lang") = Item.Language
    rsX("user") = Item.UserId
    rsX("loadbal") = IIf(Item.UsesLoadBalancing, 1, 0)
    rsX("trace") = IIf(Item.Trace, 1, 0)
    rsX("group") = Item.GroupName
    rsX("r3name") = Item.SystemId
    rsX("sysnr") = Item.SystemNumber
    If Item.UsesLoadBalancing Then
      rsX("mshost") = Item.HostName
      rsX("ashost") = ""
    Else
      rsX("ashost") = Item.HostName
      rsX("mshost") = ""
    End If
    rsX.Update
    Call oCCRegistry.PutOptionsAsRecord(Item.Name, rsX, "")
  End If
End Sub

Listing 3: The GetDestinations Method in the ObjectFactory Class

Public Function GetDestinations() As Destinations
  If oDestinations Is Nothing Then
    Set oDestinations = New Destinations
  End If
  Set GetDestinations = oDestinations
End Function

Building a Destination

Management Application

If normal users of SDC-based applications want to

maintain their own destinations (e.g., to define a new

R/3 system they want to use), they can only do so if

they have access to SDC’s administration features.

Some system administrators might not like the idea of

giving normal users complete SDC administration

capabilities.  On the other hand, letting users maintain

just destinations will be acceptable in most cases.

Since we now have a nice component (in my opinion)

that encapsulates access to the destinations, it is not

hard to develop an application that allows a user to

do this.  Figure 12 contains a screenshot of the

application I built for this purpose.  This program is

freeware and can be downloaded from:

http://www.sap.com/solutions/technology/

bapis/com/ara_dest.zip

Figure 12    The Destination Manager for SAP R/3



43No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

Using this program, you can add, change,

and delete destinations.  In addition, you can test

any destination (logging on to the R/3 system) to

make sure that its definition is correct.  The only

hard thing about writing this program was making

sure that the GUI was intuitive to use.  The

Destination and Destinations classes took care

of everything else.

Building a Visual Logon

Component

The current version of SDC does not have a

dialog component that would allow users to pick a

destination from the list stored in the Registry and

log on by providing their password and other user

information.  Based on the Destinations component,

it was not too hard to build one.  My visual logon

component can be downloaded from:

http://www.sap.com/products/techno/bapis/

com/ara_dcom_2.zip

and it is freeware.  Figure 13 shows a screenshot of

the component.

particular system.  Forcing the user to remember

these codes is not nice.  My component therefore

contains a dropdown combobox, which lists the

names of the languages in the languages themselves,

so anyone can easily find their own language in the

list, instead of having to know the code for the

language.

In addition, the component allows the user to turn

on the trace without having to change the trace setting

for the destination.  This allows us to enable the trace

for a specific execution of one application without

having to turn it on for the destination globally.  How

is this accomplished?  Earlier in this article, I

introduced the CreateConnectionString method

available for the Destination class.  This method

retrieves all the information available for the

destination and allows the client program to override

the client, userid, password, language, and trace

default settings, generating the explicit curly braced

string that the PutSessionInfo method accepts instead

of the destination name.

Using the Logon Component

The file name of the component is ARAsoft
Logon Component.dll.  The name of its Type

Library is ARAsoftDLC.  The component has one

global method, called LogonDialog:

Function LogonDialog(Session As RfcSession,
ErrorMessage As String)

As LOGONDIALOGRESULT

You have to pass a valid Session object and

a string that after the call contains the error

message returned by the Logon method.  The

LOGONDIALOGRESULT enumeration contains

the constants shown in Figure 14.

Figure 13 The ARAsoft DCOM Connector
Logon Component

Users logging on to R/3 have to enter a language

code unless they want to use whatever default

language the system administrator has defined for the

Figure 14     Constants in LOGONDIALOGRESULT

Const Cancel = 2

Const Failure = 1

Const Success = 0



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.44

The complete source code required to call the

LogonDialog method is given in Listing 4.

Once more you can see the benefits of

proper encapsulation.  Using the component

in a client application is extremely easy and

straightforward.

Additional Ideas

You have just seen how to use an encapsulation of the

CCRegistry API as the basis upon which to build the

destination management application and the visual

logon component.  What else could you do with this

Destinations component?  You could, for example,

build a utility that enables the export and import of

XML files containing the attributes of destinations so

that an administrator could automatically update the

destinations in the Registry of multiple client PCs.

This utility could be made part of the startup script

for all PCs.  When executed, it would fetch the

latest version of the XML file from a server and

update the local Registry accordingly.

Getting Information About a

Session at Runtime

Once a user has successfully logged on to R/3, your

application may need to retrieve the following types

of session-related information:

• What release of R/3 is running on the server?

This information allows your application to use

more advanced features available in a higher

release of R/3 if, and only if, the user logged

on to a system with a certain minimum

release level.

• Which userid did the user of your application

use to log on?

• What release of SDC is your application running

with?  (Future versions of SDC will include

additional capabilities.  An application needs to

check the release of SDC before trying to use

these capabilities.)

• Which code pages are being used on the client

and on the server?  (The RFC layer does a good

job of converting different data representations,

so I have not had to rely on information about

code pages, yet.  But you might be able to

benefit from it somehow.)

• Which language did the user log on with?

• Which character is used as the decimal symbol

in R/3?

• Which date format is used by R/3?

• Is the user still connected?  (A user could have

been disconnected by R/3 after exceeding the

Listing 4: Invoking the LogonDialog Method

Dim oSession As SessionComponent
Dim sErrorMessage As String
Dim ldSuccess As ARAsoftDLC.LOGONDIALOGRESULT
  Set oSession = New SessionComponent
  ldSuccess = ARAsoftDLC.LogonDialog(oSession, sErrorMessage)
  If ldSuccess = Success Then
    MsgBox "Okay"
  ElseIf ldSuccess = Failure Then
    MsgBox sErrorMessage
  ElseIf ldSuccess = Cancel Then
    ' User cancelled the logon dialog
  End If



45No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

maximum inactivity threshold.)  If, for example,

a user gets disconnected in the middle of a

transaction containing multiple update BAPI

calls, the application needs to take appropriate

action (e.g., start from scratch).

The first four questions can be answered by

calling the Session’s GetConnectionAttribute method:

 Function GetConnectionAttribute
         (Optional AttrName As String)
         As Variant

The AttrName parameter allows you to retrieve

an individual attribute.  When you specify this

parameter, the method returns a Variant with the

requested data.  If you omit the parameter, you get

a Recordset with all attributes.  The most useful

attributes are shown in Figure 15.

There are some other attributes in the

Recordset that sound promising, like CALLS,

LAST_FUNCTION, and STATE, but at least on my

computer (using SDC 4.6A), they were either never

set (CALLS returned “0”, LAST_FUNCTION an

empty string) or always contained the same value

(STATE always contained “connecting,” even after

I had been disconnected by R/3).

Encapsulating the GetConnectionAttribute
Method

In order to facilitate a client program’s access

to the important attributes returned by

GetConnectionAttribute, I have created a class

called ConnectionAttributes.

The properties of this class are shown in

Figure 16.

Figure 15 Useful Attributes of GetConnectionAttribute

Attribute Name Description

OWN_CODEPAGE Code page on the client

OWN_REL Release of SDC

PARTNER_CODEPAGE Code page on the application server

PARTNER_HOST Application server

PARTNER_REL R/3 release on the server

SYSID Name of the R/3 system

SYSTNR System number

USER Userid

Figure 16 The Properties of the ConnectionAttributes Class

Property Name Data Type Description

SystemId String Name of the R/3 system

HostName String Application server

UserId String System number

SystemNumber Integer Userid

SapRelease String R/3 release on the server

SapCodePage String Code page on the application server

SdcRelease String Release of SDC

LocalCodePage String Code page on the client



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.46

The source code for this class appears in

Listing 5.

After setting the ObjectFactory’s Session property,

the client program can get an instance of the

ConnectionAttributes class by calling the

ObjectFactory’s GetConnectionAttributes method,

shown in Listing 6.  Then the client program can easily

access the various properties of ConnectionAttributes.

Checking the SAP
Connection

The only way to find out whether or not a connection

to R/3 is still intact is a BAPI or other RFM.  The

cheapest RFM in terms of performance to call is

RFCPING.  Therefore, the ObjectFactory contains

a method, IsConnectionValid, that tries RFCPING and

returns True if that call was successful, False

Listing 5: The ConnectionAttributes Class

Private sSystemId As String
Private sHostName As String
Private sUserId As String
Private iSystemNumber As Integer
Private sSapRelease As String
Private sSapCodePage As String
Private sSdcRelease As String
Private sLocalCodePage As String

Public Property Get SystemId() As String
  SystemId = sSystemId
End Property
Friend Property Let SystemId(ByVal sNewValue As String)
  sSystemId = sNewValue
End Property

Public Property Get HostName() As String
  HostName = sHostName
End Property
Friend Property Let HostName(ByVal sNewValue As String)
  sHostName = sNewValue
End Property

Public Property Get UserId() As String
  UserId = sUserId
End Property
Friend Property Let UserId(ByVal sNewValue As String)
  sUserId = sNewValue
End Property

Public Property Get SapRelease() As String
  SapRelease = sSapRelease
End Property
Friend Property Let SapRelease(ByVal sNewValue As String)
  sSapRelease = sNewValue
End Property



47No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

Public Property Get SystemNumber() As Integer
  SystemNumber = iSystemNumber
End Property
Friend Property Let SystemNumber(ByVal iNewValue As Integer)
  iSystemNumber = iNewValue
End Property

Public Property Get SapCodePage() As String
  SapCodePage = sSapCodePage
End Property
Friend Property Let SapCodePage(ByVal sNewValue As String)
  sSapCodePage = sNewValue
End Property

Public Property Get SdcRelease() As String
  SdcRelease = sSdcRelease
End Property
Friend Property Let SdcRelease(ByVal sNewValue As String)
  sSdcRelease = sNewValue
End Property

Public Property Get LocalCodePage() As String
  LocalCodePage = sLocalCodePage
End Property
Friend Property Let LocalCodePage(ByVal sNewValue As String)
  sLocalCodePage = sNewValue
End Property

Listing 6: The GetConnectionAttributes Method in the ObjectFactory Class

Public Function GetConnectionAttributes() As ConnectionAttributes
Dim rsX As Recordset
Dim caX As ConnectionAttributes
  If oSession Is Nothing Then
    Err.Raise ERR3001, ERRSOURCE, ERR3001Text
  End If
  Set caX = New ConnectionAttributes
  Set rsX = oSession.GetConnectionAttribute
  rsX.MoveFirst
  caX.HostName = rsX("PARTNER_HOST")
  caX.SapRelease = rsX("PARTNER_REL")
  caX.SystemId = rsX("SYSID")
  caX.SystemNumber = rsX("SYSTNR")
  caX.UserId = rsX("USER")
  caX.LocalCodePage = rsX("OWN_CODEPAGE")
  caX.SapCodePage = rsX("PARTNER_CODEPAGE")
  caX.SdcRelease = rsX("OWN_REL")
  Set GetConnectionAttributes = caX
End Function



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.48

otherwise.  The source code for this method is

shown in Listing 7.

The GetConnectAttributes method gives you a

means to extract information about the attributes

listed in Figure 15.  For information about R/3’s date

format and decimal sign, as well as the language the

user logged on with, we turn to a very useful RFM,

Rfc_Get_Sap_System_Parameters.  This R/3 function

returns the parameters shown in Figure 17.

Some of this information is already available via

a call to GetConnectionAttribute (R/3 release, userid),

but the rest cannot be retrieved without calling the

Rfc_Get_Sap_System_Parameters function.  As

before, I have encapsulated the access to this function

in the ObjectFactory.  The source code for the

methods of the ObjectFactory that use the

Rfc_Get_Sap_System_Parameters function is

shown in Listing 8.

Listing 7: The IsConnectionValid Method in the ObjectFactory Class

Public Function IsConnectionValid() As Boolean
  On Error Resume Next
  oFunctions.Rfcping
  If Err.Number <> 0 Then
    Err.Clear
    IsConnectionValid = False
  Else
    IsConnectionValid = True
  End If
End Function

Figure 17 The Fields Returned by
Rfc_Get_Sap_System_Parameters

Parameter Name Description

Date_Format Date format used in R/3

Decimal_Sign Decimal symbol used in R/3

Language Logon language

Sap_System_Release R/3 release on the server

User_Name Userid

Listing 8: Additional Methods in the ObjectFactory Class

Public Function GetDateFormat() As String
  On Error GoTo EH
  If gsDateFormat = "" Then
    oFunctions.Rfc_Get_Sap_System_Parameters _
      Date_Format:=gsDateFormat, _
      Decimal_Sign:=gsDecimalSign, _
      Language:=gsLanguage, _
      Sap_System_Release:=gsSapRelease, _
      User_Name:=gsUserId
  End If
  GetDateFormat = gsDateFormat
  Exit Function
EH:
  Err.Raise Err.Number, ERRSOURCE, ERRSOURCE + _
    ".GetDateFormat (Line " + CStr(Erl) + ")" + _
    vbCrLf + Err.Description
End Function

(text continues on page 50)



49No portion of this publication may be reproduced without written consent.

Destination and Session Management for the SAP DCOM Connector

Public Function GetDecimalSign() As String
  On Error GoTo EH
  If gsDecimalSign = "" Then
    oFunctions.Rfc_Get_Sap_System_Parameters _
      Date_Format:=gsDateFormat, _
      Decimal_Sign:=gsDecimalSign, _
      Language:=gsLanguage, _
      Sap_System_Release:=gsSapRelease, _
      User_Name:=gsUserId
  End If
  GetDecimalSign = gsDecimalSign
  Exit Function
EH:
  Err.Raise Err.Number, ERRSOURCE, ERRSOURCE + _
    ".GetDecimalSign (Line " + CStr(Erl) + ")" + _
    vbCrLf + Err.Description
End Function

Public Function GetLogonLanguage() As String
  On Error GoTo EH
  If gsLanguage = "" Then
    oFunctions.Rfc_Get_Sap_System_Parameters _
      Date_Format:=gsDateFormat, _
      Decimal_Sign:=gsDecimalSign, _
      Language:=gsLanguage, _
      Sap_System_Release:=gsSapRelease, _
      User_Name:=gsUserId
  End If
  GetLogonLanguage = gsLanguage
  Exit Function
EH:
  Err.Raise Err.Number, ERRSOURCE, ERRSOURCE + _
    ".GetLogonLanguage (Line " + CStr(Erl) + ")" + _
    vbCrLf + Err.Description
End Function

Public Function GetSapRelease() As String
  On Error GoTo EH
  If gsSapRelease = "" Then
    oFunctions.Rfc_Get_Sap_System_Parameters _
      Date_Format:=gsDateFormat, _
      Decimal_Sign:=gsDecimalSign, _
      Language:=gsLanguage, _
      Sap_System_Release:=gsSapRelease, _
      User_Name:=gsUserId
  End If
  GetSapRelease = gsSapRelease
  Exit Function
EH:



SAP Professional Journal         March/April 2000

www.SAPpro.com       ©2000 Wellesley Information Services. All rights reserved.50

  Err.Raise Err.Number, ERRSOURCE, ERRSOURCE + _
    ".GetSapRelease (Line " + CStr(Erl) + ")" + _
    vbCrLf + Err.Description
End Function

Public Function GetUserId() As String
  On Error GoTo EH
  If gsUserId = "" Then
    oFunctions.Rfc_Get_Sap_System_Parameters _
      Date_Format:=gsDateFormat, _
      Decimal_Sign:=gsDecimalSign, _
      Language:=gsLanguage, _
      Sap_System_Release:=gsSapRelease, _
      User_Name:=gsUserId
  End If
  GetUserId = gsUserId
  Exit Function
EH:
  Err.Raise Err.Number, ERRSOURCE, ERRSOURCE + _
    ".GetUserId (Line " + CStr(Erl) + ")" + _
    vbCrLf + Err.Description
End Function

As you review the source code you will notice

that Rfc_Get_Sap_System_Parameters is called

only once, even if the client makes multiple calls to

the appropriate ObjectFactory methods.  This is

accomplished by storing the retrieved information

in global variables.

Summary

Congratulations!  We have covered a lot of ground

together.  You should now have all the information

required to deal with destination and session

management in SDC.  If you have any questions or

suggestions concerning the presented topics, I would

love to hear from you.

Thomas G. Schuessler is the founder of ARAsoft,

a company offering products, consulting, custom

development, and training around the world.

The company specializes in integration between

SAP and non-SAP components and applications.

ARAsoft offers various products for BAPI-enabled

programs on the Windows and Java platforms.

These products facilitate the development

of desktop and Internet applications that

communicate with R/3.  Thomas is the author of

SAP’s CA925 “Programming with BAPIs in

Visual Basic” class, which he teaches in Germany

and in English-speaking countries.  His book on

the same subject will be published soon.  Thomas

is a regularly featured speaker at SAP’s TechEd

and SAPPHIRE conferences.  Prior to founding

ARAsoft in 1993, he worked with SAP AG and

SAP America for seven years.  Thomas can be

contacted at thomas.schuessler@sap.com or at

arasoft@t-online.de.


